
1 3

Oecologia (2017) 183:67–79
DOI 10.1007/s00442-016-3751-x

POPULATION ECOLOGY – ORIGINAL RESEARCH

Expert‑based versus habitat‑suitability models to develop 
resistance surfaces in landscape genetics

Pietro Milanesi1,2   · R. Holderegger2,3 · R. Caniglia1 · E. Fabbri1 · M. Galaverni1 · 
E. Randi1,4 

Received: 22 October 2015 / Accepted: 4 October 2016 / Published online: 11 October 2016 
© Springer-Verlag Berlin Heidelberg 2016

landscape genetics. We related all LCP distances to genetic 
distances in linear mixed effect models on an empirical 
data set of wolves (Canis lupus) from Italy. All LCP dis-
tances showed highly significant (P ≤ 0.0001) standardized 
β coefficients and R2 values, but LCPs from habitat-suit-
ability models generally showed higher values than those 
resulting from expert knowledge. Moreover, all LCP dis-
tances better explained genetic distances than Euclidean 
distances, irrespective of the approaches used. Considering 
our results, we encourage researchers in landscape genetics 
to use resistance surfaces based on habitat suitability which 
performed better than expert-based LCPs in explaining pat-
terns of gene flow and functional connectivity.

Keywords  Canis lupus · Expert knowledge · Least-cost 
path distances · Linear mixed effect models · Species 
distribution models

Introduction

A main issue of landscape genetics is to identify the rela-
tionships among landscape features and the genetic struc-
ture of natural populations (Segelbacher et  al. 2010), 
providing evidence of functional connectivity across land-
scapes through gene flow (Manel et  al. 2003; Holdereg-
ger et al. 2007; Holderegger and Wagner 2008; Balkenhol 
et al. 2009). The ability of animals to move among habitat 
patches is fundamental for the viability of spatially struc-
tured populations. In landscape genetics, movement paths 
connecting populations or individuals are usually identi-
fied through resistance surfaces. Resistance surfaces are 
grid maps representing the resistance to move through the 
landscape features of each cell. From resistance surfaces, 
distances along least-cost paths (LCP; Cushman 2006; 
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Cushman and Lewis 2010; Shirk et al. 2010; Sawyer et al. 
2011; Galpern et al. 2012; Parks et al. 2013) are then deter-
mined and related to genetic distances among populations 
or individuals. In the case, landscape features have sig-
nificant effects on movement, and LCP distances are sup-
posed to better correlate with genetic distances than simple 
Euclidian distances (Holderegger and Wagner 2008). How-
ever, empirical knowledge of the factors facilitating or hin-
dering movements of individuals (and thus genes) across 
landscapes is often limited (Graf et al. 2007).

When creating resistance surfaces, different resistance 
values are assigned to specific landscape features. Defining 
the resistance of landscape features to movement is chal-
lenging (Spear et al. 2010; Zeller et al. 2012), and the best 
way for assigning resistance values to different landscape 
attributes is still debated (Zeller et al. 2012). For instance, 
one could use direct observations, radio tracking, or GPS 
rendering to obtain empirical data on the use of landscape 
features by target species (Spear et al. 2010). Nevertheless, 
due to the limited availability or often complete lack of 
empirical data on movement, resistance surfaces are typi-
cally based on expert opinions only (Spear et al. 2010; Zel-
ler et al. 2012). However, resistance surfaces derived from 
expert opinions can be error prone; because they rely on the 
potentially biased experience of the experts, the knowledge 
of the study area can be scarce and the information on the 
general ecology of the studied species often limited in pub-
lished literature (Spear et al. 2010; Shirk et al. 2010; Zel-
ler et al. 2012; Balkenhol et al. 2014; Stevenson-Holt et al. 
2014).

A method avoiding expert opinions to develop resistance 
surfaces is provided by several types of habitat-suitability 
models (HSMs; also known as species distribution models; 
Guisan et al. 2013). HSMs interpolate locations of species 
occurrence with environmental variables and show high 
accuracy in predicting species distributions (Rebelo and 
Jones 2010). Models of habitat suitability can be directly 
used to assign resistance values to particular landscape fea-
tures by assigning a resistance value of “1-habitat suitabil-
ity” to each grid cell of the resistance surface (Wang et al. 
2008; Pullinger and Johnson 2010; Spear et  al. 2010). To 
date, HSMs are widely applied in ecological research, e.g., 
to design protected areas (Johnson et al. 2004), assess the 
risk of colonization of invasive species (Beaumont et  al. 
2009), evaluate the impact of climate change on biodiver-
sity (Hof et  al. 2012), or identify the environmental vari-
ables affecting species occurrence (Franklin 2013). Surpris-
ingly, HSMs have been rarely used in landscape genetics to 
develop resistance surfaces (Laiola and Tella 2006; Wang 
et  al. 2008, 2013; Huck et  al. 2010; Brown and Knowles 
2012; Duckett et al. 2013; Mateo-Sánchez et al. 2014; Mil-
anesi et al. 2016). The limited application of HSMs in land-
scape genetics is possibly due to the hypothesis that HSMs 

