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Abstract. High-resolution maps of soil properties are a prerequisite for assessing soil threats and soil functions
and for fostering the sustainable use of soil resources. For many regions in the world, accurate maps of soil
properties are missing, but often sparsely sampled (legacy) soil data are available. Soil property data (response)
can then be related by digital soil mapping (DSM) to spatially exhaustive environmental data that describe soil-
forming factors (covariates) to create spatially continuous maps. With airborne and space-borne remote sensing
and multi-scale terrain analysis, large sets of covariates have become common. Building parsimonious models
amenable to pedological interpretation is then a challenging task.

We propose a new boosted geoadditive modelling framework (geoGAM) for DSM. The geoGAM models
smooth non-linear relations between responses and single covariates and combines these model terms additively.
Residual spatial autocorrelation is captured by a smooth function of spatial coordinates, and non-stationary
effects are included through interactions between covariates and smooth spatial functions. The core of fully
automated model building for geoGAM is component-wise gradient boosting.

We illustrate the application of the geoGAM framework by using soil data from the Canton of Zurich, Switzer-
land. We modelled effective cation exchange capacity (ECEC) in forest topsoils as a continuous response. For
agricultural land we predicted the presence of waterlogged horizons in given soil depths as binary and drainage
classes as ordinal responses. For the latter we used proportional odds geoGAM, taking the ordering of the re-
sponse properly into account. Fitted geoGAM contained only a few covariates (7 to 17) selected from large sets
(333 covariates for forests, 498 for agricultural land). Model sparsity allowed for covariate interpretation through
partial effects plots. Prediction intervals were computed by model-based bootstrapping for ECEC. The predictive
performance of the fitted geoGAM, tested with independent validation data and specific skill scores for contin-
uous, binary and ordinal responses, compared well with other studies that modelled similar soil properties. Skill
score (SS) values of 0.23 to 0.53 (with SS= 1 for perfect predictions and SS= 0 for zero explained variance)
were achieved depending on the response and type of score. GeoGAM combines efficient model building from
large sets of covariates with effects that are easy to interpret and therefore likely raises the acceptance of DSM
products by end-users.

Published by Copernicus Publications on behalf of the European Geosciences Union.



192 M. Nussbaum et al.: Soil mapping using boosted geoadditive models

1 Introduction

Soils fulfil many functions important for agriculture, forestry
and the management of soil resources and natural hazards.
The functionality of soils depends on their properties; hence,
accurate and spatially highly resolved maps of basic soil
properties such as texture, organic carbon content and pH
for specific soil depth are needed for the sustainable man-
agement of soils (FAO and ITPS, 2015). Unfortunately, such
soil property maps are often missing and the availability of
soil information is very different between nations and conti-
nents (Omuto and Nachtergaele, 2013). For areas where spa-
tially referenced but sparse (legacy) soil data are available,
e.g. soil datasets consisting of soil profile data and labora-
tory measurements, these point data can be linked using dig-
ital soil mapping (DSM) techniques (e.g. McBratney et al.,
2003; Scull et al., 2003) to spatial information on soil forma-
tion factors to generate spatially continuous maps.

In the past, many DSM approaches have been proposed
to exploit the correlation between soil properties (response
Y (s)) and soil-forming factors (covariates x(s)). Linear re-
gression modelling (LM; e.g. Meersmans et al., 2008; Hengl
et al., 2014) and kriging with external drift (EDK), its ex-
tension for autocorrelated errors (Bourennane et al., 1996;
Nussbaum et al., 2014), have often been used. The strength
of LM and EDK is the ease of interpretation of the fitted
models (e.g. through partial residual plots; Faraway, 2005,
p. 73). This is important for checking whether modelled re-
lations between the target soil property and soil-forming fac-
tors accord with pedological expertise and for conveying the
results of DSM analyses to users of such products. LM and
EDK capture only linear relations between the covariates and
a response. By using interactions between covariates, one
can sometimes account for non-linear relationships, but this
quickly becomes unwieldy for a large number of covariates
(e.g. above 30). Fitting models to (very) large sets of covari-
ates has become common with the advent of remotely sensed
data (Ben-Dor et al., 2009; Mulder et al., 2011) and novel
approaches for terrain analysis (Behrens et al., 2010). Model
building, i.e. covariate selection, is then a formidable task.
Although specialised methods like L2-boosting (Bühlmann
and Hothorn, 2007) and lasso (least absolute shrinkage and
selection operator; Hastie et al., 2009, Chap. 3) are available,
they have not often been used for DSM (Nussbaum et al.,
2014; Liddicoat et al., 2015; Fitzpatrick et al., 2016). Gener-
alised linear models (GLMs; e.g. Dobson, 2002) extend lin-
ear modelling to binary, nominal (e.g. soil taxonomic units;
Hengl et al., 2014; Heung et al., 2016) or ordinal responses
(e.g. soil drainage classes; Campling et al., 2002). Although
GLMs are non-linear models, the non-linearly transformed
conditional expectation g(E[Y (s)|x(s)]), where g(·) is some
known link function, still depends linearly on covariates.

Lately, tree-based machine learning methods have be-
come popular for DSM. Classification and regression trees
(CARTs; e.g. Liess et al., 2012; Heung et al., 2016), Cubist

(e.g. Henderson et al., 2005; Adhikari et al., 2013; Lacoste
et al., 2016) and ensemble tree methods like random forest
(RF; e.g. Grimm et al., 2008; Wiesmeier et al., 2011) and
boosted regression trees (BRTs; e.g. Moran and Bui, 2002;
Martin et al., 2011) have been used.

All tree-based methods easily account for complex non-
linear relations between responses and covariates. They
model continuous and categorical responses (albeit without
making a difference between nominal and ordinal responses),
inherently deal with incomplete covariate data and allow for
the modelling of spatially changing (non-stationary) relation-
ships. BRT and RF fit models to large sets of covariates. The
structure of the fitted models can be explored with variable
importance and partial dependence plots (Hastie et al., 2009,
Sect. 10.9, and for an application Martin et al., 2011). Never-
theless, tree-based ensemble methods remain complex, and
results are not as easy to interpret regarding the relevant soil-
forming factors resulting from (G)LM.

Generalised additive models (GAMs; e.g. Hastie and Tib-
shirani, 1990, Chap. 6) offer a compromise between ease of
interpretation and flexibility in modelling non-linear relation-
ships. GAMs expand the (possibly transformed) conditional
expectation of a response given covariates as an additive se-
ries:

g
(

E
[
Y (s) |x(s)

])
= ν+ f

(
x(s)

)
= ν+

∑
j

fj
(
xj (s)

)
, (1)

where ν is a constant, and fj
(
xj (s)

)
values are linear terms or

unspecified “smooth” non-linear functions of single covari-
ates xj (s) (e.g. smoothing spline, kernel or any other scatter
plot smoother) and g(·) is again a link function. GAMs ex-
tend GLMs to account for truly non-linear relations between
Y and x (and not just for non-linearities imposed by g), but
they limit the complexity of the fitted functions to additive
combinations of simple non-linear terms and thereby avoid
the curse of dimensionality (Hastie et al., 2009, Sect. 2.5).
For continuous, ordinal and nominal responses, GAMs can
be readily fitted to large sets of covariates through boost-
ing (Hofner et al., 2014; Hothorn et al., 2015). Boosting
handles covariate selection and avoids over-fitting if stopped
early (Bühlmann and Hothorn, 2007). Hence, the structure of
boosted GAMs can be more easily checked and interpreted
than RF and BRT models. In the past, GAMs have occasion-
ally been used for DSM and only recently became more pop-
ular (e.g. Buchanan et al., 2012; Poggio et al., 2013; Poggio
and Gimona, 2014; de Brogniez et al., 2015; Sindayihebura
et al., 2017).

