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Skill of Hydrological Extended Range Forecasts
for Water Resources Management in Switzerland
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Abstract There is a growing need for reliable medium to extended range hydrological
forecasts in water and environmental management (e.g. hydro-power and agricultural pro-
duction). The objective of this paper is a first assessment of the skill of hydrological
forecasts based on Numerical Weather Predictions (NWPs) in comparison to the skill of
forecasts based on climatology for monthly forecasts with daily resolutions and to identify
possibilities of improvement by post-processing the hydrological forecasts. Various hydro-
logical relevant model variables, such as the surface and subsurface runoff and the soil water
content, will be analysed for entire Switzerland. The spatially aggregated predictions of
these variables are compared to daily simulations and to long-term daily averages of simu-
lations driven by meteorological observations (i.e. climatology). Besides this comparison of
forecasts with simulations for model variables without direct measurements available, the
skill of the monthly stream-flow forecasts is estimated at four catchments with discharge
measurements. Additionally post-processing methods have been applied to remove bias and
dispersion errors and to estimate the predictive uncertainty of the stream-flow. Some results
of various verification measures like variants of the Geometric Mean for ratios of spatial
aggregates and the Continuous Rank Probability Skill Score (CRPSS) will be shown. Apart
from the indication of a strong diversity of upper limits of the forecast skill depending on
catchment characteristics, the results of NWPs are generally superior to climatological pre-
dictions and could be applied gainfully for various kinds of long-term water management
planning.
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1 Introduction

The quality of the Numerical Weather Prediction (NWP) systems is steadily increasing and
the lead-times for forecasts with reliable accuracy have been moved forward from just a
few days to 10 and more days. Also for the extended-range, i.e. forecasts beyond one week
up to monthly and seasonal forecast horizons, the predictability has improved significantly
(Vitart 2014). However, since the beginning of the 60’s it is already known that there are
upper limits of predictability, caused by the intrinsic chaotic behaviour of atmospheric phe-
nomena (Lorenz 1963). In the beginning of the 90’s, the computational power reached a
level which allowed ensembles of forecasts to be run with the goal to mimic the chaotic
behaviour of nature by generating multiple possible traces of forecasts (Tracton and Kalnay
1993; Buizza et al. 1999). Therefore, different ensemble forecast systems have been devel-
oped at various forecast centres worldwide, for example by introducing small perturbations
of the initial conditions representing uncertainty of model parameters and measurements
(Toth and Kalnay 1997; Buizza and Palmer 1995; Houtekamer et al. 1996). This shift from
deterministic to probabilistic, ensemble based forecasts helped to extend the predictive skill
limit beyond 2 weeks (Buizza and Leutbecher 2015). The main objective and the novelty
of this paper is to highlight the advantages of using NWP based ensemble forecasts for
total Switzerland for different hydro-meteorological variables and to demonstrate possibil-
ities of improvements at selected catchments. Therefore the monthly ENSemble prediction
systems (ENS) from the European Centre of Medium Range Weather Forecasts (ECMWF),
which issues 51 forecasts twice a week for the next 32 days, has been applied for predicting
possible future water related system states. Ideally such systems permit a statistical analy-
sis of possible future states (see for example et al. 1996), however, the limited amount of
ensemble members and systematic errors of the NWP’s and the hydrological models hin-
ders a direct probabilistic interpretation (Bröcker and Smith 2008). Thus post-processing
methods are required in order to derive predictive distributions properly. Until recently most
extended-range forecasts of hydrological variables have been produced by applying statis-
tical methodologies, for example by the use of ARIMA models or neural networks for the
generation of monthly mean streamflows (e.g. Noakes et al. 1985; Wang et al. 2009; Yarar
2014; Zhang et al 2015). However, the application of monthly ensemble weather forecasts
for the generation of daily hydrological predictions and the exploitation of its probabilistic
information is rather limited until now. For example Pattanaik and Das (2015) demonstrated
the usefulness of monthly ENS at an Indian catchment analysing one single flood event. In
Orth and Seneviratne (2013) monthly reforecasts consisting of 5 ensemble members have
been evaluated at 22 near-natural catchments in Switzerland looking at the ensemble mean
alone. In the work of Fundel et al. (2013) monthly forecasts have been analysed regard-
ing the low-flow conditions for one specific catchment in Switzerland. In Joerg-Hess et al.
(2015) the 5 ensemble members of the monthly reforecasts were evaluated at several catch-
ments in Switzerland regarding the enhancement of the predictability by incorporating daily
snow depth measurements. The results of these studies have lead to the development of
the Swiss drought information platform http://www.drought.ch, which produces model and
measurement based information for drought specific actual and predicted environmental
indicators and variables (Zappa et al. 2014). The next step will be the operational incor-
poration of extended-range forecasts into the drought information platform. Thus, the first
time the quality of monthly forecast for entire Switzerland has been analysed in this study
in order to highlight the potentially added value. Due to the scarcity of measurements
of most of the investigated hydrological variables, spatial aggregates and averages driven
by NWP based forecasts will be compared with climatology. This comparison allows the