may correctly identify the home range or the reproductive 
habitat of a species, but not the landscape elements that are 
used during movement or dispersal (Spear et al. 2010; Kel-
ler and Holderegger 2013). However, in addition, the resist-
ance to movement across landscapes is reflected by the dis-
tribution of suitable habitats and resources (e.g., food and/
or prey availability; Van Dyck and Baguette 2005; Baguette 
and Van Dyck 2007). Thus, HSMs could be objective tools 
to develop resistance surfaces and LCPs in landscape 
genetics (Laiola and Tella 2006; Wang et  al. 2008, 2013; 
Huck et al. 2010; Pullinger and Johnson 2010; Brown and 
Knowles 2012; Duckett et al. 2013).

To our knowledge, a comparison of expert-based and 
HSMs-derived LCPs has not been performed on any 
empirical data set in landscape genetics so far, except for 
the study by Mateo-Sánchez et  al. (2015), which applied 
only one HSM. Since different HSMs could lead to differ-
ent resistance surfaces (Milanesi et al. 2016), the aim of our 
study was to compare the performance of several expert-
based LCPs with that of HSM-derived LCPs in explain-
ing individual genetic distances. Taking also into account 
Euclidean distances (Van Strien et  al. 2012; Etherington 
and Holland 2013), we carried out linear mixed effect mod-
els (Selkoe et  al. 2010; Van Strien et  al. 2012) between a 
matrix of pairwise genetic distances and matrices of LCP 
distances derived by 13 expert-based and 9 widely used 
HSMs. Our empirical data set consisted of individual wolf 
(Canis lupus) genotypes collected in the northern part of 
Italy (Fabbri et  al. 2007; Caniglia et  al. 2014; Milanesi 
et  al. 2016). Specifically, unlike Milanesi et  al. (2016), 
which tested whether different HSMs may result in differ-
ent landscape genetic inferences, in the present study, we 
compared LCP distances based on expert knowledge with 
those derived from HSMs to evaluate their performance in 
landscape genetics.

Materials and methods

Study area

We sampled a wolf population distributed across an area 
of 97,044  km2, extending from the Central Apennines to 
the western-central Alps in Italy (6°62′–13°91′E; 46°46′–
42°39′N; Fig. 1). Due to a wide altitudinal range (from 0 to 
4634 m a.s.l.), a strong environmental gradient (from tem-
perate to alpine ecosystems), and diverse human land uses, 
the study area shows a variety of habitat types. Forests, 
meadows, pastures, rocky areas, and glaciers characterize 
the mountainous sector. In the lower mountains and hills, 
the traditional rural ecosystems have mostly been aban-
doned and are evolving towards semi-natural shrub-lands 
and deciduous, mixed, or evergreen forests. Cultivated 
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fields and urban areas are located in the main valleys, the 
plains, and along the Mediterranean coast.

Genetic data set

From 2000 to 2011, wolves in the study area were moni-
tored based on non-invasive sampling and molecular iden-
tifications. Trained personnel collected 9317 putative wolf 
samples (mainly feces, but also blood or muscular tissues 
from carcasses) along randomly chosen trails and country 
roads across the whole study area (Caniglia et  al. 2012, 
2014). Sampling locations were recorded with a GPS in the 
UTM WGS84 32 N coordinate system, and samples were 
stored at –20  °C in ten volumes of 95 % ethanol or Tris/
SDS buffer (Caniglia et al. 2012).

DNA was extracted using the MULTIPROBE IIEX 
robotic liquid handling system (Perkin Elmer) and the 
QIAGEN stool and tissue extraction kit (Qiagen). DNA 
extracts were amplified by polymerase chain reaction 
(PCR) then genotyped according to the methods described 
in Caniglia et al. (2014), at: (1) a 350 bp sequence of the 
mtDNA control region, containing diagnostic mutations 
for the identification of the Italian wolf haplotype W14; (2) 
four Y-linked microsatellites (Y-STRs MS34A, MS34B, 
MSY41A, and MS41B) used to describe paternal haplo-
types in males, previously molecularly sexed by a PCR–
RFLP assay of the zinc finger protein genes ZFX/Y; and 
(3) 12 unlinked, neutral, and autosomal microsatellite loci 

(CPH2, CPH4, CPH5, CPH8, CPH12, C09.250, C20.253, 
FH2004, FH2079, FH2088, FH2096, and FH2137) to 
reconstruct genetic profiles. All microsatellites were ana-
lyzed by a multiple-tube procedure to account for genotyp-
ing errors. Taxon assignment (i.e., wolf, dog, or wolf × dog 
hybrids) identified a total of 3815 wolf samples, belong-
ing to 923 individual wolves. In addition, 93 dogs and 118 
wolf × dog hybrids were identified and discarded from fur-
ther analyses.