Besides accurate predictions, accurate modelling of pre-
diction uncertainty sometimes also matters for DSM (e.g. for
mapping temporal changes in soil carbon and nutrients
stocks). Quantile regression forest (Meinshausen, 2006), an
extension of RF, estimates the quantiles of the distributions
Y (s)|x(s) and provides prediction intervals directly. Predic-
tion intervals can also easily be constructed for predictions
by EDK, (G)LM and GAM, as long as the uncertainty arising
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from model building is ignored. To take the effect of model
building properly into account one resorts best to bootstrap-
ping (Davison and Hinkley, 1997, Sect. 6.3.3). Bootstrapping
is also useful to model prediction uncertainty for boosted
models, which do not qualify the accuracy of predictions
per se, and to account for all sources of prediction un-
certainty in regression kriging approaches (Viscarra Rossel
et al., 2014).

In summary, a versatile DSM procedure should

1. model non-linear relations between Y (s) and x(s), where
responses and covariates may be continuous, binary,
nominal or ordinal variables,

2. efficiently build models with good predictive perfor-
mance for large sets of covariates (p>>30),

3. preferably result in parsimonious models with a simple
structure that can be easily interpreted and checked for
plausibility, and

4. accurately quantify the accuracy of predictions com-
puted from the fitted models.

The objective of our work was to develop a DSM frame-
work that meets requirements 1–4 based on boosted geoad-
ditive models (geoGAMs), an extension of GAM for spatial
data. First, we introduce the modelling framework and de-
scribe in detail the model-building procedure. Second, we
use the method in three DSM case studies in the Canton of
Zurich, Switzerland that aim at different types of responses:
effective cation exchange capacity (ECEC) of forest topsoils
(continuous response), the presence or absence of morpho-
logical features for waterlogging in agricultural soils (binary
response) and drainage classes characterising the prevalence
of anoxic conditions, again in agricultural soils (ordinal re-
sponse). To assess the validity of the modelling results with
independent data (obtained by splitting the original dataset
into calibration and validations subsets), we used specific cri-
teria that take the nature of the various responses properly
into account. These criteria are in common use for forecast
verification in atmospheric sciences (e.g. Wilks, 2011), but to
our knowledge have not often been used to (cross-)validate
DSM predictions.

2 The geoGAM framework

2.1 Model representation

A generalised additive model (GAM) is based on the fol-
lowing components (Hastie and Tibshirani, 1990, Chap. 6
and Eq. 1). (i) Response distribution: given x(s)=(
x1(s),x2(s), . . . ,xp(s)

)T, the Y (s) values are conditionally
independent observations from simple exponential family
distributions. (ii) Link function: g(·) relates the expectation
µ
(
x(s)

)
= E

[
Y (s)|x(s)

]
of the response distribution to (iii)

the additive predictor
∑
jfj

(
xj (s)

)
.

GeoGAM extends GAM by allowing for a more complex
form of the additive predictor (Kneib et al., 2009; Hothorn
et al., 2011). First, one can add a smooth function fs(s) of
the spatial coordinates (smooth spatial surface) to the addi-
tive predictor to account for residual autocorrelation. More
complex relationships between Y and x can be modelled by
adding terms like fj

(
xj (s)

)
· fk

(
xk(s)

)
to capture the effect

of interactions between covariates and fs(s) ·fj
(
xj (s)

)
to ac-

count for the spatially changing dependence between Y and
x. Hence, in its full generality, a generalised additive model
for spatial data is represented by

g
(
µ
(
x(s)

))
= ν+ f

(
x(s)

)
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∑
u

fju
(
xju (s)

)
+

∑
v

fjv
(
xjv (s)

)
· fkv

(
xkv (s)

)
︸ ︷︷ ︸

global marginal and interaction effects

+

∑
w

fsw (s) · fjw
(
xjw (s)

)
︸ ︷︷ ︸

non-stationary effects

+ fs(s)︸︷︷︸
autocorrelation

. (2)

Kneib et al. (2009) called Eq. (2) a geoadditive model, a
name coined before by Kammann and Wand (2003) for a
combination of Eq. (1) with a geostatistical error model.

It remains to be specified what response distributions and
link functions should be used for the various response types.
For (possibly transformed) continuous responses, one often
uses a normal response distribution combined with the iden-
tity link g

(
µ(x(s))

)
= µ

(
x(s)

)
. For binary data (coded as 0

and 1), one assumes a Bernoulli distribution and often uses a
logit link:

g (µ (x (s)))= log
(

µ (x (s))
1−µ (x (s))

)
, (3)

where

µ
(
x(s)

)
= Prob

[
Y (s)= 1 |x(s)

]
=

exp
(
ν+ f

(
x(s)

))
1+ exp

(
ν+ f

(
x(s)

)) . (4)

For ordinal data with ordered response levels, 1,2, . . . ,k,
we used the cumulative logit or proportional odds model
(Tutz, 2012, Sect. 9.1). For any given level r ∈ (1,2, . . . ,k),
the logarithm of the odds of the event Y (s)≤ r |x(s) is then
modelled by

log

(
Prob

[
Y (s)≤ r |x(s)

]
Prob

[
Y (s)> r |x(s)

])= νr + f (x(s)
)
, (5)

with νr a sequence of level-specific constants satisfying ν1 ≤

ν2 ≤ . . .≤ νr . Conversely,

Prob
[
Y (s)≤ r |x(s)

]
=

exp
(
νr + f

(
x(s)

))
1+ exp

(
νr + f

(
x(s)

)) . (6)

Note that Prob
[
Y (s)≤ r |x(s)

]
depends on r only through the

constant νr . Hence, the ratio of the odds of two events Y (s)≤
r |x(s) and Y (s)≤ r | x̃(s) is the same for all r (Tutz, 2012,
p. 245).
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2.2 Model building (selection of covariates)

To build parsimonious models that can readily be checked
for agreement with pedological understanding, we applied a
sequence of fully automated steps 1–6. In several of these
steps we optimised tuning parameters through 10-fold cross-
validation with fixed subsets using root mean square error
(RMSE; Eq. (12), continuous responses), Brier score (BS;
Eq. (16), binary responses) or ranked probability score (RPS;
Eq. (18), ordinal responses) as optimisation criteria. Model
building aims to optimise the accuracy of predictions, and
hence we did not use equivalent “goodness-of-fit” statistics.
To improve the stability of the algorithm continuous covari-
ates were first scaled (by the difference of the maximum and
minimum value) and centred.

1. Boosting (see step 2 below) is more stable and con-
verges more quickly when the effects of categorical co-
variates (factors) are accounted for as a model offset.
We therefore used the group lasso (Breheny and Huang,
2015) – an algorithm that likely excludes non-relevant
covariates and treats factors as groups – to select impor-
tant factors for the offset. For ordinal responses (Eq. 6)
we used stepwise proportional odds logistic regression
in both directions with BIC (e.g. Faraway, 2005, p. 126)
to select the offset covariates because lasso cannot be
used for such responses.

2. Next, we selected a subset of relevant factors, continu-
ous covariates and spatial effects by using component-
wise gradient boosting. Boosting is a slow stage-wise
additive learning algorithm. It expands f

(
x(s)

)
in a set

of base procedures (base learners) and approximates the
additive predictor by using a finite sum of them as fol-
lows (Bühlmann and Hothorn, 2007).

(a) Initialise f̂
(
x(s)

)[m] with the offset of step 1 above
and set m= 0.

(b) Increase m by 1. Compute the negative gradient
vector U[m] (e.g. residuals) for a loss function l(·).

(c) Fit all base learners fj
(
xj (s)

)
,j = 1, . . . ,p to

U[m] and select the base learner, for example
fk(xk(s))[m], that minimizes l(·).

(d) Update f̂
(
x(s)

)[m]
= f̂

(
x(s)

)[m−1]
+v ·fk

(
xk(s)

)[m]
with step size v ≤ 1.

(e) Iterate steps (b) to (d) until m=mstop (main tuning
parameter).

