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a b s t r a c t

Terrestrial Laser Scanning (TLS) has great potential in creating high resolution digital elevation models
(DEMs). However, little is known about the properties of TLS derived DEMs covering several hectares in
heterogeneous environments compared to conventional airborne laser scanning (ALS) based models and
their influence on derived products. We investigated the accuracy of DEMs with different resolutions
derived from TLS and high quality ALS on a study site with complex micro-topography covered by dense
forest and ground vegetation. We further examined the effect of these DEMs on predicted topsoil pH
using linear regression models built on terrain attributes. We show that at high resolutions (~1 m), TLS
based DEMs performed better than ALS DEMs, which directly translated into significantly better pH
models, the best of which showing an R2 of 0.62. The use of TLS therefore improves the quality of terrain
attributes, which are the foundation for many ecological and hydrological applications.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Digital elevation models (DEMs) are indispensable tools in
describing many landsurface forms and processes. They are used in
many different fields including hydrological modelling (e.g. Gurtz
et al., 1999; Yang et al., 2014) geomorphological (Lin et al., 2013)
and digital soil mapping (e.g. McBratney et al., 2003; Nussbaum
et al., 2014), natural hazard assessment (e.g. Arnone et al., 2016;
Bühler et al., 2015), or ecological species distribution models (e.g.
Camathias et al., 2013; Guisan and Zimmermann, 2000). A very
widely used source of DEM data is light detection and ranging
(LiDAR), a technology which permits creation of high resolution
and accurate DEMs (Tarolli, 2014). LiDAR measures the distance
between a sensor and a target based on half the elapsed time be-
tween the emission of a pulse and the detection of a reflected re-
turn (Baltsavias, 1999). Most DEMs derived from LiDAR rely on
airborne laser scanning (ALS). ALS surveys are typically designed to
ltensweiler).
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have a dense and evenly distributed LiDAR point density over large
areas (Bater and Coops, 2009). The accuracy of DEMs generated by
ALS is dependent on a range of factors including flight altitude
above ground level, flight speed and scan angle (Hyypp€a et al.,
2008; Maguya et al., 2014). Dense vegetation cover such as multi-
story forests and dense ground vegetation can reduce the pene-
tration rate of the LiDAR pulses to the ground (Guan et al., 2014;
Hodgson et al., 2003; Mulder et al., 2011) and thus also influence
DEM accuracy. To derive a DEM, LiDAR reflection points need to be
separated into non-ground points, e.g. vegetation returns, and
ground points. This can be especially challenging in regions with
complex topography and dense vegetation cover, which is often the
case in mountainous landscapes (Guan et al., 2014; Maguya et al.,
2014; Montealegre et al., 2015). Moreover, several studies have
shown that DEM error increases as the ground point density de-
creases (Anderson et al., 2006; Chu et al., 2014; Jakubowski et al.,
2013).

The vertical accuracy of ALS based DEMs in forested and
mountainous regions has been assessed in various publications
(Bater and Coops, 2009; Kobler et al., 2007; Montealegre et al.,
2015). Root Mean Square Errors (RMSEs) of models between 0.16
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and 0.37 m were reported with a point density ranging from 0.7 to
8.5 points/m2. Bater and Coops (2009) showed that the resolution
of DEMs, generated from the same LiDAR ground points, influence
DEM accuracy, independently of the applied interpolation method.
They created DEMs at spatial resolutions of 0.5, 1.0 and 1.5 m and
obtained RMSEs of 0.17, 0.19 and 0.25 m. However, these error
values were strongly influenced by the spatial scale of the terrain
variation. Cell resolution selection should be based on point density
and distribution, horizontal accuracy, terrain complexity (Hengl,
2006) and on the relevant scale for the process or attribute being
modeled (Cavazzi et al., 2013; Fisher et al., 2004; Liu, 2008).

The application of terrestrial laser scanning (TLS) has rapidly
increased in recent years for purposes including topographical
surveys (Gallay et al., 2013), investigations of small scale landslides
(Wang et al., 2013) or collecting forest inventory measurements
(Dassot et al., 2011; Marselis et al., 2016; Moskal and Zheng, 2011).
TLS enables fast and dense height sampling from the surface of
objects in the neighborhood of the scanner. The accuracy of these
point measurements is in the range of that obtained by a total
station. Heritage et al. (2009) reported a median error of �0.003 m
for 186 surface points, measured with a total station and a terres-
trial laser scanner. TLS is limited to substantially smaller areas than
ALS because of the low oblique angle of transmitted signals. In
addition, LiDAR impulses can be reflected back to the scanner by
obstacles and therefore shadows occur in the 3D point cloud. This is
mainly an issue in dense forests with understory and/or areas with
a rugged topography (Panholzer and Prokop, 2013). In contrast to
ALS which acquires the data at near nadir view angles and thereby
yield a relatively homogenous point distribution, TLS generates an
irregular distribution of points. The TLS points concentrate around
the scanner and density decreases inversely proportional to the
square of the distance to the scanner location (Hilker et al., 2010).
To mitigate these effects and to generate a 3D point cloud with a
larger spatial extent, multiple TLS scans with different viewsheds
can be combined in a single dataset. To scan e.g. an area of 60 m2 in
a pine forest for tree canopy studies, 3 scans were required (Danson
et al., 2006), whereas 14 scans were taken to survey 360000 m2 in a
glacial valley to monitor cliff evolution (Heritage and Hetherington,
2007). Due to the irregular point distribution and the shadowing
effect of obstacles the separation of ground and non-ground points
obtained by TLS is more complex than for ALS data (Panholzer and
Prokop, 2013; Rodríguez-Caballero et al., 2016).