We then computed a genetic distance matrix based on 
microsatellite data (ranging between 0, low, 1, and high 
distances) between all pairs of 923 wolf genotypes using 
GENALEX 6.41 (Peakall and Smouse 2006) as 1 propor-
tion of shared alleles (Hazlitt et al. 2004). We used the pro-
portion of shared alleles because of its wide and successful 
application in individual-based landscape genetics analyses 
(Waits and Storfer 2016).

Landscape features

To develop resistance surfaces, we selected ten landscape 
features (Table  1) potentially relevant for both wolf dis-
tribution and movement (Rodríguez-Freire and Crecente-
Maseda 2008; Huck et al. 2010, 2011; Carroll et al. 2012; 
Llaneza et al. 2012; Kaartinen et al. 2015). We derived data 
on land cover types from the CORINE Land Cover level 
IV (European Environment Agency 2006; Table 1): conif-
erous forests, deciduous forests, mixed woods, shrub lands, 

Fig. 1   Study area and wolf 
locations (red dots) within Italy 
(upper-right corner). Black 
lines indicate regional borders, 
grey lines indicate provincial 
borders (color figure online)
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meadows, and cultivated fields. We further considered the 
presence of and distance to anthropogenic elements, human 
settlements (i.e., urban areas and villages also derived from 
the CORINE Land Cover level IV; roads and railways 
from OpenStreetMap; http://www.openstreetmap.org), 
and human density (http://dati.istat.it; Table  1). Altitude 
was taken from a digital elevation model of Italy (http://
www.sinanet.isprambiente.it; Table  1). To avoid that mul-
ticollinearity among predictors negatively affected land-
scape genetic analyses (Prunier et al. 2015), we calculated 
the variance inflation factor (VIF). As suggested by Zuur 
et al. (2010), we removed the predictor variable “cultivated 
fields”, because it showed a VIF value higher than three 
(i.e., highly related with other predictor variables; Table 1). 
To verify that grid size did not significantly affect land-
scape genetic analysis (Cushman 2006; Wasserman et  al. 
2010; Keller et  al. 2013; Mateo-Sánchez et  al. 2013), we 
considered three grid sizes of 500, 1000, and 2000 m. All 
variables were re-sampled to these grid cell sizes in ARC-
GIS 10 (ESRI, Redlands, California).

Resistance surfaces and least coast paths

We used three different types of resistance surfaces:

1.	 To develop resistance surfaces derived from expert-
based models, the four authors with extensive knowl-
edge of the Italian wolf biology were asked to act as 
experts to provide values of resistance. After discuss-
ing the chosen landscape features above and the mean-
ing of resistance values (1 indicating favourable and 
100 non-favourable landscape features for wolf move-
ment), each expert independently assigned a resist-
ance value to each landscape feature. These were the 
landscape resistance values that we used in four “true” 
expert-based models (tEBMs; Table 1).

2.	 From the existing literature, it is evident that there is no 
agreement on which landscape elements particularly 
favour wolf movement and dispersal. For instance, 
wolves are considered habitat generalists (Fechter 
and Storch 2014) and show successful dispersal and 
movement also across human-dominated areas (Ciucci 
et  al. 2009; Andersen et  al. 2015). It is thus not easy 
to deduce appropriate resistance values for wolf move-
ment from the literature. Thus, in a second set of mod-
els, we simply randomly varied the resistance values of 
the chosen landscape features, from 1 to 100 to gener-
ate another set of nine simulated expert-based models 
(sEBMs) that reproduce different hypotheses on how 
landscape features affect wolf movement (Table 1).

3.	 Among the many HSMs currently available, we choose 
nine widely applied methods: (1) generalized lin-
ear models (GLM; McCullagh and Nelder 1989), a 