http://www.drought.ch
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estimation of the upper limits of the monthly predictions, i.e. up to which lead-time horizon
the NWP has a gain of information of the driving signal superior to long-term statistics. The
NWP and the climatological based forecast will be tested against a reference simulation of
hydrological variables driven by meteorological observations. As a verification measure the
Geometric Mean Relative Absolute Error (GMRAE), recommended for example by Arm-
strong and Collopy (1992) and Fildes (1992), will be used with respect to the accuracy of the
mean of the ensemble forecast. In order to evaluate the sharpness and the reliability of the
ENS in comparison to climatology, the Continuous Rank Probability Skill Score (CRPSS)
will be applied (Hersbach 2000; Gneiting and Raftery 2007).

At four selected catchments with available gauging stations the forecast will be compared
directly with observations scaled by climatology in order to evaluate the effect of post-
processing and possible improvements in applying ensemble weather forecasts rather than
deterministic ones (e.g. the mean of the ENS). The four catchments will be verified using
the CRPSS. In the next section the different case studies and data sets will be described. In
section three and four technical details about the applied methods for calibrating and veri-
fying the forecasts will be given. Finally, after a description of the results and the discussion
of its applicability in Switzerland, the conclusion is given.

2 Case Study and Data

In this paper the monthly ENS forecasts from 2012 - 2016 will be used as hydrological
model input consisting of 51 members and with a spatial resolution of about 50km. Within
that period the ENS has been updated several times (Cycle 38r1 to Cycle 41r2), which may
cause inconsistencies in the analysis. However, given the limited amount of data and the
impossibility of accessing reforecasts for the 51 member ensemble products, these effects
caused by ENS updates have had to be ignored. The chronology of model updates can be
found at http://www.ecmwf.int. In order to make the forecasts applicable for hydrological
modelling purposes with much higher resolution (e.g. in this case study 200m to 500m),
bilinear interpolation and temperature lapse rates are used to adjust this resolution gap (see
Addor et al. 2011 for details). Other more sophisticated downscaling processes are under
investigation at the moment, however the objective of this study is the evaluation of the
hydrological forecast quality using raw and uncorrected ENS forecasts and the quality of
the meteorological forecast itself will be evaluated indirectly only.

The analysis of the resulting hydrological forecasts will be carried out for entire Switzer-
land divided into 307 sub-catchments with sizes of approximately 150 km2, which are
aggregated to 57 regions with an average size of 1000 km2. The delineation of the regions is
according to the model setup used for the Swiss drought information platform and the infor-
mation provided by the Swiss Federal Office for the Environment (FOEN). Four gauged
catchments have been selected with sizes ranging from∼120 to∼1700 km2 (Table 1; Fig. 1)
which are representative for different types of water resources management (hydro-power,
agriculture) and are sensitive to drought and floods.

The core of the forecast system is the hydrological model PREVAH (Viviroli et al. 2009),
which will be run in reference mode taking meteorological observations as input for pre-
dicting past and initial conditions and in forecast mode taking the meteorological ENS
forecast as driving forces for predicting future hydrological states. PREVAH is a concep-
tual, process-oriented hydrological modelling system and has been developed especially for
mountainous environments using a HBV-based runoff generation module (Bergström and
Forsman 1973). Within this study the fully distributed version of PREVAH is used, which

http://www.ecmwf.int
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Table 1 Geomorphologic characteristics (area, altitude, slope) of the Thur, Emme, Broye and Verzasca
catchment

