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Abstract: 67 

Biodiversity is declining in many local communities while also becoming increasingly 68 

homogenized across space. Experiments show that local plant species loss reduces 69 

ecosystem functioning and services, but the role of spatial homogenization of community 70 

composition and the potential interaction between diversity at different scales in 71 
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maintaining ecosystem functioning remains unclear, especially when many functions are 72 

considered (ecosystem multifunctionality). We present an analysis of eight ecosystem 73 

functions measured in 65 grasslands worldwide. We find that more diverse grasslands � 74 

those with both species-rich local communities (alpha diversity) and large compositional 75 

differences among localities (beta diversity) � had higher levels of multifunctionality. 76 

Moreover, alpha and beta diversity synergistically affected multifunctionality, with higher 77 

levels of diversity at one scale amplifying the contribution to ecological functions at the 78 

other scale. The identity of species influencing ecosystem functioning differed among 79 

functions and across local communities, explaining why more diverse grasslands 80 

maintained greater functionality when more functions and localities were considered. 81 

These results were robust to variation in environmental drivers. Our findings reveal that 82 

plant diversity, at both local and landscape scales, contributes to the maintenance of 83 

multiple ecosystem services provided by grasslands. Preserving ecosystem functioning 84 

therefore requires conservation of biodiversity both within and among ecological 85 

communities. 86 

  87 

Introduction: 88 

There is consensus from experiments that higher numbers of plant species at small scales (Į 89 

diversity) contributes to higher levels of ecosystem functioning
1-6

. However, it remains unclear 90 

whether the variation in communities observed across landscapes (ȕ diversity) and the interplay 91 

between diversity at local and landscape scales also contributes to the functioning of real-world 92 

ecosystems such as natural and semi-natural grasslands
7,8

. This is of particular concern given that 93 

large-scale variation in communities is being removed through local species loss
9,10

 and 94 
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immigration or widespread species replacements leading to homogenization
11-13

. Furthermore, 95 

given that ecosystems are managed for multiple functions simultaneously (multifunctionality), 96 

and that conservation and management actions are usually implemented across different scales
14

, 97 

understanding how plant diversity contributes to maintaining multiple functions is needed from 98 

small to larger spatial scales
15

.  99 

 100 

Spatial heterogeneity of community composition might contribute to ecosystem 101 

multifunctionality through two main mechanisms. First, dissimilarity in functionally important 102 

species can maintain functioning across landscapes if different species contribute to different 103 

functions in different locations
7,8,16,17

. Second, dissimilarity in species composition among local 104 

communities can influence ecological interactions including the movement of organisms and 105 

resources important for ecosystem functioning. For example, a local community providing 106 

habitat for insect species might provide pollination and pest control to neighbouring 107 

communities, thereby contributing to ecosystem functioning at both local and landscape scales
18

. 108 

Although a couple of studies have shown that plant diversity contributes to ecosystem 109 

multifunctionality at larger spatial scales, they were restricted to artificially constructed 110 

landscapes based on simulations within a single experiment in a grassland
8
 or within a pan-111 

European study in forested ecosystems
7
. Thus, it remains unknown whether multifunctionality 112 

relates to biodiversity at larger spatial scales in real-world ecosystems composed of 113 

interconnected local communities. 114 

 115 

Here, we assess the relationship between plant diversity and ecosystem multifunctionality at 116 

local (1 m
2
) and larger (> 320 m

2
, hereafter termed �landscape�) scales using small local plots 117 
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and larger spatial blocks (landscapes composed of interconnected local plots) within 65 grassland 118 

sites on five continents, from the Nutrient Network collaborative experiment
19

 (Supplementary 119 

Fig. 1, Supplementary Table 1). At each site, we sampled naturally occurring plant diversity and 120 

measured ecosystem multifunctionality using eight ecosystem processes and properties
3,17

 121 

(hereafter functions): aboveground live biomass, resource capture aboveground (light 122 

interception), resource pools belowground (% total soil nitrogen and extractable soil phosphorus 123 

and potassium), soil carbon storage (% total soil carbon), litter decomposition and invasion 124 

resistance (Methods, Supplementary Table 2). We use the term �functions� in the broad sense to 125 

refer to ecosystem processes and properties, including pools and fluxes of matter and 126 

energy
3,16,17,20

. Measurements were taken in 1 m
2
 plots grouped into spatial blocks typically 127 

spread over 1000 m
2
 (most sites had three blocks (range: 1 to 6) with 10 plots (range: 8 to 12) per 128 

study site; Supplementary Table 1). 129 

 130 

Results and discussion: 131 

We first assessed whether local plant species richness, community dissimilarity among local 132 

communities, and their interaction were associated with ecosystem multifunctionality. We 133 

measured species richness as the average number of plant species per 1m
2
 plot within spatial 134 