binary logistic model relating species occurrences and 
pseudo-absences with predictor variables; (2) boosted 
regression trees (BRT; Friedman 2001), which fit a 
wide number of models and combine their predictions 
to provide a robust estimate of species occurrence; (3) 
generalized additive models (GAM; Hastie and Tibshi-
rani 1990) that use smoothing functions derived from 
predictors to estimate conventional parametric compo-
nents of linear predictors; (4) artificial neural networks 
(ANN; Ripley 2007), which model unobserved vari-
ables derived by a linear combinations of predictors; 
(5) multiple adaptive regression splines (MARS; Fried-
man 1991) that model unobserved variables derived 
by non-linear combinations of predictors; (6) random 
forests (RF; Breiman 2001), which combine regression 
tree predictors with a random vector sampled inde-
pendently; (7) maximum entropy (MAXENT; Phillips 
et al. 2006), which computes functions to find the best 
approximation between the density distributions of 
predictors at locations, where the species was recorded 
and those of the entire study area; (8) factorial decom-
position of Mahalanobis distances (MADIFA; Calenge 
et al. 2008), a factorial method that associates eigenval-
ues derived from uncorrelated axes to calculate scores 
of habitat suitability; and (9) flexible discriminant anal-
ysis (FDA; Hastie et al. 1994), derived from linear dis-
criminant analysis, which uses a classification method 
based on mixture models.

HSMs included the same landscape features, as 
described in Table 1, and all wolf locations (including loca-
tions or recurrent wolf genotypes) were used to classify 
all cells as either “used”, if at least one wolf genotype was 
sampled within the cell or “available” otherwise.

Moreover, we calculated a measure of sampling effort 
through Gaussian kernel density analysis (Elith et  al. 
2010; Fourcade et  al. 2014) based on all sampling loca-
tions (including wolves, dogs, and wolf  ×  dog hybrids; 
Milanesi et  al. 2016). Sampling effort (ranging from 0 to 
1) was higher in mountainous and hilly areas of the Central 
Apennines and the western-central Alps than in lowlands 
and along the Mediterranean coast, resulting in a cline 
of per-cell values from the mountainous part of the study 
area to the coast (Milanesi et al. 2016). Per-cell values of 
the resulting sampling effort map were used as weights in 
MADIFA, as grid bias in MAXENT and as case weights in 
all other HSMs.

Spatial autocorrelation among wolf locations was inves-
tigated with 10,000 permutations and Moran’s I (Dormann 
et al. 2007). Considering that there was spatial autocorre-
lation among wolf locations up to a distance of 1550  m, 
we developed HSMs with only 987 non-autocorrelated 
samples. Residual spatial autocorrelation (as 1-predicted 

http://www.openstreetmap.org
http://dati.istat.it
http://www.sinanet.isprambiente.it
http://www.sinanet.isprambiente.it
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HSMs) was also investigated with Moran’s I with 10,000 
permutations (De Marco et  al. 2008). HSMs k-fold cross 
validations were carried out using a random subsample 
of 50 % of all wolf locations to calibrate models and the 
remnant 50 % to validate them (Boyce et al. 2002), through 
the evaluation of the area under the curve (AUC; Ko et al. 
2011) and Boyce’ index (BI; Boyce et al. 2002; Table S1). 
To create resistance surfaces, we calculated the resistance 
value per grid cell as one-habitat suitability (Wang et  al. 
2008; Pullinger and Johnson 2010; Spear et al. 2010).

For both the EBMs and the HSMs, we determined 
the distance along LCPs between all pairs of locations 
(n = 923), where individual wolves had first been sampled. 
We also determined the Euclidian distance among all these 
pairs of wolf locations.

Landscape genetic analysis

We used linear mixed effect models (with 10,000 permuta-
tions), recently applied and strongly promoted in landscape 
genetics (Selkoe et  al. 2010; Van Strien et  al. 2012; Bol-
liger et  al. 2014), to investigate the relationship between 
genetic distances and LCP distances. Linear mixed effect 
models combine fixed and random effects in linear models. 
In our case, LCP distances (from both EBMs and HSMs) 
and Euclidian distances were considered as fixed effects. 
Genetic distances among individuals were the response 
variable. As pairwise distance estimates do not provide 
independent data, a Toeplitz covariance matrix was taken 
into account as a random effect (Selkoe et  al. 2010). R2- 
and standardized β values were used as a measure of the 
relationship between response and predictor variables (Van 
Strien et al. 2012). We also verified whether resolution (i.e., 
500, 1000, and 2000 m; see above) affected the relationship 
between genetic and LCP distances. All statistical analyses 
were carried out in R (R Core Team 2013).

Results

HSMs evaluation showed high values of all statistical vali-
dation tests and thus high predictive accuracy (especially 
for AUC in RF and for BI in MAXENT, BRT, FDA, and 
GAM; Table S1). Moreover, spatial autocorrelation among 
the residuals of all nine applied HSMs was not significant.

Considering the resulting LCPs (Figs.  2, 3, 4), inter-
individual genetic distances were significantly explained by 
all EBM and HSM-derived LCP distances in linear mixed 
effect models (P ≤ 0.0001 in all cases; Table 2). In addi-
tion, all standardized β values of all LCP distances were 
higher than those of Euclidean distances, showing that LCP 
distances, and therefore, landscape features had a larger 
effect on genetic distances among pairs of wolves than 

geographic distances alone. This also held true for all three 
grid cell sizes considered (Table 2).