So far, relatively few studies have discussed the accuracy of
DEMs derived from TLS data and the resulting influence on derived
terrain properties. Typically, RMSEs vary considerably depending
on the site characteristics. Gallay et al. (2013) compared the accu-
racy of DEMs derived from TLS data and ALS last return echoes. For
a flat terrain with low-cut meadow, the reported RMSEs were
0.007 m for TLS and 0.286 m for ALS data. In an uneven slope
covered by dense vegetation the corresponding RMSE were
0.525m and 0.306m. However, no filter was applied to separate the
point clouds. Pirotti et al. (2013) reported a RMSE of 0.3 m based on
DEM composed of 7 scans with a resolution of 0.1 m. The study was
conducted in a steep landslide area covered with pioneer species,
coppice and tall trees.

For many ecological and environmental models, the spatial
distribution of soil properties is a crucial input. To improve e.g.
plant species distribution models, accurate and high resolution soil
information are considered as a primary requirement (Guisan and
Zimmermann, 2000) since the success of a species is largely
conditioned by soil chemical properties (Walthert et al., 2013).
However, spatially explicit soil data of sufficient quality is scarce,
due to the complexity of soil geography and the hidden nature of
soil. An added problem are the high costs for soil sampling and for
most soil analyses (Rossiter, 2005). In recent years, the spatial
availability of soil data has been increased through digital soil
mapping (DSM) which has been proven to provide useful soil
properties maps (e.g. Samuel-Rosa et al., 2015; Shary and Pinskii,
2013).

Terrain attributes (TAs) such as slope, curvature or topographic
wetness index (TWI) act as soil forming factors and thus are related
to soil forming processes. They can be derived from DEMs and are
often used in DSM as key factors for inferring chemical and physical
soil properties (McBratney et al., 2003). Slope and curvature
determine the intensity and direction of flows of matter and
therefore are relevant for erosion, leaching and accumulation pro-
cesses (MacMillan and Shary, 2009; Shary and Pinskii, 2013;
Wilson, 2012). Similarly, TWI combines upslope contributing area
and local slope and is a proxy for soil moisture patterns (Moore
et al., 1991; Seibert et al., 2007). The spatial scale of soil forming
processes can vary from the very local up to landscape scales, as
manifested in the spatial pattern and range of soil properties across
a landscape. Therefore, the scale at which these processes operate
should determine the optimal scale for deriving TAs (Fisher et al.,
2004; Maynard and Johnson, 2014).

The scale-dependency of TAs to spatially predict soil properties
suggests that there is an optimal scale to derive TAs for inferring
soil properties (e.g. Cavazzi et al., 2013; Kim and Zheng, 2011;
Maynard and Johnson, 2014; Pain, 2005; Park et al., 2009; Smith
et al., 2006). For topography such as hillslopes, rolling hills,
drumlins or dunes, moderate TAs resolutions (15e50 m) produced
highest prediction accuracy whereas coarse scaled TAs (>100 m)
were most suitable for flat areas. Various recent studies have
emphasized that fine-scaled DEMs (resolution < 10 m) are not al-
ways the best choice for DSM studies (Cavazzi et al., 2013; Kim and
Zheng, 2011; Maynard and Johnson, 2014). Kim and Zheng (2011)
argued that soil contains a spatially diffusive nature from one
location or grid cell to adjacent locations or cells and therefore
edaphic traits (e.g. soil pH, nutrient content) can be influenced by
lateral water flow. In a uniform substrate, e.g. sandy dunes, with
highly homogenous edaphic conditions the capture of any mirco-
scale topographic relief is therefore not desirable. In such uniform
substrates, fine-resolution TAs might introduce high-frequency
noise and do not typically improve spatial predictions (Cavazzi
et al., 2013; Kim et al., 2011; Smith et al., 2006). In more rugged
areas with a complex substrate structure, by contrast, the fine-
resolution TAs are expected to be most suitable for DSM (Kim
et al., 2011), who also emphasized that empirical research is
needed to test this hypothesis.