blocks (Ƚഥ, average Į diversity), and community dissimilarity as the mean pairwise difference in 135 

plant species composition among plots within spatial blocks (ȕ diversity). The Ƚഥ and ȕ diversity 136 

explanatory variables are both mathematically independent in principle and statistically 137 

independent in practice (R = 0.076, P = 0.28, N = 206), allowing us to consider their independent 138 

and interactive relationships with ecosystem multifunctionality. We quantified ecosystem 139 

multifunctionality using two approaches
21

 (Methods). The average multifunctionality22
 approach, 140 
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which provides a relatively interpretable metric and the multiple-threshold multifunctionality 141 

approach
23

 which assesses how many functions reach high levels. We calculated average 142 

multifunctionality as the mean of all standardized functions within spatial blocks
8
 and multiple-143 

threshold multifunctionality as the mean number of functions per plot within spatial blocks that 144 

exceeded threshold values between 5 and 95% of the observed maximum value for each 145 

function. 146 

 147 

We found the interactive effect of local species richness (Ƚഥ diversity) and community 148 

dissimilarity (ȕ diversity) to be the strongest contributor to average multifunctionality (F1,202 = 149 

8.88, P =0.003, Fig. 1, Supplementary Fig. 2 and 3). Specifically, average multifunctionality and 150 

local species richness were positively related at intermediate to high community dissimilarity but 151 

unrelated at low dissimilarity (Fig. 1a, Fig. 2a). Similarly, average multifunctionality and 152 

community dissimilarity were positively related at high species richness but unrelated at low to 153 

intermediate richness (Fig. 1b, Fig. 2a). These interactions were generally consistent throughout 154 

habitat types (Fig. 2b). These results indicate that diversity at the local (Ƚഥ) and landscape (ȕ) 155 

scale may synergistically affect multifunctionality, with higher levels of diversity at one scale 156 

amplifying the contribution to ecological functions at the other scale. This also suggests that 157 

losing diversity at one scale may have cascading effects on the other scale by weakening its 158 

potential to maintain high ecological functioning. In other words, the homogenization of biotic 159 

communities could increase the effect of local species loss on ecosystem functioning. Our results 160 

were independent of the multifunctionality measure chosen; results of our analyses using 161 

multiple-threshold multifunctionality did not differ qualitatively from the results using average 162 

multifunctionality (Supplementary Fig. 4). Future studies could more completely consider 163 
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measuring all ecosystem functions related to realistic management objectives and address 164 

scenarios representing different management objectives by calculating multifunctionality metrics 165 

with different weighing for each ecosystem functions. 166 

 167 

Synergistic effects of Ƚഥ and ȕ diversity were similar regardless of whether functions were 168 

considered separately or together (Supplementary Fig. 2). However, in terms of relative 169 

contribution to explained variation, some ecosystem functions depended mostly on Ƚഥ diversity, 170 

whereas others depended mostly on ȕ diversity (Supplementary Fig. 3 and 5, Supplementary 171 

Table 3). Synergistic effects contributed the most to aboveground live biomass and litter 172 

decomposition, Ƚഥ diversity to soil potassium and invasion resistance and ȕ diversity to light 173 

interception, soil carbon, soil nitrogen, and soil phosphorus. These results suggest that high 174 

levels of diversity at any single scale may not maintain all functions at desirable levels, but 175 

instead that high levels of diversity at multiple scales may be required to maintain multiple 176 

functions simultaneously.  177 

 178 

We used a multi-model inference approach to assess the relative importance of Ƚഥ, ȕ diversity, 179 

their interaction, and key environmental covariates including geographic, climatic and edaphic 180 

variables (Methods) on each individual function and on the average multifunctionality. We found 181 

that the interactive effect of Ƚഥ and ȕ diversity was included in the four best and most 182 

parsimonious models which explained more than 32% of the variance in multifunctionality. 183 

Relative to other environmental predictors, the interactive effect of Ƚഥ and ȕ diversity was the 184 

third best predictor of multifunctionality after mean temperature during the wettest four months 185 

and mean annual precipitation (Supplementary Fig. 6). The importance of the interaction 186 
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between local and landscape scale diversity further manifested through it being a better predictor 187 

of multifunctionality than many other environmental predictors, including climatic variables 188 

such as mean annual temperature and edaphic variables such as soil pH.  189 

 190 

Higher multifunctionality was associated with warmer temperatures during the wettest four 191 

months, larger variation in temperature and higher precipitation (Supplementary Table 4). The 192 

relationship between plant diversity and average multifunctionality was generally robust across 193 

environmental gradients. The slope of the relationship between Ƚഥ diversity and multifunctionality 194 

did not vary with our environmental predictors while ȕ diversity effects on multifunctionality 195 

increased with increasing soil silt and clay content (likely indicators of soil fertility) and 196 

decreased with increasing variation in both temperature and total soil nitrogen (Supplementary 197 