The standardized β values of LCP distances highlighted 
marked differences among the LCPs based on EBMs and 
those based on HSMs. In particular, at a grid cell size of 
1000 m, LCP distances from MADIFA showed the highest 
β coefficient (0.943) followed by those from GLM (0.773) 
and ANN (0.604; Table 2). All other HSMs showed higher 
β values than those of EBMs, except for tEBM 4 (0.526), 
sEBM 1 (0.526), sEBM 9 (0.484), sEBM 8 (0.465), and 
sEBM 7 (0.442; Table 2). We found similar results at the 
500  m grid cell size. Again, LCP distances derived from 
MADIFA showed the highest β coefficient (0.774) fol-
lowed by LCP distances from GLM (0.742) and GAM 
(0.573; Table 2). sEBM 7 showed a β value (0.521) higher 
than those of the other HSMs and all other EBMs (Table 2). 
In addition, at the 2000  m grid cell size, LCP distances 
derived from MADIFA showed the highest β coefficient 
(0.915) followed by LCP distances of GLM (0.727), ANN 
(0.644), GAM (0.557), and BRT (0.551; Table  2). Simi-
lar to the 1000 m grid cell size, tEBM 4, sEBM 9, sEBM 
1, sEBM 8, and sEBM 7 showed β values (0.551, 0.497, 
0.495, 0.485 and 0.465, respectively) higher than those of 
the other HSMs and EBMs. Standardized β values of LCPs 
were generally lower at the 500  m than at the 1000 and 
2000 m grid cell size.

All LCPs showed very high and similar R2 values 
(ranging from 0.805 to 0.808) at the 1000 m grid cell size 
(Table 2). R2 values of all LCPs at the 500 m grid cell size 
(0.828–0.832) were similar but somewhat larger than those 
at the 1000 m grid cell size. Those at the 2000 m grid cell 
size were markedly smaller, but still high (0.746–0.753; 
Table 2).

There was no congruent pattern between sEBMs and 
tEBMs: some tEBMs showed very low β values, lower than 
the β coefficients of some sEBMs, but sEBM 4 generally 
showed the highest β values across the three grid cell sizes.

Discussion

Resistance surfaces are mostly based on expert opinions 
(Lee-Yaw et  al. 2009; Murray et  al. 2009; Cushman and 
Lewis 2010; Shirk et al. 2010; Zeller et al. 2012), but the 
application of HSMs to derive resistance surfaces in land-
scape genetics has recently increased (e.g., Wang et  al. 
2008, 2013; Brown and Knowles 2012; Duckett et  al. 
2013; Mateo-Sánchez et al. 2014). In this study, we com-
pared LCPs estimated from resistance values derived from 
several EBMs to LCPs resulting from some currently used 
HSMs in a landscape genetic framework. Our results dem-
onstrated that HSMs-derived LCP distances might outper-
form those based on EBMs and that the former could thus 
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represent a more objective tool to define resistance values 
in landscape genetic analyses.

Resistance surfaces derived from expert‑based 
and habitat‑suitability models

To enable a direct comparison of the performance of 
EBMs versus HSMs-derived resistance surfaces in land-
scape genetics, we used the same set of landscape features 
as predictor variables in all models. In contrast to recently 
applied factorial methods, which lead to the use of dif-
ferent variables even when starting from the same set of 
landscape features (Mateo-Sánchez et al. 2015), our resist-
ance maps were always based on the same set of predic-
tor variables, in both EBMs and HSMs. Actually, facto-
rial approaches are based on a selection procedure for the 
variables best fitting to genetic distances in a multivariable 
context (Mateo-Sánchez et al. 2015). In contrast, our EBMs 
and HSMs entailed the use of variables from the same start-
ing set. Differences among our resistance maps derived 
from EBMs and HSMs were due to the application of 

different resistance values to the same landscape features in 
the former and different model assumptions, complexities, 
and algorithms in the latter (Elith et al. 2005; Tsoar et al. 
2007). Accordingly, this also held true for LCPs estimated 
from the respective resistance surfaces. Thus, our approach 
allowed for a direct comparison of the performance of 
EBMs and HSHs in landscape genetics.