We used the following settings in the above algorithm.
As loss functions l(·) we used L2 for continuous, neg-
ative binomial likelihood for binary (Bühlmann and
Hothorn, 2007) and proportional odds likelihood for or-
dinal responses (Schmid et al., 2011). Early stopping
of the boosting algorithm was achieved by determining
optimalmstop through cross-validation. We used default

step length (υ = 0.1). This is not a sensitive parameter
as long as it is clearly below 1 (Hofner et al., 2014).
For continuous covariates we used penalised smoothing
spline base learners (Kneib et al., 2009). Factors were
treated as linear base learners. To capture residual auto-
correlation we added a bivariate tensor product P-spline
of spatial coordinates (Wood, 2006, pp. 162) to the ad-
ditive predictor. Spatially varying effects were modelled
by using base learners formed through multiplication of
continuous covariates with tensor product P-splines of
spatial coordinates (Wood, 2006, pp. 168). An uneven
degree of freedom of base learners biases base learner
selection (Hofner et al., 2011). We therefore penalised
each base learner to 5 degrees of freedom (df). Factors
with fewer than six levels (df< 5) were aggregated to
grouped base learners. By using an offset, the effects of
important factors with more than six levels were implic-
itly accounted for without penalisation.

3. Atmstop (see step 2 above), many included base learners
had very small effects only. We fitted generalised addi-
tive models (GAMs; Wood, 2011) and included smooth
and factor effects only if their effect size ej of the cor-
responding base learner fj (xj (s)) was substantial. The
effect size ej of factors was the largest difference be-
tween the effects of two levels and for continuous co-
variates it was equal to the maximum contrast of esti-
mated partial effects (after the removal of extreme val-
ues as in box plots; Frigge et al., 1989). We iterated
through ej and excluded covariates with ej smaller than
a threshold effect size et . Optimal et was determined by
10-fold cross-validation of GAM. In these GAM fits,
smooth effects were penalised by 5 degrees of free-
dom as imposed by component-wise gradient boosting
(step 2 above). The factors selected as an offset in step
1 were now included in the GAM.

4. We further reduced the GAM through the stepwise
removal of covariates by using cross-validation. The
candidate covariate to drop was chosen by the largest
p value of F tests for linear terms and approximate
F tests (Wood, 2011) for smooth terms.

5. Factor levels with similar estimated effects were merged
stepwise again through cross-validation based on the
largest p values from two sample t tests of partial resid-
uals.

6. The final model (used to compute spatial predictions)
was a parsimonious GAM. Because of step 5, factors
possibly had a reduced number of coefficients. The ef-
fects of continuous covariates were modelled by smooth
functions and – if at all present – spatially structured
residual variation (autocorrelation) was represented by a
smooth spatial surface. To avoid over-fitting, both types
of smooth effects were penalised by 5 degrees of free-
dom (as imposed in step 2).
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Model-building steps 1 to 6 were implemented in the R
package geoGAM (Nussbaum, 2017).

2.3 Predictions and predictive distribution

Soil properties were predicted for new locations s+ from
the final geoGAM by using Ỹ (s+) = f̂

(
x(s+)

)
. To model the

predictive distributions for continuous responses we used a
non-parametric, model-based bootstrapping approach (Davi-
son and Hinkley, 1997, pp. 262, 285) as follows.

A. New values of the response were simulated according to
Y (s)∗ = f̂

(
x(s)

)
+ε, where f̂

(
x(s)

)
represents the fitted

values of the final model and ε values are errors ran-
domly sampled with replacement from the centred, ho-
moscedastic residuals of the final model (Wood, 2006,
p. 129).

B. The geoGAM was fitted to Y (s)∗ according to steps 1–6
of Sect. 2.2.

C. Prediction errors were computed according to δ∗
+ =

f̂
(
x(s+)

)∗
−

(
f̂
(
x(s+)

)
+ ε

)
, where f̂ (x(s+))∗ repre-

sents predicted values at new locations s+ of the model
built with the simulated response Y (s)∗ in step B above,
and the errors ε are again randomly sampled from the
centred, homoscedastic residuals of the final model (see
step A).

Prediction intervals were computed according to[
f̂
(
x(s+)

)
− δ∗

+ (1−α) ; f̂
(
x(s+)

)
− δ∗

+ (α)
]
, (7)

where δ∗

+ (α) and δ∗

+ (1−α) are the α and (1 − α) quantiles of
δ∗
+ pooled over all 1000 bootstrap repetitions.

Predictive distributions for binary and ordinal responses
were directly obtained from the final geoGAM fit by predict-
ing probabilities of occurrence P̃rob

(
Y (s) = r |x(s)

)
(Davi-

son and Hinkley, 1997, p. 358).

3 Case studies: materials and methods

3.1 Study regions

We applied the modelling framework to three datasets on
properties of forest and agricultural soils in the Canton of
Zurich in Switzerland (Fig. 1). Forests (ZH forest), as defined
by the Swiss topographic landscape model (swissTLM3D,
Swisstopo, 2013a), cover an area of 506.5 km2, or roughly
30 % of the total area of the Canton of Zurich. The spatial
extent of the agricultural region near Greifensee was defined
by the availability of imaging spectroscopy data collected by
the APEX spectrometer (Schaepman et al., 2015). Agricul-
tural land was defined as the area not covered by any areal
features, such as settlements or forests, extracted from the
Swiss topographic landscape model (swissTLM3D, Swis-
stopo, 2013a). Wetlands, forests, parks or city gardens were
excluded, resulting in a study region of 170 km2.

0 50 100 km

Data sources: Biogeographical regions © 2001 BAFU  /  Swiss Boundary, Lakes ©
2012 BFS GEOSTAT  /  Boundries Europe: NUTS © 2010 EuroGeographics

Jur
a

Alps

 Greifensee

Pla
teau

       ZH forest

Figure 1. Location of the study regions Greifensee and ZH forest
on the Swiss Plateau.

In the Canton of Zurich, forests extend across altitudes
ranging from 340 to 1170 m above sea level (m. a.s.l), and in
the Greifensee area elevation ranges from 390 to 840 m a.s.l.
(Swisstopo, 2016). The climatic conditions (period 1961–
1990; Zimmermann and Kienast, 1999) vary accordingly,
with mean annual rainfall of 880–1780 mm for the forested
and 1040–1590 mm for the agricultural study region. Mean
annual temperatures range between 6.1–9.1 and 7.5–9.1 ◦C,
respectively. Two-thirds of the forested area is dominated by
coniferous trees (FSO, 2000b). Half of the Greifensee study
region is covered by cropland and one-third by permanent
grassland. The remainder is comprised of orchards, horti-
cultural areas or mountain pastures (Hotz et al., 2005). In
the Canton of Zurich, soils are formed mostly from Molasse
formations and Quaternary sediments dominantly from the
last glaciation (Würm). In the north-eastern part, the lime-
stone Jura hills reach into the ZH forest study region (Hantke,
1967).

3.2 Data

3.2.1 Soil database

We used legacy soil data collected between 1985 and 2014.
Data originate from long-term soil monitoring of the Canton
of Zurich (KaBo), a soil pollutant survey (Wegelin, 1989),
field surveys for creating soil maps of the agricultural land
(Jäggli et al., 1998) or soil investigations in the course of
different projects by the Swiss Federal Institute for Forest,
Snow and Landscape Research (WSL; Walthert et al., 2004).
Sites for pollutant surveying were chosen on a regular grid,
and those for creating soil maps were determined through
purposive sampling (Webster and Lark, 2013, p. 86) by field
surveyors to best represent the soils typical for the given
landform. The sites of WSL were chosen through purposive

www.soil-journal.net/3/191/2017/ SOIL, 3, 191–210, 2017
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sampling according to the aims of the project. Soil data were
therefore quite heterogeneous, and tailored harmonisation
procedures were required to provide consistent soil datasets.
The heterogeneity resulted from several standards of soil de-
scription and soil classification, different data keys, different
analytical methods and, in particular, often missing metadata
for a proper interpretation of the datasets. Therefore, we elab-
orated a general harmonisation scheme that covers the main
steps required to merge different soil legacy data into one
common, consistent database (Walthert et al., 2016). Sam-
pling sites were recorded in the field on topographic maps
(scale 1 : 25 000), and hence we estimated the accuracy of
coordinates to about ±25 m.