Table 5). 198 

 199 

Similar to the multifunctionality analysis, the best and most parsimonious model describing 200 

individual functions included plant diversity (Ƚഥ and/or ȕ and/or the interaction) (Supplementary 201 

Table 4), and a subset of environmental variables were better predictors of individual functions 202 

relative to plant diversity (Supplementary Fig. 6). Plant diversity contributed less to invasion 203 

resistance compared to other environmental factors. Effects of environmental variables on 204 

individual functions included an association of warmer temperatures with lower plant biomass, 205 

percent total soil carbon, and invasion resistance and higher light interception, percent total soil 206 

nitrogen and extractable soil potassium. Similarly, higher precipitation was associated with 207 

higher plant biomass, light interception, percent total soil carbon and invasion resistance and 208 
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lower percent total soil nitrogen, extractable soil phosphorus, extractable soil potassium and litter 209 

decomposition (Supplementary Table 4). 210 

 211 

Next, we assessed whether ecological interactions between interconnected communities 212 

contribute to the positive relationship between plant diversity and ecosystem multifunctionality. 213 

To do so, we compared the results from our observed landscapes composed of interconnected 214 

local plots within blocks with results of artificially constructed landscapes simulating reduced 215 

interconnection between local communities. Each simulated landscape was composed of ten 216 

plots randomly drawn from local plots belonging either to different blocks within sites (average 217 

interconnection) or to different sites within habitat type (low interconnection); and from which Ƚഥ 218 

and ȕ diversity and average multifunctionality were calculated. In our simulated landscapes, 219 

local species richness (Ƚഥ diversity) and community dissimilarity (ȕ diversity) interacted to affect 220 

the average multifunctionality (simulated landscapes within sites F1,6496 = 225.26, P <0.001, 221 

N=6500, simulated landscapes within habitats F1,4996 = 30.43, P <0.001, N=5000). When 222 

compared to our observed landscapes (Fig. 2a and b), artificially reducing interconnection 223 

between communities either within sites (Fig. 2c) or within habitats (Fig. 2d) did not influence 224 

the relationships of Ƚഥ and ȕ diversity with average multifunctionality. Similar to our observed 225 

landscapes, simulated landscapes generally showed stronger association between species 226 

richness and average multifunctionality at high community dissimilarity and between community 227 

dissimilarity and average multifunctionality at high species richness. 228 

 229 

Finally, we assessed whether dissimilarity in functionally important species contribute to 230 

ecosystem multifunctionality. We identified the sets of species most important for maintaining 231 
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ecosystem functioning for each function in each locality (spatial block) at each site using three 232 

analytical approaches that range in how conservative they are in identifying species effects 233 

(Methods): stepwise backward-deletion multiple regression
16,17

, randomization
24

, and 234 

multimodel inference
25

. For each approach, we quantified the degree of functional and spatial 235 

overlap between species sets
16,17

. For example, we quantified functional overlap between all 236 

pairs of functions within spatial blocks. Functional overlap values of one or zero would indicate 237 

respectively that completely identical or completely unique sets of species were important for 238 

maintaining different functions in any particular spatial block. Finally, for each site, we 239 

quantified the proportion of unique species that maintained ecosystem functioning at least once 240 

across all combinations of functions for each spatial block and across all combinations of spatial 241 

blocks for each function considered. 242 

 243 

We found low functional and spatial overlap in the sets of species influencing ecosystem 244 

functions (Supplementary Fig. 7). Thus, the identity of the species most important for 245 

maintaining ecosystem functioning differed between ecosystem functions and among local 246 

communities, resulting in a higher proportion of species required for maintaining ecosystem 247 

functioning when more functions (Fig. 3a) or localities (spatial blocks, Fig. 3b) were 248 

independently considered
16

; and explaining why greater overall ecosystem functioning was 249 

found to be associated with greater local plant species and greater spatial heterogeneity in 250 

community composition (Fig. 1). These positive associations between the proportion of species 251 

maintaining functioning and the range of functions or localities considered were observed for 252 

each of the three approaches investigated (Fig. 3). For example, predictions from the most to the 253 

least conservative method show that between 10 and 28% of the species pool maintained one 254 
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function in one block, while between 19 and 37% maintained the same function in three blocks, 255 

and between 39 and 54% maintained the same function in six blocks simultaneously (Fig. 3b). 256 

This suggests that while estimates of the number of species important for maintaining 257 

functioning may vary with analytical approach, the qualitative results are robust to methodology. 258 