To find the appropriate cell size and relevant scale for the pro-
cess being modeled, a multiscale approach was introduced by
Behrens et al. (2010) and Grinand et al. (2008) that incorporates
different spatial scales in soil property prediction models. TAs
derived from a DEM are smoothed by local average filters with
distinct neighborhood sizes to integrate information of the neigh-
borhood into the processed pixel whereas small scale variation is
omitted (Liu et al., 2009). Although the scale-dependency of TAs in
DSM has been discussed in many publications, the accuracy of
different input DEMs in deriving TAs has not been investigatedwith
respect to accuracy of soil properties modelling.

The first aim of this study was to investigate if DEMs derived
from TLS data obtained from forested regions with dense vegeta-
tion achieve higher accuracies than DEMs based on high quality ALS
data. Furthermore, the effect of different resolutions (0.2e4 m) and
interpolation methods was addressed and compared with corre-
sponding DEMs derived from ALS data. Secondly, we aimed to
evaluate how accuracies and resolutions of DEMs obtained from
ALS and TLS data affect the performance of topsoil pH models. For
this, we performed a case study in a mountainous, forested site of
2 ha with a strong micro-topography. We derived a set of TAs for
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diverse DEM resolutions and established ordinary least square
regression (OLS) models.
Table 1
Specification of the used scanners.

Riegl VZ-1000 Faro Focus 3D S120

Range finder Pulsed time-of-flight Phase shift
Wavelength [nm] Near-infrared 905 (Near-infrared)
Return type Full wave Single signal
Measurement range [m] 2.5e1200 0.6e120
Range accuracy [mm] 8 (at 100 m) 2 (at 25 m)
Beam diameter at exit [mm] 8 3
Beam divergence [mrad] 0.3 0.19
V x H field of view [�] 100 � 360 300 � 360
Acquisition rate (pts/s) up to 122 000 up to 976 000
Weight incl peripherals [kg] 12 5
2. Material and methods

2.1. Study site

The 2 ha study site is part of the Swiss Long-term Forest
Ecosystem Research program LWF (Schaub et al., 2011) and located
in the valley of Alptal in Switzerland (Fig. 1). It is a mountainous
landscape at 1150 m above sea level. The climate is cool and wet
(6 �C mean temperature and 2300 mm mean precipitation per
year). Mean slope is about 20� and a strong micro-relief exists with
ridges and depressions. The geological formation is Flysch, a ter-
tiary sediment with alternating shists of calcareous sandstones,
argillite and bentonite. The soils of the research site are classified as
umbric Gleysoils (Schleppi et al., 1998). The main tree species is
Norway spruce (Picea abies) with tree heights up to 33 m and a
stand density of 1228 trees/ha. The ground vegetation consists
mainly of blueberries (Vaccinium myrtillus) and different herba-
ceous species including wood horsetail (Equisetum sylvaticum),
rusty sedge (Carex ferruginea), reed grass (Calamagrostis varia) and
various mosses.
Fig. 1. Study site, Terrestrial Laser Scanning (TLS) assessment and soil sampling. Left: Locat
locations of the soil samples. Upper right: TLS Faro Scanner, spherical reference target and
dense ground vegetation with young Norway spruces and blueberries.
2.2. Data acquisition

ALS data were collected using a Riegl VZ-1000 mounted on an
Ecureuil AS 350 B3 helicopter. Flight altitude and speedwere 500m
above ground and 30 knots respectively. The average pulse density
was 16.9 pulses/m2. Because of dense vegetation, the full wave
LiDAR system often recorded multiple returns resulting in an
average echo density of 21.2 points/m2. The size of the footprint was
0.15 m and the height accuracy was within 0.08 m (one standard
deviation). The flight took place on 5th May 2015 after snowmelt to
ensure that vegetationwas minimally developed. Table 1 shows the
ion of the study site with shaded relief derived from TLS data (resolution 0.2 m) with
Leica total station. Middle right: mirco-relief under dense conifer forest. Lower right:
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specification of the laser scanner. This dataset is henceforth
referred to as ALS data.

For the TLS data acquisition, a Faro Focus 3D 120 laser scanner
was used (Table 1). The chosen point spacing was 6 mm at 10 m
distance from the scanner. In order to scan the whole research area
and to mitigate occlusions, 78 scans at different locations were
carried out. The TLS point clouds were co-registered with separate
highly reflective spherical reference targets as tie points to estab-
lish a relative orientation between the individual scans (Fig. 1). The
targets were placed in the scan areas so that at least 3 common
targets were visible in two neighboring scans. With the Faro Scene
5.2 software the targets were identified manually to coregister the
individual scans (accuracy ± 5 mm). The targets were surveyed in
the field using a Leica TCPR 1202 total station with an accuracy of
±2 mm. After the relative coregistration of the 78 scans they were
transformed from the local coordinate system to the Swiss national
coordinate system (CH1903LV03/LN02). It took about 5 working
days to acquire TLS data in the field. The TLS field campaign was
carried out between the end of May and the beginning of June
2013 at the same vegetation developmental stage as for ALS data.
Because of more persistent snow cover, the vegetation develop-
ment was delayed compared to 2015.