3.2.2 Effective cation exchange capacity (ECEC, forest
soils)

After the removal of sites with missing covariate values, we
used 1844 topsoil samples from 1348 sites with data on effec-
tive cation exchange capacity (ECEC). Most measurements
refer to composite samples for which aliquots were measured
in 20 m× 20 m squares from 0–20 cm of soil depth. For about
100 sites, soil profile genetic horizons were sampled. ECEC
[mmolc kg−1] for 0–20 cm was computed from horizon data
by using

ECEC0−20 =

h∑
i=1

wiECECi, (8)

where ECECi is the value for horizon i, wi is a weight given
by soil density ρi and the fraction of the thickness of horizon
i within 0–20 cm and h is the number of horizons intersect-
ing the 0–20 cm depth; ρi was estimated from soil organic
matter (SOM) and/or sampling depth by using a pedotrans-
fer function (PTF; see the Supplement of Nussbaum et al.,
2017). Due to a lack of respective data, the volumetric stone
content was assumed to be constant.

For most soil samples, ECEC was measured after extrac-
tion in an ammonium chloride solution (FAC, 1989; Walthert
et al., 2004, 2013). Roughly 5 % of the samples had only
measurements of Ca, Mg, K and Al (extracted by ammo-
nium acetate EDTA solution; Lakanen and Erviö, 1971; ELF,
1996; Gasser et al., 2011). For these samples, we estimated
ECEC by using a PTF (Nussbaum and Papritz, 2015).

We assigned 293 of 1348 sites (528 samples) to the valida-
tion set, which was used to check the predictive performance
of the fitted statistical model, and the remaining 1055 sites
(1316 samples) were used to calibrate the model. The legacy
samples were spatially clustered. To ensure that the valida-
tion sites were evenly spread over the study region, the vali-
dation sites were selected by weighted random sampling. The
weight attributed to a site was proportional to the forested
area within its Dirichlet polygon (Dirichlet, 1850).

We found a considerable variation in ECEC values ranging
from 17.4 to 780 mmolc kg−1 (median 141.1 mmolc kg−1;

Table S1 in the Supplement). On average, ECEC was slightly
larger in the calibration than in the validation set.

3.2.3 Presence of waterlogged soil horizons
(agricultural soils)

Waterlogging characteristics were recorded in the field at 962
sites within the Greifensee study region by visual evaluation
(Jäggli et al., 1998). Swiss soil classification distinguishes
horizon qualifiers gg (strongly gleyic, predominantly oxi-
dised) and r (anoxic, predominantly reduced) and both are
believed to limit plant growth (Jäggli et al., 1998; Müller
et al., 2007; Litz, 1998; Danner et al., 2003; Kreuzwieser and
Rennberg, 2014).

We constructed binary responses for three soil depths: 0–
30 cm, 0–50 cm and 0–100 cm. If one of the horizon quali-
fiers gg or r was recorded within the interval, we assigned 1
as the presence of waterlogged horizons and 0 as the absence
of waterlogged soil horizons otherwise.

We chose 198 of 962 sites to form a validation set, again
by using weighted random sampling. The remaining 764
sites were used to build and fit the models. In the topsoil
(0–30 cm), gg or r horizon qualifiers were only observed at
13.4 % of the 962 sites. Down to 50 cm, about twice as many
sites (25.9 %) showed signs of anoxic conditions and down
to 1 m 38.6 % of sites featured an anoxic or gleyic horizon
(Table S2).

3.2.4 Drainage classes (agricultural soils)

Swiss soil classification differentiates the hydromorphic fea-
tures of soils in more detail, describing the degree, depth and
source of waterlogging with three supplementary qualifiers
for stagnic, gleyic or anoxic profiles (I, G, R; categorical at-
tributes, Brunner et al., 1997). To reduce the complexity of
classification, we aggregated these qualifiers to three ordered
levels: well drained (qualifiers I1–I2, G1–G3, R1 or no hy-
dromorphic qualifier), moderately well drained (I3–I4, G4)
and poorly drained (G5–G6, R2–R5).

For validation we used the same 198 sites as for the
presence of waterlogged soil horizons, but only 732 sites
were used for model building due to missing supplemen-
tary qualifiers. The majority (66.6 %) of the 930 sites were
well drained, only 12.7 % were classified as moderately well
drained and 20.7 % as poorly drained (Table S3 in the Sup-
plement).

3.2.5 Covariates for statistical modelling

To represent local soil formation conditions, we used data
from 23 sources (Table 1). For ECEC a total of 333 covari-
ates were used to describe climatic (71 covariates) and topo-
graphic conditions (196 covariates). For the agricultural land,
we additionally used 180 spectral bands of the APEX spec-
trometer, spatial information on historic wetlands and agri-
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cultural drainage networks, resulting in 498 covariates in to-
tal.

3.3 Statistical analysis

We built models for the five responses according to Sect. 2.2
and computed predictions for new locations at nodes of a
20 m grid. Predictions were post-processed as described in
the following.

3.3.1 Response transformation

ECEC data for 0–20 cm of soil depth were positively skewed
(Table S1); hence we fitted the model to the log-transformed
data. In full analogy to log-normal kriging (Cressie, 2006,
Eq. 20), the predictions were back-transformed by using

E
[
Y (s+) |x

]
= exp

(
f̂
(
x(s+)

)
+

1
2
σ̂ 2
−

1
2

Var
[
f̂
(
x(s+)

)])
,

(9)

with f̂
(
x(s+)

)
being the prediction of the log-transformed

response, σ̂ 2 the estimated residual variance of the final ge-
oGAM fit and Var

[
f̂
(
x(s+)

)]
the variance of f̂

(
x(s+)

)
as

provided by the final geoGAM. Limits of prediction intervals
were back-transformed by using exp(·) as they are quantiles
of the predictive distributions.

3.3.2 Conversion of probabilistic to categorical
predictions

For binary and ordinal responses, Eqs. (4) and (6) predict
probabilities of the respective response levels. To predict the
“most likely” outcome one has to apply a threshold to these
probabilities. For binary data we predicted the presence of
waterlogged horizons if the probability exceeded the optimal
value of the Gilbert skill score (GSS; Sect. 3.3.3) that dis-
criminated between the presence and absence of waterlogged
horizons best in cross-validation of the final geoGAM. GSS
was selected because the absence of waterlogged horizons
was more common than presence, especially in topsoil. To
ensure consistency in the maps for sequential soil depths we
assigned the presence of waterlogged horizons to the lower
depth if it was predicted for the depth above.

For ordinal responses we predicted the level to which the
median of the probability distribution P̃rob(Y (s)≤ r|x(s))
was assigned (Tutz, 2012, p. 475).