However, both EBMs and HSMs present some caveats. 
The main problem when using EBMs is that the resist-
ance values assigned to specific landscape features are 
(largely) subjective (Spear et al. 2010; Zeller et al. 2012). 
They might be more or less accurate, but there is no way to 
directly evaluate them. Experts may over- or underestimate 
the effect of certain landscape features on movement (Clev-
enger et al. 2002; Stevenson-Holt et al. 2014). The appro-
priateness of EBMs also varies depending on the experi-
ence of the expert and the general knowledge of the target 
species ecology (Clevenger et al. 2002; Seoane et al. 2005; 
Clark et al. 2008; Lee-Yaw et al. 2009; Murray et al. 2009; 
Spear et al. 2005, 2010; Cushman 2006; Shirk et al. 2010; 
Zeller et  al. 2012; Balkenhol et  al. 2014; Stevenson-Holt 

Fig. 2   Resistance surfaces (dark grey shading indicates higher resist-
ance and light grey shading lower resistance, respectively) and cor-
responding least-cost paths (colored lines) among 923 individual wolf 

locations (1000 m grid cell size) for resistance surfaces based on four 
true expert-based models (tEBMs). For abbreviations, see “Materials 
and methods” section (color figure online)
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et  al. 2014). This uncertainty is the reason why in EBMs 
researchers tend to use several hypotheses on landscape 
resistance based on different combinations of resistance 
values assigned to different landscape features.

Although the use of expert opinions to parameterize 
LCPs is subjective, many studies successfully applied this 
approach to parameterize models in landscape genetics 
(Cushman and Lewis 2010; Shirk et  al. 2010). Clevenger 
et al. (2002) found that expert opinion compared well with 
an empirical model based on radio telemetry data for black 
bears (Ursus americanus) in Canada. Moreover, the use of 
expert opinions may be appropriate in cases, where there 
is a shortage of empirical data on the species distribution 
(Stevenson-Holt et al. 2014).

On the other hand, the main problems when using 
HSMs to derive LCP distances are that they are correlative 

approaches, and thus, they may mainly represent the repro-
ductive habitat of species or the home ranges of individu-
als, but not necessarily the landscape elements affecting 
movement and dispersal (Spear et  al. 2010; Keller and 
Holderegger 2013). However, the resistance or the rela-
tive cost of a landscape feature to movement and disper-
sal is also reflected by the spatial distribution of suitable 
areas and the resource availability for a species (Van Dyck 
and Baguette 2005; Baguette and Van Dyck 2007). If so, 
HSMs may be more objective tools to derive resistance 
maps in landscape genetics (Wang et  al. 2008; Milanesi 
et  al. 2016). HSMs need thorough data on species distri-
bution (many sampling locations of a study species in as 
many diverse habitat types as possible), deep data explo-
ration to avoid biased estimation due to multicollinearity 
among predictor variables, which could cause spurious 

Fig. 3   Resistance surfaces (dark grey shading indicates higher resist-
ance and light grey shading lower resistance, respectively) and cor-
responding least-cost paths (colored lines) among 923 individual 

wolf locations (1000 m grid cell size) for resistance surfaces based on 
nine simulated expert-based models (sEBMs). For abbreviations, see 
“Materials and methods” section (color figure online)
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correlations in landscape genetics (Prunier et al. 2015), and 
analysis of spatial autocorrelation among species occur-
rences or sampling locations (Dormann et  al. 2007; Zuur 
et al. 2010). Moreover, different modelling techniques use 
different approaches regarding adjustment to data (Guisan 
and Zimmermann 2000). While the use of presence-only 
models, such as MADIFA and MAXENT, is particularly 
useful when absence data are not available (Segurado and 
Araujo 2004), such as in our case, also presence–absence 
models can be applied with presence-only data through 
selection of pseudo-absences (Phillips et  al. 2006; War-
ren and Seifert 2011; Barbet-Massin et al. 2012). Actually, 
pseudo-absences equally weighted to presences can yield 
the most reliable distribution models (Barbet-Massin et al. 
2012). For this reason, we used a sampling effort map to 
equally weight pseudo-absences to presences in this study. 

In addition, Milanesi et al. (2016) showed that LCPs based 
on different HSMs may result in different landscape genetic 
results, even when applied to the same genetic data set.

We found rather similar results on landscape effects on 
movements at different grid sizes of the resistance sur-
faces: while standardized β values of LCP distances were 
generally lower at the 500 m than at the 2000 m grid size, 
they were rather similar at the 1000 and 2000 m grid sizes. 
We thus concluded that grid size did not qualitatively 
affect our results. However, analyzing different grid sizes 
is strongly suggested, because the use of different sizes 
during the construction of LCPs can influence landscape 
genetic results (Galpern et al. 2012). Moreover, organisms 
experience landscape heterogeneity at different sizes and 
thus using a too fine or a too coarse spatial grid may lead 
to inaccurate resistance surfaces (Anderson et  al. 2010). 