As a third LiDAR dataset the nationally available dataset Swis-
sAlti provided by the Swiss Federal Office of Topography was used
(Swisstopo, 2010). This dataset consists of discrete first and last
LiDAR returns with a nominal footprint size of 0.3 m. The nominal
point density in the study areawas 0.69 points/m2 and the reported
standard deviation of height accuracy was 0.5 m in open areas and
1.5 m in forested areas (Artuso et al., 2003). The national data were
acquired during multiple seasons between 2000 and 2007. For the
study region the data were acquired in 2002.

2.3. Soil data

A total of 62 soil samples were taken in May and June 2013
whereby 56 sampling points were surveyed with Leica TCPR 1202
total station and 6 samples with Leica Disto D5 pointfinder. For the
latter, no height values were recorded. In order to obtain an unbi-
ased set of soil samples, the sample schemewas carefully designed.
To represent the whole pH variation of the study site in the soil
samples, a priori information about the pedogenetic process was
used to stratify the area in ridges and depressions. Soils on ridges
are characterized by a low pH as a result of intense weathering
whereas an alkaline regime is characteristic in depressions due to a
steady supply of basic cations (e.g. Ca and Mg) in the soil water
solution. 19 points were sampled on ridges, 14 in depressions
(Fig. 1). To cover the whole spatial extent, another 10 sampling
points were placed on a regular grid. Additionally, 19 points were
randomly sampled by applying the Random Points Function of
ArcGIS (v.10.3, ESRI) to ensure that any location within the study
area has an equal chance of being selected as a sampling point. At
each sampling point, soil samples were taken at depths of 5e10 cm
and 20e30 cm. The pH of each sample was measured in a 0.01 M
CaCl2 suspension in duplicate. To model the topsoil pH, only the pH
values for the depth of 5e10 cm were used. The pH for this sample
depth ranged between 3.5 and 7.0, with a mean of 5.14.

2.4. Point cloud processing

All LiDAR point clouds were processed with the software pack-
age of LAStools (Isenburg, 2015). In order to make the TLS point
cloud operable for further data processing and to reduce point
noise (Puttonen et al., 2015), data density was reduced by applying
the lasthin function. A grid of 0.05� 0.05mwas placed over the TLS
points and within each cell only the point with the lowest height
value was kept in the point cloud since our goal was to derive
terrain. To separate LiDAR data into vegetation points and ground
points, the lasground function was applied for all three LiDAR
datasets with no manual editing. The lasground function is based
on adaptive densification of a triangular irregular network (TIN)
developed by Axelsson (2000). The initial sparse TIN is created from
local minimum points over a defined area. To each triangle, new
points are added depending on their positions and the geometry of
the new triangles generated. This filter was originally developed for
airborne LiDAR data and is also implemented in the common used
LiDAR processing software TerraScan from TerraSolid.
2.5. DEM interpolation

In order to consider the influence of different resolutions and
interpolation methods regarding to the final DEM accuracy, we
applied the Inverse Distance Weighted (IDW) and the TIN method.
Both methods are commonly used to generate DEMs from ALS
(Chaplot et al., 2006; Guo et al., 2010; Sa�ckov and Kardo�s, 2014) and
TLS (Heritage et al., 2009; Lei and Atkinson, 2015) and are consid-
ered to performwell. In this study, IDW interpolation implemented
in ArcGIS (v.10.3, ESRI) was used with a power of two and a variable
search radius of the 12 nearest points. The TIN algorithmwith linear
interpolation and constrained Delaunay triangulation was per-
formed with the function las2dem from the LAStools (Isenburg,
2015). Only classified ground points were used for the in-
terpolations. For both interpolators and for the ALS and TLS dataset,
DEMs were generated with spatial resolutions of 0.2, 0.5, 1, 2 and
4 m. For the LiDAR point cloud SwissAlti only DEMs with a spatial
resolution of 2 mwere generated using both interpolation methods
since the point density does not support production of higher
resolutions.
2.6. DEM assessment

To evaluate the vertical accuracy of the DEMs, 56 ground control
points were measured with a Leica TCPR 1202 total station
(accuracy± 2mm). Since the ground control points were a subset of
the 62 pH soil sampling points, the requirement of random spatial
distribution for reference data was fulfilled (c.f. section 2.3) (H€ohle
and H€ohle, 2009). To assess vertical accuracy, the height differences
Dhi between the ground control points and the interpolated DEMs
were calculated. Besides standard accuracy statistical measures
(mean, standard deviation, absolute mean error, RMSE), robust
measures were derived, which do not assume normally distributed
errors and are more resistant to outliers (H€ohle and H€ohle, 2009).
Since several studies have shown that a normal distribution of er-
rors in DEMs derived from LiDAR data is not always given due to
filtering and interpolation errors (Gallay et al., 2013; H€ohle and
H€ohle, 2009; Zandbergen, 2011), we checked for deviations from
normal distribution using quantile-quantile plots. In addition, the
median, the normalized median absolute deviation (NMAD) and
the 68.3% and 95% sample quantiles were used as robust measures.
The NMAD, which is an estimate of standard deviation resilient to
outliers in the error distribution (H€ohle and H€ohle, 2009), was
calculated according to:

NMAD ¼ 1:4286 �medianj
���Dhj �mDh

���

where Dhj denotes the individual errors j ¼ 1, …. n and mDh is the
median of the errors. Another approach used to deal with outliers is
to remove them by applying a threshold, e.g. an error is classified as
an outlier if jDhjj > 3 � RMSE. Standard accuracy measures were
calculated before and after outlier removal.
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2.7. Soil pH models

For all DEMs derived from TLS and ALS point clouds, for all
resolutions (0.2, 0.5, 1, 2, 4 m) and for both interpolation methods,
ordinary least squares (OLS) regression models were built. In
addition, two DEMs based on the dataset SwissAlti were generated
applying both interpolated methods for a cell size of 2 m. All sta-
tistical computations were done in R (v3.2.2, R Core Team).
2.7.1. Terrain attributes
For each DEM a set of Terrain Attributes (TAs) were calculated

using the Python API of ArcGIS (v.10.3, ESRI) and SAGA GIS (v.2.1.2)
(Table 2). This set of TAs comprised local TAs such as curvature or
regional TAs such as TWI to represent hydrologically relevant
properties of the terrain. As described in section 2.3, the relation-
ship between topsoil pH and topography in a general sense is un-
derstood for the study area. Ridges, e.g. described by positive plan
curvature values, show surface flow divergence and therefore tend
to weathering which leads to low pH values. On the other hand,
negative plan surfaces values describe depressions where conver-
gence flow lines indicate an accumulation of basic cations in the soil
water solution and therefore lead to a high pH. TWI indicates the
amount of water flowing towards a certain location while the local
slope, also integrated in the TWI formula, reflects subsurface lateral
transmissivity. An overview how curvature and TWI affects soil
properties are given in Shary and Pinskii (2013), McKenzie et al.
(2000) and Wilson (2012). To derive the various terrain variables,
we applied different computational methods which each likely
produce slightly different results. Different equations and imple-
mentations to calculate curvature and TWI are given in Shary et al.
(2002) and Hengl and Evans (2009) for curvature and in Wilson
(2012) for TWI, respectively. Overall, 18 TAs were derived for each
DEM, and through different parameter settings a total of 136
possible variables were calculated. For sake of readability, the
different TAs including their derived variants using different
computational methods are hereafter referred to as TAs.

To incorporate different spatial scales, the TAs were smoothed
by local average filters. The filter was defined as a circle with
distinct radii of 3, 6, 12 and 18 cells. TAs selected for the OLS pH
models, their regression coefficients, the filter sizes and their sig-
nificance regarding to soil formation are provided in the
Supplementary Tables S1 and S2. A description of the applied
implementations to derive the TAs is given in Supplementary
Table S3.
Table 2
List of local and regional TAs derived from DEMs.

Terrain Attribute Type Reference

Slope steepness Local (Shary et al., 2002)
Plan curvature Local (Shary et al., 2002)
Profile curvature Local (Shary et al., 2002)
Mean curvature Local (Shary et al., 2002)
Minimal curvature Local (Shary et al., 2002)
Maximal curvature Local (Shary et al., 2002)
Tangential curvature Local (Krcho, 1991)
Cross-sectional curvature Local (Wood, 1996)
Longitudinal curvature Local (Wood, 1996)
Aspect (Eastness/Northness) Local (Shary et al., 2002)
Relative slope position Regional (MacMillan and Shary, 2009)
Topographic position index Regional (Weiss, 2001)
Melton Ruggedness Index Regional (Marchi and Dalla Fontana, 2005)
Flow path length Regional (Moore et al., 1991)
Topographic wetness index Regional (Wilson, 2012)
Upslope catchment height Regional (Wilson, 2012)
Stream power index Regional (Wilson, 2012)
Multiresolution index of

valley bottom flatness
Regional (Gallant and Dowling, 2003)
2.7.2. Model building
To reduce the large number of terrain variables (in this respect

referred to as predictor variables), we first calculated a correlation
matrix (Pearson r) for each DEM. If two predictor variables were
highly correlated (Pearson's r > j0.8j) we retained the variable that
was more strongly correlated with the pH target variable. We
repeated this procedure until the correlations among all the pre-
dictor variables were lower j0.8j. The least absolute shrinking and
selection operator (LASSO: Tibshirani, 1996) implemented in the
GLMNET R package (v.2.0e2) was applied to exclude the likely non-
relevant variables. LASSO is a method of penalized likelihood,
which imposes a constraint on estimates of model parameters.
Coefficients of variables which contribute least to the model, shrink
to zero and are left out whereas variables with non-zero co-
efficients remain in the model (Hastie et al., 2009). A 10-fold-cross-
validation determined the optimal LASSO penalty parameter l. All
variables with non-zero coefficients were selected from the most
regularized model, for which the performance in terms of esti-
mated expected generalization error is within one standard error of
theminimum. For each pHmodel, the evolution of themean square
errors as function of the model complexity is shown in
Supplementary Tables S1 and S2.