3.3.3 Evaluating the predictive performance of the
statistical models

The predictive performance of the geoGAM, fitted for the
continuous response ECEC, was tested by comparing predic-
tions Ỹ (si) (Eq. 9) with measurements Y (si) of independent

validation sets. Marginal bias and overall accuracy were as-
sessed by using

BIAS=−
1
n

n∑
i=1

(Y (si)− Ỹ (si)), (10)

robBIAS=−median1≤i≤n
(
Y (si)− Ỹ (si)

)
, (11)

RMSE=

(
1
n

n∑
i=1

(
Y (si)− Ỹ (si)

)2)1/2

, (12)

robRMSE=MAD1≤i≤n
(
Y (si)− Ỹ (si)

)
, (13)

SSmse = 1−

∑n
i=1

(
Y (si)− Ỹ (si)

)2
∑n
i=1

(
Y (si)− 1

n

∑n
i=1Y (si)

)2 , (14)

where MAD is the median absolute deviation. SSmse was de-
fined as mean square error skill score (Wilks, 2011, p. 359)
with the sample mean of the measurements as a refer-
ence prediction method. Interpretation is similar to R2 with
SSmse = 1 for perfect predictions and SSmse = 0 for zero
explained variance. SSmse becomes negative if the root mean
square error (RMSE) exceeds the standard deviation of the
data. To validate the accuracy of the bootstrapped predictive
distributions we plotted the empirical distribution function
of the probability integral transform (Wilks, 2011, p. 375),
which is equivalent to a plot of the coverage of one-sided
prediction intervals

(
0, q̃α(s)

)
against the nominal probabili-

ties α used to construct the quantiles q̃α(s).
For binary responses the predictive performance of the fit-

ted geoGAM was evaluated with independent validation data
by using the Brier skill score (BSS; Wilks, 2011, Eq. 8.37):

BSS= 1−
BS

BSref
, (15)

where the Brier score (BS) is computed with

BS=
1
n

n∑
i=1

(yi − oi)2, (16)

where n is the number of sites, yi = P̃rob
[
Y (si)= 1 |x(si)

]
represents the predicted probabilities and oi = I

(
Y (si)= 1

)
is the observation. BSref is the BS of a reference prediction in
which the more abundant level (absence of waterlogged hori-
zons) is always predicted. After transforming the predicted
probabilities to the binary levels (presence or absence of wa-
terlogged horizons; Sect. 3.3.2), we further evaluated the bias
ratio, Peirce skill score (PSS) and GSS. The bias ratio is the
ratio of the number of presence predictions to the number
of presence observations (Wilks, 2011, Eq. 8.10). PSS is a
skill score based on the proportion of correct presence and
absence predictions in which the reference predictions are
purely random predictions that are constrained to be unbi-
ased (Wilks, 2011, Eq. 8.16). GSS is a skill score that uses the
threat score as an accuracy measure (Wilks, 2011, Eq. 8.18)
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Table 1. Overview of geodata and derived covariates; for more information see the Supplement of Nussbaum et al. (2017); (r: pixel resolution
for raster datasets or scale for vector datasets, a: only available for study region Greifensee (Gr) or ZH forest (Zf), NDVI: normalised
differenced vegetation index, TPI: topographic position index, TWI: topographic wetness index, MRVBF: multi-resolution valley bottom
flatness).

Geodata set r a Covariate examples

Soil Physiographical units, historic wetland
Soil overview map (FSO, 2000a) 1:200 000 presence, presence of drainage
Wetlands Wild maps (ALN, 2002) 1:50 000 Gr networks or soil ameliorations
Wetlands Siegfried maps (Wüst-Galley et al., 2015) 1:25 000 Gr
Anthropogenic soil interventions (AWEL, 2012) 1:5 000 Gr
Drainage networks (ALN, 2014b) 1:5 000 Gr

Parent material (Aggregated) geological units, ice level
Last Glacial Maximum (Swisstopo, 2009) 1:500 000 during last glaciation, information on
Geotechnical map (BFS, 2001) 1:200 000 aquifers
Geological map (ALN, 2014a) 1:50 000
Groundwater occurrence (AWEL, 2014) 1:25 000 Gr

Climate Mean annual and monthly temperature,
MeteoSwiss 1961–1990 (Zimmermann and Kienast, 1999) 25/100 m precipitation, radiation, degree days,
MeteoTest 1975–2010 (Remund et al., 2011) 250 m NH3 concentration in air
Air pollutants (BAFU, 2011) 500 m Zf
NO2 emissions (AWEL, 2015) 100 m Gr

Vegetation Band ratios, NDVI, 180 hyperspectral
Landsat7 scene (USGS EROS, 2013) 30 m bands, aggregated vegetation units,
DMC mosaic (DMC, 2015) 22 m canopy height
SPOT5 mosaic (Mathys and Kellenberger, 2009) 10 m Zf
APEX spectrometer mosaics (Schaepman et al., 2015) 2 m Gr
Share of coniferous trees (FSO, 2000b) 25 m Zf
Vegetation map (Schmider et al., 1993) 1:5 000 Zf
Species composition data (Brassel and Lischke, 2001) 25 m Zf
Digital surface model (Swisstopo, 2011) 2 m Zf

Topography Slope, curvature, northness, TPI, TWI,
Digital elevation model (Swisstopo, 2011) 25 m MRVBF (various radii and resolutions)
Digital terrain model (Swisstopo, 2013b) 2 m

and again random predictions as a reference. Perfect pre-
dictions have PSS and GSS equal to 1; for random predic-
tions the scores are equal to 0 and predictions worse than
the reference receive negative scores. PSS is truly and GSS
asymptotically equitable, meaning that purely random and
constant predictions get the same scores (see Wilks, 2011,
pp. 316 and 321 for details).

For the ordinal response drainage classes we tested the fit-
ted geoGAM by evaluating the ranked probability skill score
(RPSS), which was computed for the independent validation
data analogously to BSS by using

RPSS= 1−
RPS

RPSref
, (17)

where RPS is the ranked probability score (RPS; Wilks,
2011, Eq. 8.52) given by

RPS=
n∑
i=1

J∑
j=1

(Yi,j −Oi,j )2, (18)

with Yi,j = P̃rob
[
Y (si)≤ j |x(si)

]
being the pre-

dicted cumulative probabilities up to class j and
Oi,j =

∑j

r=1I
(
Y (si)= r

)
indicating observed absence

(0) or presence (1) up to class j . RPSref is the RPS for
a reference that always predicts the most abundant class
(well drained). For predictions of the ordinal outcomes
(Sect. 3.3.2) we also computed the mean bias ratio from
three bias ratios created analogously to the binary case.
These two-class settings were achieved through the stepwise
aggregation of two out of three classes (well vs. moderately
well or poorly drained, then well or moderately well vs.
poorly drained; Wilks, 2011, p. 319). In addition, PSS
was computed in its general form (Wilks, 2011, p. 319)
together with the Gerrity score (GS), which applies weights
to the joint distribution of predicted and observed classes to
consider their ordering and frequency (Wilks, 2011, p. 322).
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Table 2. Covariates contained in final geoGAM for responses ECEC, the presence of waterlogged horizons and drainage classes. More details
on covariate effects can be found in Figs. S1 and S4 to S6 in the Supplement (p: number of covariates, SD: standard deviation in a moving
window, RAD: radius of moving window or parameter of terrain attribute algorithm, r: resolution of elevation model, TPI: topographic
position index, TWI: topographic wetness index, MRVBF: multiresolution valley bottom flatness).