Fig. 4   Resistance surfaces (dark grey shading indicates higher resist-
ance and light grey shading lower resistance, respectively) and cor-
responding least-cost paths (colored lines) among 923 individual wolf 

locations (1000 m grid cell size) for resistance surfaces based on nine 
habitat-suitability models (HSMs). For abbreviations, see “Materials 
and methods” section (color figure online)
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However, our results are in contrast to those obtained by 
other authors (Wilmer et  al. 2008; Anderson et  al. 2010; 
Cushman and Landguth 2010; Mullen et  al. 2010; Galp-
ern et al. 2012), where significant differences in landscape 
genetics analyses were detected at different spatial scales. 
We consider such differences to be mainly due to different 
species characteristics, but this also implies that landscape 
geneticists should carefully evaluate the effects of different 
spatial scale, because grid size of landscape feature infor-
mation will affect the ability to identify relevant landscape 
features affecting movement and gene flow in landscape 
analysis (Balkenhol et  al. 2009; Cushman and Landguth 
2010; Galpern et al. 2012).

Expert‑based versus habitat‑suitability models 
in landscape genetics

The linear mixed effect models we applied showed that 
LCP distances derived from both EBMs and HSMs had 
similar R2 values and thus explained genetic distances to 
a similar and rather high degree in linear effects models 

at all the three considered grid cell sizes (500, 1000, and 
2000 m). The R2 values of LCP distances presented in this 
study on wolves in Italy were similar to those of Van Strien 
et  al. (2012) on the southern damselfly (Coenagrion mer-
curiale) in Switzerland and those of Selkoe et al. (2010) on 
three rocky reef predators, namely, kelp bass (Paralabrax 
clathratus), Kellet’s whelk (Kelletia kelletii), and Califor-
nia spiny lobster (Panulirus interruptus). In our study, both 
EBM and HSM-derived LCP distances better explained 
genetic distances than Euclidean distances in all cases and 
irrespective of the particular approach applied. This means 
that landscape features always showed a stronger effect on 
gene flow than geographical distance alone. This result is in 
agreement with many other landscape genetic studies, e.g., 
Shirk et  al. (2010), who considered EBM-LCPs on black 
bears in Idaho, and Wang et al. (2008), who derived LCPs 
from HSMs on the spiny rat (Niviventer coning) in Taiwan.

All β coefficients of EBM and HSM-derived LCPs were 
highly significant (P ≤ 0.0001). In particular, the β coeffi-
cients of LCPs from HSMs showed a good performance, in 
agreement with other studies (Laiola and Tella 2006, Wang 

Table 2   Results of landscape 
genetic analysis using linear 
mixed effect models

Standardized β- and R2 values for least-cost path (LCP) distances based on nine habitat-suitability models, 
four true expert models (tEBM), and nine simulated expert-based models (sEBMs) as well as Euclidean 
(Eu) distances are shown for three different grid cell sizes. For abbreviations, see “Materials and methods” 
section