To obtain parsimonious OLS models with only significant terms,
the selected variables were further reduced using Bayesian Infor-
mation Criterion (BIC: Burnham and Anderson, 2004). We used
quantile-quantile (Q-Q) plots, plots of residuals and Cook's distance
plots to visually test whether the basic assumption of linear re-
gressions were fulfilled and to check for outliers. Spatial autocor-
relation of the residuals was calculated for each final model with
Moran's I and correlograms over various lag distances (R package
NCF v.1.1e5). P-values of Moran's I were corrected according to
Holm. However, no significant spatial autocorrelation was detected
in any of the models' residuals (Supplementary Tables S1 and S2).

2.7.3. Model evaluation
As a measure of the predictive power, we used the correlation of

the predicted values with the observed values (R2). We applied a
10-fold cross-validation. To test the random error associated with
each 10-fold cross validation, the cross validation procedure was
repeated 100 times. The final model performance (100 times 10-
fold crossvalidated R2) was based on the mean of 100 iterations of
the cross-validation.

3. Results

3.1. Evaluation and comparison of the DEMs

Although the study site is characterized by a complex terrain
with a dense evergreen forest canopy and a dense ground vegeta-
tion, the ALS and TLS ground point densities were high. The mean
ground point density was 245.75 points/m2 for the TLS, 6.69 points/
m2 for the ALS, but only 0.52 points/m2 for the SwissAlti dataset.
The 78 TLS scans led to a good coverage of the study area. 91% of all
cells of a 1 m grid were covered by at least one TLS data point. The
corresponding value was 81% for the ALS data whereas only 30% of
the grid cells were covered by SwissAlti LiDAR points.

The Q-Q plots of the error distributions showed for all DEMs no
or moderate departure from a normality (Supplementary
Figures S1eS6). Errors in vertical height larger than 1 m were
observed only for ALS and TLS with a resolution of 4 m, for both
interpolation methods and for the SwissAlti DEMs. The median
values revealed a systematic over prediction for all DEMs with the
exception of TLS4m-TIN (Supplementary Table S4). The standard
accuracy statistical measures were similar to their robust counter-
parts, which indicates that non-normality errors were not a serious
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concern in this study. Therefore, the RMSE was used to discuss the
accuracy of the DEMs since it is used in most studies. Generally, the
higher the resolution, the more accurate were the DEMs as indi-
cated by the RMSE of the various DEMs as a function of resolution
(Fig. 2). The most accurate DEMs with RMSEs from 0.12 to 0.14 m
were based on TLS data for resolutions between 0.2 and 0.5 m
respectively, independent of the interpolation method. At a reso-
lution of 1 m, the RMSE was nearly identical for the TLS and ALS
DEMs. For cell sizes of 0.2, 0.5 and 1 m the TIN interpolator created
slightly lower RMSE values compared to the IDW method. How-
ever, for larger cell sizes, ALS based DEMs interpolated with the TIN
method were more accurate compared to the corresponding TLS
elevation models, whereas this trend was not evident for the IDW
interpolated DEMs. The RMSE values of the SwissAlti were
considerably higher compared to the relevant TLS and ALS DEMs
for both interpolation methods.
3.2. Soil pH models

The results of the OLS regression modelling revealed an overall
scale dependency in the model prediction (Fig. 3. Supplementary
Table S5). Generally, the model performance increased with
increasing resolutions. However, the TIN based models with cell
sizes of 0.2 m showed a lower R2

cv compared to the models with
0.5m resolutions (Fig. 3, A). TLS derivedmodels with resolutions up
Fig. 2. Root mean square error (RMSE) for DEMs derived from ALS, TLS and SwissAlti data
distance weighting (IDW) interpolation.