Catchment Thur Emme Broye Verzasca

PREVAH ID Thu200 EmE200 Bry200 VAG200

No. (see Fig. 1) 1 2 3 4

Area [km2] 1696 124 392 186

Min. Elev. [m a.s.l.] 356 745 450 530

Max. Elev. [m a.s.l.] 2415 2170 1495 2120

Average Elev. [m a.s.l.] 770 1189 710 1672

Mean Channel Slope [%] 0.7 1.8 0.9 5.6

allows an explicit incorporation of the meteorological forecast grids. The analysis of the
quality of the ENS for entire Switzerland will be run with a 500m grid version, whereas the
four catchments will be run with 200m resolution. The application at the scale of Switzer-
land is designed to represent potential of the forecast system for ungauged areas. The setup
of the four gauged catchments mimics the one presented in Speich et al. (2015), Orth et al.
(2015), Joerg-Hess et al. (2015).

In Fig. 1 at the top, the 307 catchments (black lines) and the aggregated 57 regions
(orange delineation) are shown and the grid points of the ENS are given in blue dots.

2.1 Simulated and observed variables

For clarity reasons the analysis will be restricted to the most relevant variables for agri-
cultural management purposes and for hydro-power production (for more details about the
variables and their abbreviation please refer to Viviroli et al. 2009):

– Soil Moisture Storage: SSM [mm]
– Total Runoff: RGS, comprises the quick (surface) runoff R0, the delayed R1 and the

slow runoff (baseflow) R2 [mm]
– Total Baseflow: R2 [mm]
– Areal catchment precipitation: P [mm]
– Cumulative weekly discharge [m3]

The four catchments shown in Fig. 1 represent different hydrological regimes with max-
imum discharges in Winter (Broye, 3) or Spring (Thur and Emme, 1 and 2) on the north
side of the Alps and with two peaks (late Spring and Autumn) on the south side (Verza-
sca, 4). The water of the latter catchment is collected by an artificial dam and is used for
hydro-power generation, whereas the management of the selected catchments on the north
side is dominated by agricultural purposes. Whilst the Verzasca (Liechti et al. 2013) and the
Emme are rather prone to serious flooding, the discharge of the Broye and of the Thur is
more sensitive to hydrological drought (Fundel et al. 2013).

3 Error Correction

The comparison between model simulation and forecasts evaluates the forecast quality
conditioned on climatology disregarding the errors introduced by the hydrological measure-
ments and models. This approach will be applied for evaluating the forecasts for Switzerland
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Fig. 1 Switzerland divided into 307 catchments (black lines) and the aggregated 57 Regions (orange border
lines) and the four selected gauged catchments (yellow areas). Blue dots represent the grid points of the
monthly forecast system ENS from ECMWF covering Switzerland. Swiss GIS elements reproduced with the
authorisation of swisstopo (JA100118)

separated in 57 regions without direct measurements. However, at the four catchments with
measurements available, the forecasts will be compared with the observed stream-flow val-
ues directly. Thus, the resulting difference between the model forecast and the observation
comprises all kinds of hydrological and meteorological measurement, modelling and fore-
cast errors. In order to reduce these errors, different post-processing methods have been
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developed, with an emphasis on ensemble forecasts in recent years (see for example van
Andel et al. 2013).

Most often AutoRegressive (AR) models have been fitted in hydrology to series of dif-
ferences between observations and predictions because of their effectiveness and simplicity.
VectorAutoRegressive (VAR) models (for example Gilbert 1995; Zivot and Wang 2006),
which have been developed and used in economic research fields for describing the evo-
lution of multiple variables at the same time depending on possibly different lag-times for
each variable, build a generalisation of the AR models and could be a promising alternative
for hydrological purposes as well. Especially if the problem of scale dependency occur-
ring in hydro-meteorological processes is taken into consideration, where errors manifest at
very different temporal resolutions ranging from very short time-scales (minutes or hours)
to long lasting processes (days, weeks, months and beyond). This problem could be solved
by decomposing the time-series of simulations/forecasts into different levels of resolution
applying for example wavelet transformations. In Bogner and Pappenberger (2011) such a
’waveVARX’ model has been described in detail, where the decomposed stream-flow obser-
vations form the VAR model and the decomposed predictions (simulations and forecasts)
compose the exogenous input.