* P ≤ 0.0001

Model 500 m 1000 m 2000 m

LCP β Eu β R2 LCP β Eu β R2 LCP β Eu β R2

MAXENT 0.425* 0.313* 0.832 0.487* 0.369* 0.805 0.431* 0.301* 0.753

MADIFA 0.774* 0.661* 0.831 0.943* 0.829* 0.807 0.915* 0.869* 0.751

GLM 0.742* 0.629* 0.831 0.773* 0.659* 0.807 0.727* 0.595* 0.752

BRT 0.425* 0.313* 0.831 0.507* 0.394* 0.807 0.551* 0.419* 0.753

GAM 0.573* 0.459* 0.831 0.518* 0.406* 0.807 0.557* 0.427* 0.752

ANN 0.501* 0.388* 0.831 0.604* 0.495* 0.806 0.644* 0.514* 0.752

FDA 0.461* 0.348* 0.831 0.525* 0.413* 0.807 0.487* 0.356* 0.751

MARS 0.481* 0.368* 0.831 0.483* 0.351* 0.806 0.471* 0.338* 0.752

RF 0.348* 0.237* 0.830 0.331* 0.221* 0.807 0.409* 0.277* 0.746

tEBM 1 0.189* 0.101* 0.823 0.111* 0.083* 0.807 0.167* 0.131* 0.749

tEBM 2 0.212* 0.105* 0.831 0.211* 0.108* 0.808 0.178* 0.145* 0.752

tEBM 3 0.177* 0.107* 0.828 0.303* 0.206* 0.807 0.335* 0.232* 0.751

tEBM 4 0.329* 0.259* 0.831 0.526* 0.472* 0.806 0.551* 0.404* 0.751

sEBM 1 0.335* 0.119* 0.832 0.526* 0.469* 0.806 0.495* 0.365* 0.753

sEBM 2 0.235* 0.104* 0.832 0.027* 0.018 0.808 0.082* 0.005 0.753

sEBM 3 0.197* 0.105* 0.832 0.062* 0.056* 0.808 0.136* 0.009 0.753

sEBM 4 0.226* 0.108* 0.831 0.116* 0.001 0.808 0.147* 0.011 0.753

sEBM 5 0.207* 0.109* 0.832 0.246* 0.132* 0.807 0.231* 0.097* 0.753

sEBM 6 0.174* 0.105* 0.831 0.110* 0.001 0.808 0.229* 0.096* 0.752

sEBM 7 0.521* 0.138* 0.828 0.442* 0.326* 0.807 0.465* 0.332* 0.752

sEBM 8 0.256* 0.113* 0.828 0.465* 0.351* 0.807 0.485* 0.352* 0.752

sEBM 9 0.141* 0.103* 0.831 0.484* 0.369* 0.807 0.497* 0.366* 0.752
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et al. 2008, 2013; Huck et al. 2010; Brown and Knowles 
2012; Duckett et al. 2013; Milanesi et al. 2016). The val-
ues of β coefficients that we found were similar to those 
of Murray et  al. (2009) on the logrunner (Orthonyx tem-
minckii) in Australia and those of Selkoe et al. (2010).

Nevertheless, our main result was that standardized β 
coefficients were markedly different between LCP distances 
derived from EBMs and HSMs (Table 2). In fact, in most 
of the cases, there was a lower correlation between genetic 
distances and LCP distances derived from EBMs (true or 
simulated) than between genetic distances and LCP dis-
tances from HSMs. One would have interpreted these β 
values as either strong or weak landscape effects on gene 
flow depending on the particular approach used. Therefore, 
in our study, HSMs better reflected how the landscape fea-
tures affect wolves during movement and dispersal. Specifi-
cally, at the grid cell size of 1000 m, LCP distances from 
two HSMs (MADIFA and GLM) showed very high β coef-
ficients of 0.943–0.773, respectively. Only the β coefficients 
of LCP distances of five out of 13 EBMs, namely, tEBM 4, 
sEBM 1, sEBM 9, sEBM 8, and sEBM 7, were higher than 
those of some HSMs, and most HSMs β coefficients were 
clearly higher than those of EBMs. With small variation, 
these differences were similar at the 500 and 2000 m grid 
cell sizes. These results suggest that LCP distances derived 
by more objective HSMs, such as MADIFA and GLM, can 
better explain genetic distances among pairs of wolf indi-
viduals than LCP distances derived from more subjective 
EBMs. Regarding EBMs, it was particularly surprising that 
three out of four true expert models (tEBMs) performed 
in no way better than the simulated ones (sEBMs). When 
applying EBMs in landscape genetic analysis, it might thus 
be relevant to also include some random or dummy EBMs 
to evaluate the performance of true EBMs against them.

Our main results are apparently in contrast with the 
previous published literature (Stevenson-Holt et  al. 2014; 
Mateo-Sánchez et  al. 2015). Both the latter studies con-
cluded that HSMs potentially do not capture relevant 
landscape information with respect to movement and dis-
persal and that EBMs are better in explaining patterns of 
connectivity. However, they compared EBMs to a single 
HSM, namely MAXENT. Thus, these studies did not con-
sider that different HSMs can lead to different resistance 
surfaces and, therefore, LCP distances (Milanesi et  al. 
2016). Moreover, Stevenson-Holt et al. (2014) performed a 
comparison of EBM and HSM-derived LCPs in landscape 
ecology, without validating them against genetic distances 
among sample locations. In contrast, our results show that 
HSMs can be successfully used to derive resistance maps, 
but we strongly suggest the application of more than a sin-
gle HSM to estimate LCP distances in landscape ecology 
and landscape genetics, to avoid potential limits of particu-
lar HSMs.

Conclusions

In landscape genetics, resistance models are mainly 
derived from optimization procedures based on expert 
opinions and rarely based on habitat-suitability models 
derived from species occurrence data. We showed that 
HSMs, widely used in ecological and biodiversity con-
servation researches (Elith et  al. 2010) could represent a 
better tool than EBMs to parameterize landscape genetic 
models and to identify those landscape patterns that either 
hinder or foster movement and dispersal across landscapes. 
Thus, we encourage researchers to use and further test the 
application of accurately developed and validated HSMs 
in landscape genetics. However, our results also showed 
that LCPs derived from expert knowledge were appropri-
ate and are certainly valid methods to derive resistance 
maps when species occurrence data are missing—though 
in our case, they were less effective in explaining genetic 
distances than LCPs from HSMs. In conclusion, we rec-
ommend to (1) develop and compare EBMs and HSMs to 
further test which approach best suits the patterns of gene 
flow of a study species and (2) apply more than a single 
HSM in landscape genetic analyses to avoid HSMs with 
assumptions, algorithms or complexities that do not fit to 
the particular case under study. When species distribution 
information is available, HSMs may well provide a valid 
and objective tool to explain patterns of gene flow and 
functional connectivity.
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