Fig. 3. Ordinary least squares (OLS) regression models results reported as 100 times 10 f
Triangular irregular network (TIN) interpolation, B: Inverse distance weighting (IDW) inter
to 1 m performed significantly better than the corresponding ALS
models. The highest performance (R2

cv¼ 0.62) was achieved for the
TLS model with a cell size of 0.5 m generated by the TIN interpo-
lation. The best ALS model (R2

cv ¼ 0.5) was obtained with the same
resolution and interpolation method. ALS derived models with
resolutions of 2 and 4 m generated with the TIN interpolation were
better than the respective TLS models, whereas for the IDW inter-
polated models this trend could not be observed. The performance
of OLS models based on the SwissAlti point cloud was considerably
lower compared to the corresponding 2m TLS and ALSmodels with
a maximal R2

cv of 0.21 (Fig. 3. Supplementary Table S5).
Most OLS models contained predictors describing curvature,

flow path and topographic wetness indices. The higher the reso-
lution, the more predictors were smoothed with a local average
filter. OLS models based on cell sizes lager than 1 m contained no
smoothed predictors anymore (Supplementary Tables S1 and S2).

The best OLS model (TLS0.5 m-TIN) was used to predict the
topsoil pH for the entire study area (Fig. 4).
4. Discussion

The accuracy assessment of DEMs revealed, unsurprisingly, that
the finer spatial resolution DEMs were generally more accurate
than the coarser resolution surfaces, confirming previous studies
(Bater and Coops, 2009; Saksena and Merwade, 2015; Liu, 2008).
for different resolutions. A: Triangular irregular network (TIN) interpolation, B: Inverse

old crossvalidated R2 with 5% and 95% percentiles for different DEMs resolutions. A:
polation.



Fig. 4. Topsoil pH (5e10 cm depth) prediction based on the ordinary least squares
(OLS) regression model TLS0.5 m-TIN.
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Obviously, the micro-topography in the study area could not be
described accurately with cell sizes larger than 1 m. The higher
accuracy of the TLS based DEMs for resolutions of 0.2 and 0.5 m
compared to the corresponding ALS elevation models shows that
higher point densities improved the representation of the topog-
raphy. This was the case in spite of the greatly variable TLS point
distribution and the numerous individual TLS scans that had to be
co-registered. The acquisition of TLS scans with different viewsheds
helped to mitigate shadowing effects in the dense forest stand.
Furthermore, the numerous scans led to a nearly complete coverage
of the study area which is important for an evenly distributed
quality of the DEMs.

The accuracy measures of the TLS-DEMs also revealed that the
adaptive TIN filter, which was originally developed for ALS data
(Axelsson, 2000), can be successfully used to separate the TLS point
cloud into ground and non-ground points even in a complex
environment. Several studies have argued that specific filter algo-
rithm for TLS data need to be developed (Guarnieri et al., 2009;
Panholzer and Prokop, 2013; Puttonen et al., 2015; Rodríguez-
Caballero et al., 2016), but this was not the case in our study.
Rather, we argue that accuracy is strongly influenced by the scan
setup. The chance to identify appropriate TLS ground points is
strongly dependent on scan distance ranges. If the scan distance
increases, angle of incidence also increases due to the relatively low
scanner height. Therefore, the number of possible ground points is
reduced and the likelihood that the returned signal originates from
non-ground objects increases (Puttonen et al., 2015). As a conse-
quence, the heights of the identified ground points are over-
estimated with increasing distance from the scanner location.
Therefore, the scan locations and the number of scans must be
chosen appropriately, especially when larger areas are scanned. For
distances greater than 15 m, Puttonen et al. (2015) identified the
strongest increase of overestimation. Since the mean distance be-
tween the scan locations was 7.9 m in the present study, this
overestimation was not a major issue. However, both TLS and ALS
derived DEMs exhibited a systematic overestimation (e.g. median
value for TLS0.2 m-TIN: �0.06 m, ALS0.2 m-TIN: �0.09 m). This
finding is not surprising because the dense (ground) vegetation
cover reduced the laser penetration to the ground, irrespective of
the LiDAR acquisition technique.

Compared to other studies, the accuracies of both TLS and ALS
derived DEMs is high, even in the complex environment studied
here. For resolutions up to 0.5 m, we obtained RMSEs between 0.12
and 0.14 m for the TLS-DEMs (Fig. 2, Supplementary Table S4). For
similar study regions and DEM resolutions Gallay et al. (2013) and
Pirotti et al. (2013) reported RMSEs of 0.525 and 0.3 m, respectively.
To acquire the TLS data, Gallay et al. (2013) used 7 scans to cover an
area of 2.5 ha. The maximal scan distances in these two studies
ranged from 100 to 350 m. The small scan distances used in our
study most likely accounted for our higher accuracies. In addition,
no point cloud filtering was applied by Gallay et al. (2013). How-
ever, separating ground from vegetation points is critical to derive
DEMs in such complex environments. For the ALS DEMs, the high
point density obtained by the low flight altitude and speed
accounted for the high accuracy. The penetration rate (number of
pulses that hit the ground as a percentage) was high (40%)
considering the dense vegetation cover in the study area. The
SwissAlti DEMs suffered from a low ground point density, an
insufficient spatial coverage of the study area and a high vertical
standard deviation.