ECEC 0–20 cm
Presence of waterlogged horizons down to

Drainage class
30 cm 50 cm 100 cm

p 17 7 12 14 11

Legacy soil
data

Correction factor

Geology,
land use

Distance to moraines,
aquifer map, overview
soil map, geological map,
geotechnical map

Historic wetlands Historic wetlands, drainage
systems map

Historic wetlands, drainage
systems map, anthro-
pogenic soil disturbance,
extent last glaciation,
geological map

Historic wetlands, drainage
systems map, aquifer map

Climate — Global radiation (r: 250 m),
precipitation (r: 250 m)

Global radiation (r: 250 m),
precipitation (r: 100 m)

Dew point temperature
(r: 250 m)

Precipitation (r: 250 m)

Vegetation SPOT5 vegetation index
(r: 10 m), vegetation map

— DMC green band (r: 22 m) — DMC green band (r: 22 m)

Topography SD slope (RAD: 20 m,
r: 2 m), smooth northness
(RAD: 10 m, r: 2 m),
ruggedness (RAD: 225 m,
r: 25 m), surface con-
vexity (RAD: 450 m,
r: 25 m), negative openness
(RAD: 2 km, r: 25 m),
vertical distance to rivers
(r: 25 m)

curvature (r: 25 m), smooth
eastness (RAD: 3.6 km, r:
25 m), roughness (RAD:
50 m, r: 2 m), negative
openness (RAD: 1 km,
r: 2 m)

SD elevation (RAD:
3.6 km, r: 25 m), SD slope
(RAD 50 m, r: 2 m), smooth
curvature (RAD: 120 m,
r: 2 m), negative openness
(RAD: 1 km, r: 25 m),
TPI (RAD: 50 m, r: 2 m),
smooth TWI (RAD 14 m,
r: 2 m), MRVBF (r: 25 m)

SD elevation (RAD:
3.6 km, r: 25 m), smooth
curvature (RAD: 120 m,
r: 2 m), smooth eastness
(RAD: 3.6 km, r: 25 m),
convergence index (RAD:
250 m, r: 25 m), terrain tex-
ture (RAD: 60 m, r: 2 m),
horizontal distance to rivers
(r: 25 m), TWI (RAD:
14 m, r: 2 m), MRVBF
(25 m)

SD elevation (RAD:
3.6 km, r: 25 m), terrain
texture (RAD: 60 m,
r: 2 m), TPI (RAD: 300 m
and 50 m, r: 2 m), smooth
TWI (RAD: 14 m, r: 2 m)

3.3.4 Software

Terrain attributes were computed by ArcGIS (version 10.2;
ESRI, 2010) and SAGA 2.1.4 (version 2.1.4; Conrad et al.,
2015). All statistical computations were performed in R (ver-
sion 3.2.2; R Core Team, 2016) using several add-on pack-
ages, in particular grpreg for group lasso (version 2.8-
1; Breheny and Huang, 2015), MASS for proportional odds
logit regression (version 7.3-43; Venables and Ripley, 2002),
mboost for component-wise gradient boosting (version 2.5-
0; Hothorn et al., 2015), mgcv for geoadditive model fits
(version 1.8-6; Wood, 2011), raster for spatial data pro-
cessing (version 2.4-15; Hijmans et al., 2015) and geoGAM
for the model-building routine (version 0.1-2; Nussbaum,
2017).

4 Results

4.1 ECEC – case study 1

4.1.1 Models for ECEC in 0–20 cm of depth

Figure 2 shows the change in RMSE during model build-
ing (10-fold cross-validation). The small root mean square
error (RMSE) of 0.428 log mmolc kg−1 after the gradient
boosting step – with coefficients shrunken by the algo-
rithm – could further be reduced (cross-validation RMSE

0.422 log mmolc kg−1) by removing covariates and through
factor aggregation. Aggregating factor levels resembles the
shrinking of coefficients of such covariates.

Starting with 333 covariates, model building successfully
reduced the number of covariates in the model to 17. The
remaining ones characterised geology, vegetation and topog-
raphy (Table 2). Effective cation exchange capacity (ECEC)
depended non-linearly on nearly all continuous covariates,
but non-linearities were in general rather weak (Fig. S1 in
the Supplement). No fs(s) term was included in the model
because residual autocorrelation was very weak (Fig. S2).
Including non-stationary effects in the model would have
improved the model only slightly (cross-validation RMSE
0.406 log mmolc kg−1) but would have added considerable
complexity to the final model (21 covariates including eight
interactions with fs(s) terms).

4.1.2 Validation of predicted ECEC with
independent data

Predictive performance, as evaluated at 293 independent
validation sites, was satisfactory. Figure 3 shows mea-
sured ECEC in 0–20 cm plotted against the predictions for
the validation set. The solid line of the loess scatter plot
smoother (Cleveland, 1979) is close to the 1 : 1 line, in-
dicating the absence of conditional bias. This was con-
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Figure 2. Change in cross-validation root mean square error
(RMSE) in steps 1–5 of the model-building procedure (Sect. 2.2).
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Figure 3. Scatter plot of measured against predicted ECEC in 0–
20 cm of mineral soil depth computed with geoGAM (Sect. 4.1.1)
for the sites of the validation set (solid line: loess scatter plot
smoother).

firmed by small marginal BIAS measures (Table 3). The
BIAS2-to-MSE ratio was small for both log-transformed and
original data (1.2 and 0.7 %, respectively). The robRMSE
(0.411 log mmolc kg−1) was somewhat smaller than RMSE
(0.471 log mmolc kg−1), indicating that a few outlying ECEC
observations were not particularly well predicted. The RMSE
computed with the back-transformed predictions of the val-
idation set (74.9 mmolc kg−1) was also larger than its robust
counterpart robRMSE (55.3 mmolc kg−1). Judged by SSmse
calculated for the independent validation data, the model ex-
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Figure 4. Coverage of one-sided bootstrapped prediction intervals
(0,̃qα(s)) for 528 ECEC validation samples plotted against nominal
probability α used to construct the upper limit qα of the prediction
intervals (vertical lines mark the 5 and 95 % probabilities).

Table 3. Validation statistics for (a) log-transformed and (b) back-
transformed ECEC 0–20 cm [mmolc kg−1] calculated for 528 sam-
ples (293 sites) of the independent validation set (for a definition of
the statistics, see Sect. 3.3.3).

BIAS robBIAS RMSE robRMSE SSmse

(a) 0.052 0.006 0.471 0.411 0.407
(b) 6.3 8.9 74.9 55.3 0.365

plained about 40 % of the variance in the log-transformed
and 37 % of the variance in the original data (Table 3).

Figure 4 shows somewhat too-large coverage for quantiles
in the lower tails of the predictive distributions, and hence
the extent of the lower tails of bootstrapped predictive distri-
butions was underestimated. The upper tails of the predictive
distributions were modelled accurately as the coverage was
close to the nominal probability there. The coverage of sym-
metric 90 % prediction intervals was again too small (84.1 %)
because the lower tails were too short. The median width
of 90 % prediction intervals was equal to 201.8 mmolc kg−1,
demonstrating that prediction uncertainty remained substan-
tial in spite of SSmse of nearly 40 %.

4.1.3 Mapping ECEC for ZH forest topsoils

Predictions of ECEC were computed by using the final ge-
oGAM for the nodes of a 20 m grid (Fig. 5), and 44 % of
the mapped topsoil has large to very large ECEC values. In
contrast, 13 % (∼66 km2) of the forest topsoils in the study
region are acidic with ECEC below 100 mmolc kg−1. These
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soils are mostly found in the northern part of the Canton
of Zurich. The spatial pattern of the width of 90 % predic-
tion intervals (Fig. S3) and of the mean predictions (Fig. 5)
was very similar (Pearson correlation= 0.981), which fol-
lows from the log-normal model that we adopted for this re-
sponse.

4.2 Presence of waterlogged soil horizons –
case study 2

4.2.1 Models for the presence of waterlogged horizons

Not surprisingly, the models for the presence of waterlogged
horizons in the three soil depths contained similar covariates
characterising mostly wet soil conditions, such as historic
wetland maps, a map of agricultural drainage systems or sev-
eral climatic covariates (Table 2). The same terrain attributes
were repeatedly chosen for the three depths (Figs. S4 to S6).
For all three depths, model selection resulted in parsimonious
sets of only 7 to 14 covariates chosen from a total of 498 co-
variates. The Brier skill score (BSS), computed using 10-fold
cross-validation, increased from 0.350 for the 0–30 cm depth
to 0.704 for the 0–100 cm depth, suggesting that the pres-
ence of waterlogged horizons can be better modelled when is
occurs more frequently. The degree of residual spatial auto-
correlation on a logit scale was stronger in 0–30 cm than in
0–100 cm of depth (Fig. S2), confirming that the model per-
formed better for the 0–100 cm depth. Adding the fs(s) term
did not improve cross-validated BSS (30 cm: 0.332, 100 cm:
0.688), meaning that a penalised tensor product of spatial co-
ordinates was too smooth to capture short-range autocorrela-
tion.