The method of Quantile Regression (QR) developed by Koenker and Bassett (1978)
has been applied successfully for hydrological post-processing purposes (e.g. Weerts et al.
2011; López López et al. 2014; Dogulu et al. 2015). Recently a modified QR model called
QRNN (Taylor 2000; Cannon 2011), combining QR and Neural Networks, has been tested
at some catchments in Switzerland (Bogner et al. 2016) and will be applied in this study as
well. Since the results of the QRNN method will be an approximated cdf for each ensemble
member, the final overall cdf can be estimated by two different methods, one based on direct
quantile averaging and one calculated by averaging the probabilities derived from approxi-
mated pdfs similar to the work of Kenneth et al. (2013), which will be called QRNN-q-ave.,
resp. QRNN-p-ave. (see also Bogner et al. 2016). The predictors in the QRNN model are
the different levels of wavelet decomposed simulations/forecasts plus an additional series
of past observations available up to the initialisation time. This initialisation time repre-
sents the start of predicting future stream-flows given meteorological forecasts, resp. given
meteorological measurements in case of model simulation.

It should be noted that in the QRNNmodel the decomposed simulations/forecasts are the
main predictors and a series with past (lagged) observations is given as additional (exoge-
nous) information. In the waveVARX model it is the other way round and the decomposed
and lagged observations are the predictors and main drivers of the error correction model
and the decomposed simulations/forecasts represent the exogenous model input.

4 Verification

4.1 Deterministic single value verification

For estimating the quality of deterministic and probabilistic forecasts a lot of different veri-
fication measures have been developed, especially in the field of atmospheric sciences (see
for example Jolliffe and Stephenson 2011) and for hydro- meteorological applications (for
example Brown and Seo 2010). The Mean Absolute Percentage Error (MAPE) is one of the
most popular measures of the deterministic forecast accuracy and is recommended in most
textbooks. The disadvantage of MAPE is, that it yields extremely large percentage errors
for values close to zero, resp. infinite MAPEs for zero values.
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Variants of the MAPE are the Mean Relative Absolute Error (MRAE) and the Geometric
Mean Relative Absolute Error (GMRAE), which belong to the category of scale indepen-
dent measures. Both involve the division of each error by the error obtained using some
benchmark method of forecasting. Because the GMRAE is based on relative errors it is less
scale sensitive than the MAPE and allows the comparison of forecasts belonging to different
scales.

The Relative Absolute Error RAE and the GMRAE are defined as:

RAEt =
∣
∣
∣
∣

Yt − Ft

Yt − F ∗
t

∣
∣
∣
∣
; GMRAE =

√
√
√
√

N
∏

t=1

RAEt , (1)

where Yt and Ft denote the actual and forecast values at time t and F ∗
t is a benchmark

forecast (e.g. climatology).
The GMRAE will be applied to test the accuracy of the ensemble mean (ENS) in com-

parison to the climatology. Thus, the uncertainty of the forecast system given by the spread
of the ensemble is not taken into account, which will be accomplished with the Continuous
Ranked Probability Score (CRPS).

4.2 Probabilistic continuous verification

The CRPS addresses two important forecast properties, the sharpness (measured by the
spread of the forecast probability density function (pdf)) and the reliability (i.e. the match-
ing of the forecast probabilities and the observed frequencies), and is defined as the integral
of the Brier score at all possible threshold values for the continuous predictand (Hersbach
2000; Gneiting and Raftery 2007). The Continuous Rank Probability Skill Score (CRPSS)
is a dimensionless indicator of the skill comparing the CRPS of the forecast with the CRPS
of a benchmark (see for example Bradley and Schwartz 2011). If the benchmark is a deter-
ministic forecast, e.g. based on climatology, the CRPS reduces to the Mean Absolute Error
(MAE) and the CRPSS will be defined as:

CRPSS(F, F ∗, y) = 1 − CRPS(F, y)

MAE(F ∗, y)
(2)

The CRPSS ranges between 1 (for perfect predictions) to −∞, however only values > 0
indicate positive skill. These measures will be used for the analysis of the ENS forecast
system and of the predictive densities derived with error correction models (see also Bogner
et al. 2016).

5 Results

This section will be separated into results regarding the spatial aggregates of the 57 regions
and the four selected catchments.