Due to high sampling point density, small differences were
observed between the employed interpolation techniques. The TIN
interpolation provided slightly better results compared to the IDW
method but no general suggestion can be drawn from this study
concerning that aspect, and we argue that where point densities
are sufficiently high choice of interpolator becomes less important.
Guo et al. (2010) obtained similar results from investigations of
different interpolation methods for dense LiDAR data.

In order to model topsoil pH adequately in the study area, TAs
derived fromvery high resolution DEMswere required, because the
pH varies over a large pH range within a distance of a few meters.
The OLS models based on DEMs with 4 m resolutions were only
about half as accurate as the best results. Our study emphasized the
importance of using the appropriate scale even in sub-meter
ranges, since the highest resolution (0.2 m) decreased the model
accuracy again. Obviously, an optimal scale exists to model the
relationship between terrain and pH of the soil. The reason for a
decreased accuracy at 0.2 m resolutions may either be due to short-
scale variations or “noise” which can be explained by real-world
terrain variation or due to artifacts of DEM generation (Smith
et al., 2006). Because the RMSE of the 0.2 m DEMs were lower or
in one case equal to the corresponding 0.5 m DEMs, short scale-
terrain variation, which does not influence topsoil pH, is likely to
be the reason for the noise in our study.

Up to a resolution of 1 m, TLS based OLS models performed
better than their ALS counterparts whereas for cell sizes larger than
1m, ALS based models were similar or better (Fig. 3). This trend can
be explained by the RMSE accuracy measures of the DEMs which
paralleled these patterns (Fig. 2). Overall, the RMSEs describe the
performance of the pH-models appropriately. However, the best
OLS model, based on DEM TLS0.5 m-TIN, performed substantially
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better than the others OLS models and better than expected based
on RMSE values. Here, we have to consider that DEM accuracy
measures represent point measures whereas the OLS models
additionally rely on hydrologically relevant TAs that are dependent
on upstream contributing areas. Small differences in slope values
can propagate into significant variations in the calculated flow and
can, in combinationwith the DEM resolution, strongly influence the
model results (c.f. Hebeler and Purves, 2009).

The RMSEs of the Swisstopo DEMs indicated that the perfor-
mance of the corresponding OLS models was low. Although the
Swissalti DEM has been used in various studies for digital terrain
modelling (e.g. Camathias et al., 2013; Nussbaum et al., 2014;
Zellweger et al., 2013) it is not an adequate data source to
describe small-scale topographic variation in forest stands.

The structure of the OLS models revealed that models based on
resolutions from 0.2 to 1 m rely on smoothed predictors
(Supplementary Tables S1 and S2). Too detailed terrain information
may reduce the correlation between the predictor and the target
variable. Local average filters applied e.g. on flow path predictors
retain on the one hand the accurate flow path from high resolution
DEMs, and on the other hand reduce the high-frequency variations.

5. Conclusions

Use of a TLS allowed us to create very high resolution and highly
accurate DEMs in a complex environment with a strong micro-
topography and a dense vegetation cover. Our study revealed that
accuracies were higher compared to DEMs derived from high
quality helicopter based LiDAR data. This is also reflected in the
performance of the pH models which were substantially better for
TLS than the corresponding ALS models at high resolutions.
Furthermore, the results showed that submeter DEM resolutions
were required to accurately model topsoil pH in the present study
area because the pH varied strongly within short distances. Since
only TAs were used to create the pH models it can be concluded
that the high point density provided by TLS improves the quality of
topographical features extracted from DEMs in the submeter scale
which is relevant for hydrological and ecological applications.

Although the co-registration of neighboring scans allowed us to
create DEMs covering several hectares, TLS data acquisition is
bound to substantial smaller areas as compared to ALS. The TLS
field data acquisition took about 5 days and was the major cost
factor whereas the TLS data processing was not a big issue since no
manual editing was required.

The choice between TLS and ALS data acquisition is mainly given
by the area under investigation. If highly accurate DEMs for com-
plex study sites of a few hectares are required then TLS is the more
favorable option over the well-established airborne LiDAR tech-
nique. LiDAR data obtained by unmanned aerial vehicles (UAV),
might be a future alternative to acquire data over few hectares with
an accuracy and ground point density coming close to the TLS data
used in this study. Finally, there may be circumstances where fused
models of ALS data (where penetration to ground is good) and TLS
data (in more densely vegetated terrain) could be a feasible
approach.

Software/data availability

The LiDAR software package LAStools is available from https://
rapidlasso.com/lastools. The LAStools are freely available for all
non-profit personal, non-military educational, or non-profit hu-
manitarian purposes. Licensing is required for any commercial,
government, or production use. The TLS and the helicopter based
ALS point clouds are available as LAS files (378.5 and 11.5 MB) from
https://drive.switch.ch/index.php/s/kd34pMRYSmH4ytV. The
provided LAS-files contain unclassified and filtered ground points
in the Swiss national coordinate system (CH1903LV03/LN02).
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