4.2.2 Validation of predicted presence of waterlogged
horizons with independent data

Table 4 reports contingency tables for the predicted outcomes
of the presence of waterlogged horizons at 198 sites of the
validation set. BSS and the bias ratio improved again from
the 0–30 cm to the 0–100 cm depth. In 0–30 cm of depth,
the presence of waterlogged horizons was clear and down
to 50 cm slightly over-predicted, while down to 100 cm there
was no bias. The performance evaluated by percentage cor-
rect with the Peirce skill score (PSS) was similar for all three
depths (correct predictions being 44 to 50 % more frequent
compared to random predictions). Ignoring correct absence
predictions in the Gilbert skill score (GSS), the model pre-
dicted the correct level 20–30 % more often than a random
prediction scheme. Again, GSS increased with depth and
there was a higher chance of waterlogging occurring.

4.2.3 Mapping of the presence of waterlogged horizons

The presence of waterlogged horizons in 0–30 cm was pre-
dicted for 13.8 % of the study region Greifensee (Fig. 6).
For 0–50 cm this share increased to 27.3 % and in nearly

40 % of the soils waterlogged horizons were present in 0–
100 cm. Waterlogged horizons were mapped in upper soil
depths mainly on the larger plains to the north and south
of Greifensee. Deeper horizons had waterlogging present
mostly in local depressions and comparably smaller valley
bottoms in the hilly uplands to the south of the study region.

4.3 Drainage classes – case study 3

4.3.1 Model for drainage classes

The models for the ordinal drainage class data contained
about the same covariates as the models for the presence
of waterlogged horizons (Table 2). Most covariates had only
very weak non-linear effects (Fig. S7). Residual spatial auto-
correlation was very weak with a short range (Fig. S2), sug-
gesting that the variation was well captured by the geoGAM.
Then-fold cross-validation resulted in a ranked probability
skill score (RPSS) of 0.588.

4.3.2 Validation of predicted drainage classes with
independent data

Table 5 reports the number of correctly classified and mis-
classified drainage class predictions for the validation set.
False predictions were equally distributed above and below
the diagonal, and hence predictions were unbiased with a
mean bias ratio close to 1. Distinguishing moderately well
drained soils from the other two classes remained difficult
as this class had been seldom observed. Overall, the model
accuracy was satisfactory, with RPSS of 0.458 being only
slightly smaller than cross-validation RPSS. Hence, the ge-
oGAM was clearly better than always predicting the most
abundant class, well drained. Measured by PSS and Gerrity
score (GS), the geoGAM was better than random predictions
at every second site for which predictions were computed.

4.3.3 Mapping of drainage classes

Drainage classes were again predicted using a 20 m grid
(Fig. 7), and 73.2 % of the Greifensee region had well
drained soils. Poorly drained soils were predicted for only
15.6 % of the area. The location of poorly drained soils co-
incides with the presence of waterlogged horizons in the top-
soil (0–30 cm; Fig. 6a). The largest contiguous area of poorly
drained soils was predicted on accumulation plains at the
lake inflow to the south of Greifensee. The sites misclassified
had TPI values indicating local depressions and larger ero-
sion accumulation potential (MRVBF) compared to correctly
classified sites; thus predicting correct drainage classes in
valley bottoms seems more difficult. The misclassified sites
of the validation set had on average slightly higher clay and
soil organic carbon contents in the topsoil.
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Figure 5. The geoGAM predictions of effective cation exchange capacity (ECEC) at 0–20 cm of depth in the mineral soil of forests in the
Canton of Zurich, Switzerland (computed on a 20 m grid with final geoGAM with covariates according to Table 2. Black dots are locations
used for geoGAM calibration, locations with red triangles were used for model validation and ECEC legend classes are according to Walthert
et al., 2004).

Table 4. Observed occurrence of waterlogged horizons at three soil depths against predictions by geoGAM for the 198 sites of the validation
set. Waterlogged soil horizons were predicted to be present if prediction probabilities were larger than an optimal threshold (30 cm: 0.22,
50 cm: 0.35, 100 cm: 0.51) found by cross-validation with Gilbert skill scores as criteria (No.: number of sites per response level, BSS: Brier
skill score, bias: bias ratio, PSS: Peirce skill score, GSS: Gilbert skill score).

Waterlogged No. observed
BSS Bias PSS GSS

down to No. predicted Present Absent

30 cm Present 16 27 0.312 1.720 0.484 0.227
Absent 9 146

50 cm Present 28 25 0.448 1.152 0.444 0.267
Absent 18 127

100 cm Present 43 22 0.526 1.000 0.496 0.330
Sbsent 22 111
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Table 5. Frequency of drainage class levels and predictions of respective outcomes by geoGAM for the 198 sites of the validation set (No.:
number of sites per response level, RPSS: ranked probability skill score, bias: mean bias ratio, PSS: Peirce skill score, GS: Gerrity score for
ordered responses).

No. observed
RPSS Bias PSS GSWell Moderately Poorly

No. predicted drained well drained drained

Well drained 129 9 9 0.458 0.985 0.477 0.523
Moderately well drained 9 9 3

Poorly drained 8 5 17

5 Discussion

5.1 Model building and covariate selection

The model-building procedure efficiently selected parsimo-
nious models with p ≤17 covariates for all responses. This
corresponds to only 5.8 % of the covariates considered for the
effective cation exchange capacity (ECEC) modelling and to
1.4–2.8 % for modelling the binary and ordinal responses de-
scribing waterlogging.

The procedure was able to select meaningful covariates,
which reveal the influence of soil-forming factors on the re-
sponse variable, without any prior knowledge about the im-
portance of a particular covariate. No preprocessing of co-
variates was necessary, e.g. reducing the dimensionality of
the covariate set to deal with multi-collinearity. This is es-
pecially important for terrain covariates. Elevation data are
often available in several resolutions, and various algorithms
can be used to calculate curvature or topographic wetness in-
dices (TWI), which all likely produce slightly different re-
sults. In addition, radii for computing, for example, topo-
graphic position indices (TPI) have to be specified, and it is
often not a priori clear how these should be chosen (Behrens
et al., 2010; Miller et al., 2015). Therefore, different algo-
rithms and a range of parameter values are used to create
terrain covariates, and the model-building process selects the
most suitable covariate to model a particular soil property.
Meanwhile, none of the 180 APEX bands available for the
Greifensee region were chosen for the final models. Most
likely, meaningful preprocessing, for example based on bare
soil areas, could improve the usefulness of such covariates
(Diek et al., 2016). Since we used continuous reflectance sig-
nals, including vegetated and sparsely vegetated areas, the
remotely sensed signal might not have expressed direct rela-
tionships to actual soil properties well.

5.2 Model structure

Parsimonious models lend themselves to a verification of fit-
ted effects from a pedological perspective. Yet, due to multi-
collinearities in the covariate set, the effects of selected co-
variates could be substituted by the effects of other covariates
(Behrens et al., 2014).

Although Johnson et al. (2000) did not find strong rela-
tionships between terrain and ECEC, six terrain attributes
were selected. Covariates representing geology were impor-
tant, too, with ECEC changing, for example, as a function
of the distance to two types of moraines. Also, vegetation
provided information on ECEC in the topsoil because a veg-
etation index (difference of near infrared to red reflectance)
and a vegetation map were included. Larger values of ECEC
were modelled for plant communities that are characteris-
tic of nutrient-rich soils. The factor distinguishing the origin
of soil data either from direct measurement or pedotransfer
function (PTF; legacy data correction; Sect. 3.2.2, Fig. S1)
was further relevant in the ECEC model.