5.1 Regional analysis

For the regional analysis the hydrologically relevant variables, namely the areal precipi-
tation (P), total runoff (RGS), baseflow (R2) and soil moisture storage (SSM) have been
aggregated to 57 regions and the raw ensemble forecasts have been compared to clima-
tology. At first the GMRAE has been estimated for each lead-time (from 1 to 32 days)
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separately looking at the mean of ENS (ENS) only. In Fig. 2 the four variables are shown
for the lead-times of 7, 14, 21 days (three columns). The lower (brighter) the GMRAE, the
better is the skill of the forecast in comparison to climatology. If the GMRAE is ≥ 1 (dark
orange), the forecast has the same or less skill as climatology, that means the NWP based
forecast is getting worthless. In Fig. 3 the GMRAE of all regions are pooled for each lead-
time from 1 to 32 days. The blue boxes represent the interquartile range of all available
catchments, the median is given as red bar and the black vertical lines show the lower and
upper range (values ≤ 25%, resp. ≥ 75%). The green line indicates the percentage of all
307 sub-catchments, which have a GMRAE less than 1.

Besides the GMRAE, the CRPSS has been used for verifying the regional forecasts as
well. Therefore instead of observations, which are not available for these regional averaged
catchments, the model simulation is taken as y in Eq. 2 using meteorological observations
as model input. In order to estimate the gain of informations using ENS, the climatology
is taken as a benchmark. Thus, a CRPSS greater than zero indicates an improvement over
the climatology. The results are shown in Fig. 4, for the same variables and lead-times and
with the same colour scheme as in the GRMAE analysis (the brighter the better). In Fig. 5
the CRPSS is shown for all model variables, whereas in Fig. 6 the CRPS and the MAE for

P Lead−time: 7 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

P Lead−time: 14 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

P Lead−time: 21 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

RGS Lead−time: 7 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

RGS Lead−time: 21 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

RGS Lead−time: 14 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

R2 Lead−time: 7 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

R2 Lead−time: 14 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

R2 Lead−time: 21 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

SSM Lead−time: 7 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

SSM Lead−time: 14 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

SSM Lead−time: 21 day(s)

< 0.25
0.25 − 0.5
0.5 − 1
1 − 2
> 2
NA

Fig. 2 Spatial GMRAE of the areal catchment precipitation P, total runoff RGS, total baseflow R2, soil
moisture storage SSM (rows from top to the bottom) for lead-times of 7, 14 and 21 days (left, middle, right)
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Fig. 3 GMRAE of all 307 sub-catchments pooled together and represented as boxes for lead-times from 1
to 32 days for the areal catchment precipitation P, total runoff RGS, total baseflow R2, soil moisture storage
SSM. The green line indicates the percentage of all sub-catchments, which have a GMRAE less than 1

the precipitation P and runoff RGS are shown for all regions pooled together for lead-times
from 1 to 32 days.

5.2 Selected catchments

The difference in the analysis of the four selected catchment (Broye, Emme, Thur, Verzasca)
to the regional analysis is that the verifying variable is the observed stream-flow (in-flow)
measured at gauging stations at the outlet of the catchment. Therefore the result outlines not
only the quality of the forecast itself, but comprises the overall predictive quality including
the hydrological model and measurement uncertainty. Thus, in case of probabilistic fore-
casts the total predictive uncertainty of the forecast system can be inferred. Additionally the
availability of stream-flow measurements allows the application of post-processing methods
in order to minimise the error between observations and model simulations, resp. forecasts.
Thus, the following results compare the behaviour of the raw ensemble and post-processed
forecasts with respect to climatology. In Fig. 7 the CRPSS is shown for each of the four
catchments and for all lead-times.

6 Discussion

6.1 Regional analysis

For the sake of clarity only the results for lead-times of 7, 14 and 21 days are shown in
the Figs. 2 and 4, but these selected examples illustrate quite well the spatial development
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1.0
0.8
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0.0
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P Lead−time: 21 day(s)

1.0
0.8
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0.4
0.2
0.0
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1.0
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0.0
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R2 Lead−time: 7 day(s)

1.0
0.8
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0.4
0.2
0.0
< 0

R2 Lead−time: 14 day(s)

1.0
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0.2
0.0
< 0

R2 Lead−time: 21 day(s)
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0.0
< 0

SSM Lead−time: 7 day(s)

1.0
0.8
0.6
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0.0
< 0

SSM Lead−time: 14 day(s)

1.0
0.8
0.6
0.4
0.2
0.0
< 0

SSM Lead−time: 21 day(s)

1.0
0.8
0.6
0.4
0.2
0.0
< 0

Fig. 4 Spatial CRPSS of Precipitation P, RGS, R2, SSM (rows from top to the bottom) for lead-times of 7,
14 and 21 days (left, middle, right)

of the GMRAE and CRPSS. The general temporal evolution of the forecast quality for the
forecast horizon from 1 to 32 days is shown in the Figs. 3 and 5.

In the first row on the top of Fig. 2 the GMRAE of the average catchment precipitation
P used to force PREVAH is shown for the 57 regions. At the lead-time of 7 days all regions
show gain in the forecast skill of the ENS over climatology. At a lead-time of 14 days
still the majority of the regions show the superiority of the ENS forecast, and only at a
lead-time of 21 days approximately half of the regions have GMRAE values greater than
1. The total runoff (RGS, second row in Fig. 2) shows at the lead-time of 7 days for the
majority of the regions a significant improvement in the skill of the ENS forecasts (GMRAE
values less than 0.5). However, central Switzerland with mostly steep, alpine catchments
and fast response times shows GMRAE values between 0.5 and 1. Lead-times of 14 and 21
days show a similar pattern to the precipitation results. The variables baseflow R2 and soil
moisture storage SSM describing the sub-surface processes (row three and row four in Fig.
2) show a physically reasonable delay of almost one week in the GMRAE, i.e. the pattern
of R2 and SSM at lead-time 14 is comparable to lead-time 7 of RGS, and the pattern of
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Fig. 5 CRPSS of all 307 sub-catchments pooled together and represented as boxes for lead-times from 1 to
32 days for the areal catchment precipitation P, total runoff RGS, total baseflow R2, soil moisture storage
SSM
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Fig. 6 CRPS (top) and MAE (bottom) of all 307 sub-catchments pooled together and represented as boxes
for lead-times from 1 to 32 days for the areal catchment precipitation P and runoff RGS
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Fig. 7 CRPSS of daily stream-flow series [m3/s] for the Broye (Bry200), Emme (EmE200), Thur (Thu200)
and the Verzasca (VAG200) catchments. Each panel compares the raw Ensemble (without post-processing,
black line) with the QRNN method (quantile averaging in red; probability averaging in green) and the
waveVARX method (blue line)

R2 and SSM at lead-time of 21 days looks similar to day 14 of RGS. In Fig. 3 the lead-
time dependency of the GMRAE is shown for all regions pooled together. Obviously the
skill of the precipitation P (top left) converges to 1 within the first 10 days and at a lead-
time of about 16 days the median of all regional forecasts is approximately equal to 1. It
is interesting to see that for lead-times from 17 onwards, this relation keeps constant with
less than 50% of the sub-catchments having a GMRAE greater than 1. In general these
temporal analysis highlight the dependency of the information gain on the reaction time of
the investigated model variable. The slower the hydrological variable is reacting (i.e. the
more persistent the water stays in the system), the longer the skill of the NWP forecast will
be superior to climatology. This similarity between memory and predictability has also been
found by Orth and Seneviratne (2013).

The results of the CRPSS (Figs. 4 and 5) underpin these outcomes from the GMRAE
analysis, although the methodologies are quite different. The GMRAE looks at the ENS
alone and in such a way it represents a deterministic forecast verification method, whereas
the CRPSS takes the whole ensemble under consideration and thus it verifies a probabilistic
forecast. Both methods stress some problems of forecasting the sub-surface process vari-
ables R2 and SSM (third and fourth row in Fig. 4) at longer lead-times (beyond one week)
in the south-western part of Switzerland, which are high alpine regions with thin and highly
variable soil layers. Also the runoff RGS (second row) itself shows some deficits in these
areas, which are most probably caused by runoffs driven by glacier melting processes. How-
ever, the skill of the precipitation (first row) remains significantly positive (CRPSS about
0.4) for that region for lead-times of 14 and 21 days. The reason for that phenomena could
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be the long lasting dry spells, which are predominant in such inner alpine regions. It is inter-
esting to see that the analysis of the GMRAE looking at the ENS alone does not reveal this
characteristic feature.