For modelling drainage classes and the presence of water-
logged horizons, plausible covariates were selected (Figs. S4
to S7). Most covariates were terrain attributes derived from
the digital elevation model (DEM). This is in accordance
with Campling et al. (2002), who found topography impor-
tant in general, and Lemercier et al. (2012), who showed that
a topographic wetness index was among the most important
covariates. Local depression at various scales (concave cur-
vature, basins in TPI, sites with accumulation by erosion,
terrain wetness) increased the probability of poorly drained
soils and the presence of waterlogged horizons. More vari-
able terrain (standard deviation of elevation) also increased
waterlogging probability. Climate covariates also seemed to
be important. The rainfall pattern in summer (June, July), the
spring dew point temperature and global radiation (March,
April) correlated most strongly with the presence of water-
logged horizons. Information on human activities related to
waterlogged soil amelioration was included in all four mod-
els. Maps of historic wetlands and areas with drainage sys-
tems were most often chosen in combination. Geology was
also partly relevant (the presence of waterlogged horizons in
0–100 cm of soil depth and drainage classes).

Overall, non-linearities in effects were small for drainage
classes and the presence of waterlogged horizons. Estimated
degrees of freedom (EDF; Wood, 2006, pp. 170) were gen-
erally smaller than 1.5, with some continuous effects even
being close to 1 EDF. In contrast, most non-linear effects of
the model for ECEC had EDF around 1.7–1.8 with north-
ness consuming even 2.0 EDF. The large area of the study re-
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Figure 6. The geoGAM predictions of the presence of waterlogged
horizons between the surface and three soil depths ((a) 0–30, (b) 0–
50, (c) 0–100 cm) for the agricultural land in the Greifensee study
region (computed on a 20 m grid with final geoGAM, with covari-
ates according to Table 2, smoothed for better display with focal
mean with radius of 3 pixels = 60 m). Black dots in panel (a) are
locations used for geoGAM calibration, and locations with red tri-
angles were used for model validation.
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Figure 7. The geoGAM predictions of drainage classes for the
agricultural land in the Greifensee study region (computed on a
20 m grid with final geoGAM, with covariates according to Table 2,
smoothed for better display with focal mean with radius of 3 pix-
els = 60 m). Black dots are locations used for geoGAM calibration,
and locations with red triangles were used for model validation.

gion and the response being a chemical property that depends
on various combinations of soil-forming factors evidently re-
quired the use of a more complex model.

5.3 Predictive performance of fitted models

For the final models, cross-validation statistics were similar
to the results obtained for the independent validation data.
Through repeated cross-validation on the same subsets, the
cross-validation statistics can be considered as conservative
goodness-of-fit statistics. Hence, we conclude that geoGAM
did not over-fit the calibration data.

Independently validated model accuracy was satisfactory
for ECEC in the present study with (SSmse 0.37). Compared
to the few available studies, the quality of our maps of ECEC
was intermediate. Building a separate model for forest soil
ECEC for a dataset with about 2.1 sites per km2 seem to pro-
duce much better results than the study reported by Vaysse
and Lagacherie (2015), who found very poor model perfor-
mance for ECEC (R2

= 0, equivalently computed as SSmse)
for a dataset with 0.04 sites per km2 and a study region with
multiple land uses. Mulder et al. (2016) achieved somewhat
better results (R2

= 0.24, details on computation not given)
for mapping topsoil ECEC for the whole of France. Hengl
et al. (2017) mapped ECEC with a large global dataset and
obtained a cross-validation R2 of 0.65 (computed as SSmse).
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Viscarra Rossel et al. (2015, Supplement) reportedR2 of 0.79
(computed as SSmse) for topsoil ECEC for Australia. In the
studies of Hengl et al. and Viscarra Rossel et al., ECEC var-
ied much more than in our study, and this likely explains the
better quality of the predictions.

Our models for the presence of wet soils reached similar
accuracy as reported in other studies. Zhao et al. (2013, Ta-
ble 1) reported that 64 to 87 % of the sites were correctly
classified (percentage correct, PC) in four studies that mod-
elled three drainage class levels. Three studies with up to
seven drainage levels achieved PC of 52 to 78 %, and Zhao
et al. (2013) had 36 % of correctly classified sites. Kidd et al.
(2014) found PC of 53 and 55 % for two study regions, and
Lemercier et al. (2012) reported PC of 52 % for a four-level
drainage response. The presented models (Table 4 and 5) are
almost as good with PC of 78 to 82 % for predicting the pres-
ence of waterlogged horizons and PC of 78 % for predicting
the three drainage class levels.

Nevertheless, PC is trivial to hedge (Jolliffe and Stephen-
son, 2012, pp. 46), and comparisons should be made only
with care. Better performance measures are PSS and Cohen’s
kappa (κ), also called the Heidke skill score (Wilks, 2011,
pp. 347). Campling et al. (2002) reported a κ of 0.705, Kidd
et al. (2014) found κ values of 0.27 and 0.31 for the two
study regions, Lemercier et al. (2012) reported a κ of 0.27
and Peng et al. (2003) found a κ of 0.59 for predictions of
three drainage levels. The κ values computed for the models
of this study ranged between 0.37 and 0.5 for modelling the
presence of waterlogged horizons and was 0.48 for predict-
ing the three levels of drainage class. Unequal distributions
of the three drainage classes in the study region (the major-
ity of soils were well drained) were reflected in the smaller
value of κ compared to PC.

5.4 Spatial structure of predicted maps

The spatial distribution of ECEC as shown by Fig. 5 aligns
well with pedological knowledge about soils in the Can-
ton of Zurich. The smallest ECEC (< 50 mmolc kg−1) was
mapped in the north-east of the study region. The last glacia-
tion (Swisstopo, 2009) did not reach as far north and, as a
consequence, strongly weathered soils on old fluvioglacial
gravel-rich sediments developed in this part of the study re-
gion. Soils not covered by ice during the last glaciation have
comparably larger ECEC if they formed on Molasse.

As expected, the spatial patterns for the presence of wa-
terlogged soil horizons and the drainage classes were very
similar (Fig. 6 and 7). Soils on plains to the north and south
of Greifensee are often poorly drained, although at many lo-
cations agricultural drainage networks were installed in the
past.

6 Summary and conclusion

Effectively building predictive models for digital soil map-
ping (DSM) becomes crucial if many soil properties are to be
mapped. Selecting only a small set of relevant covariates ren-
ders interpretation of the fitted models easier and allows for
a check of whether modelled relations accord with pedologi-
cal understanding. Parsimonious, interpretable DSM models
are likely more readily accepted by end-users than complex
black-box models. Moreover, model selection out of a large
number of covariates describing soil-forming factors helps
to improve knowledge about relationships at larger scales. In
this sense, it is also important that the modelling approach
provides information about covariates which are not rele-
vant for a certain response, e.g. the large number of APEX
bands for the presence of waterlogged horizons and drainage
classes.

We developed a model-building framework for generalised
additive models for spatial data (geoGAM) and applied the
framework to legacy soil data from the Canton of Zurich
(Switzerland). We found that geoGAM did the following:

– consistently modelled continuous, binary and ordinal
responses, hence allowing for the DSM of measured soil
properties and soil classification data using one com-
mon approach;

– selected, given the large numbers of covariates, ade-
quately small sets of pedogenetically meaningful co-
variates without any prior knowledge about their impor-
tance and without prior reduction of the covariate sets;

– required minimal user interaction for model building,
which facilitates future map updates as new soil data or
new covariates become available;

– allowed for easy interpretation of the effects of the in-
cluded covariates with partial residual plots;

– modelled predictive distributions for continuous re-
sponses with a bootstrapping approach, thereby taking
the uncertainty of model building into account,

– did not over-fit the calibration data in our applications;
and

– predicted soil properties with similar accuracy as other
approaches in other digital soil mapping studies when
tested with an independent validation set.

To further assess the usefulness of geoGAM for DSM, fu-
ture work should focus on comparisons of predictive accu-
racy with commonly used statistical methods (e.g. geostatis-
tics or tree-based machine learning techniques) on the same
soil datasets. Nussbaum et al. (2017) published the first of
such studies.
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