Similar to the results of the GMRAE (Fig. 3), the results in Fig. 5 of the CRPSS highlight
the dependency of the information gain on the reaction time of the investigated model vari-
able. However, it is also interesting to see how the median of the GMRAE converges to 1,
whereas the median of the CRPSS converges to values greater than 0.2. This result stresses
the importance of using the whole ENS (as for the CRPSS) instead of using the mean of
the ENS (as in case of the GMRAE). Only when all 51 members of the ENS are used, the
superiority of the application of forecasts based on NWPs over climatology for the whole
range of lead-times will be revealed. The explanation why the CRPSS of the precipitation
P shows such a reduction in the interquartile range is given in Eq. 2. Since the variability
of the MAE between the model simulation and the climatology will be quite large between
different catchments in comparison to the CRPS based on the ENS and the model simula-
tion (see Fig. 6), the CRPSS will become small. The MAE itself stays more or less constant,
since the quality of the model simulation is calculated with observed meteorological data,
thus it is independent from the forecast lead-time. A similar, but not that prominent, effect
of dumped variability is occurring for the runoff at lead-times greater than 10 days.

Both results, GMRAE and CRPSS, of the regional analysis are quite promising for the
application of ENS and ENS in the case of agricultural management purposes, since they
will benefit particularly from forecasts of water storage in the soil with longer lead-times,
which are given by the variables R2 and SSM.

6.2 Selected catchments

The CRPSS for the four catchment indicates similar improvements regarding climatology
(CRPSS values greater than zero), but with a different favourable post-processing methods.
Only for the Broye catchment is the CRPSS of the QRNN-probability averaging method
below 0 for lead-times greater than 20 days. For the Broye, Emme and Thur catchment the
QRNN quantile averaging method is superior to the other post-processing methods for all
lead-times. At the Verzasca catchment the probability averaging method and waveVARX
method show both equally better results. However, at the Thur and the Verzasca catchment
the improvements due to post-processing degrades to the uncorrected raw ENS after a lead-
time of about 15 days. Nonetheless, it should be stressed that any slight improvement in the
forecast skill could manifest in significant economical gains, especially in the case of flood
forecasting or decisions concerning management of hydro-power.

All the tested post-processing methods calibrate a correction approach to the past errors
between model simulations and observations at gauging stations and apply the resulting
parameter fits to the forecasts treating these predictions as future simulations. Thus, the
gained improvement will decrease with increased lead-time, when the error caused by the
meteorological forecasts will more and more predominate the hydrological model error.

7 Conclusions

This study analyses the gain of applying NWP based extended-range forecasts. The spatial
and temporal aggregation of hydrological relevant variables clearly demonstrates the bene-
fits of NWP based forecasts and their advantage over climatology for lead-times up to 32
days. The analysis of the geometric mean relative absolute error (GMRAE) shows that these
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findings are valid for the mean of the ensemble forecast of sub-surface processes, whereas
these gains in skill disappear for precipitation and runoff forecasts after two weeks. A more
detailed evaluation of all 51 ensemble members based on the continuous ranked probabil-
ity score (CRPS) allows the verification of the reliability and the sharpness, two important
properties of probabilistic forecasts. The results of this skill score highlight the necessity
to look at the whole ensemble in order to draw exhaustive conclusions about the forecast
quality. In general both verification measures outline the profit of NWPs for water man-
agement purposes especially in the field of agriculture, where sub-surface water flows and
storage are highly relevant. These processes show improved forecast skills in comparison
to climatology for the whole forecast period because of the persistence and memory effects
of the water in the soil. But also the management of hydro-power plants could gain from
extended-range stream-flow forecasts allowing a greater flexibility in decisions regarding
the regulation of reservoir in- and out-flows and residual flows. Hence, public information
systems like the Swiss drought information platform www.drought.ch will definitely benefit
from implementing extended-range forecasts. Apparently there are limitations in deriving
skilful flood forecasts in order to answer questions about exact timings and precise mag-
nitudes of peak flows at gauging stations for lead-time horizons greater than two weeks.
Also the benefits of the applied error correction methods will vanish after such long forecast
horizons. Further analysis of possible improvements applying sophisticated post-processing
methods to the meteorological forecasts directly, before they are fed into the hydrological
forecast system, are under investigation.
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