Analyses using presence-absence instead of percent species cover, or using only sites with three 259 

or fewer spatial blocks, yielded qualitatively similar results (Supplementary Fig. 7). Our results 260 

indicate that no single plant species maintains all ecosystem functions in all locations, but rather 261 

that more species and greater heterogeneity in species composition across the landscape both 262 

contribute to and enhance ecosystem multifunctionality (Supplementary Fig. 8). Together, these 263 

analyses suggest that the effects of diversity on multifunctionality are mainly due to species traits 264 

and how these traits interact with local environmental conditions and do not point to any 265 

additional effects of ecological interactions between interconnected communities. 266 

 267 

Our results, based on standardized data collected from grasslands around the world, provide 268 

robust, general evidence that plant diversity at the local and landscape scale is associated with 269 

more reliable functioning of grassland ecosystems and contribute to the increasing body of 270 

knowledge cautioning about the functional consequences of local species loss and biotic 271 

homogenization
7,8,11,16,17,20,22,26-28

. Consequently, human activities that simplify ecosystems 272 

through the loss of plant diversity
9,11-13

 are likely to diminish the capacity of natural systems to 273 

supply essential ecosystem functions, while the maintenance and restoration of plant diversity at 274 

local and landscape scales should help ensure the reliable provision of ecosystem services. 275 

 276 

Methods: 277 
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 278 

The Nutrient Network experiment. The 65 study sites are part of the Nutrient Network Global 279 

Research Cooperative (NutNet, Supplementary Fig. 1, Supplementary Table 1, 280 

http://nutnet.org/)
19

. Detailed description of site selection, methods and measurements are 281 

available in Borer et al.
19

. Plots at all sites were 5 x 5 m (separated by at least 1 m walkways) 282 

spread over an area of at least 1000 m
2
. Sampling was done in 1m

2
 plots grouped into spatial 283 

blocks spread over > 320 m
2
 (typically three blocks (range: 1 to 6) of 10 plots (range: 8 to 12) 284 

per study site; Supplementary Table 1) and followed a standardized protocol at all sites
19

. The 285 

analyses presented here include all NutNet sites that contributed to pre-treatment data on 286 

community-level functions in all plots and therefore do not include either of the nutrient addition 287 

or consumer exclosure treatments. Two sites that contributed data were excluded from these 288 

analyses because they did not lay out plots in separate spatial blocks (sevi.us and jorn.us). 289 

 290 

Diversity and abundance. A 1 x 1 m area within each plot was permanently marked and 291 

sampled for species richness during the season of peak biomass. Alpha diversity was the number 292 

of plant species per 1 m
2
 plot and average alpha diversity (Ƚഥ) the average number of plant species 293 

per plot within spatial blocks. Beta diversity (ȕ) was the dissimilarity in plant species 294 

composition among plots within spatial blocks (differences in 1 m
2
 plots among blocks within 295 

each site), which is the complement to Sørensen�s similarity index (݋) (ȕ = 1 � ݋) ranging from 0 296 

(completely similar, homogeneous) to 1 (completely dissimilar, heterogeneous). Percent cover 297 

was estimated independently for each species, so that total summed cover can exceed 100% for 298 

multilayer canopies. 299 

 300 
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Ecosystem functions and properties. Aboveground live biomass (g m
-2

) was estimated 301 

destructively at growing season peak by clipping at ground level all aboveground biomass of 302 

individual plants rooted within two 0.1 m
2
 (10 x 100 cm) strips immediately adjacent to the 303 

permanent 1 x 1 m subplot. Biomass was sorted into current (live and recently senescent 304 

material) and previous year's growth (litter). For shrubs and subshrubs, leaves and current year�s 305 

woody growth were collected. Biomass was dried at 60°C to a constant mass and weighed to the 306 

nearest 0.01 g. Resource capture aboveground was measured as photosynthetically active 307 

radiation (PAR) at the same time and in the same 1 x 1 m plot sample for species richness. Light 308 

readings were taken using a 1 m PAR sensor (e.g., Decagon, Apogee) on a cloudless day as close 309 

to solar noon as possible (i.e. 11 am to 2 pm). For each plot, we took two light measurements at 310 

ground level (at opposite corners of the 1 x 1 m plot, diagonal to each other) and one above the 311 

canopy. The complement to the ratio represents the percentage of light intercepted at the ground 312 

(percentage of intercepted PAR). Adjacent to each plot, resource pools belowground were 313 

estimated using 250 grams of air-dried soil. Total soil %C and %N were measured using dry 314 

combustion GC analysis (COSTECH ESC 4010 Element Analyzer) at the University of 315 

Nebraska. Extractable soil P and K (p.p.m.) were quantified using the Mehlich-3 extraction 316 

method and p.p.m. concentration was estimated using ICP (A&L Analytical Laboratory, 317 

Memphis, TN, USA). Litter turnover (y
-1

) (k) as a proxy for litter decomposition was estimated 318 

using an equation derived from Olson
29,30

 for deciduous forest decay rates: 319 

݇ ൌ െlog	൬ͳ െ ቀ ௟௜௩௘	௕௜௢௠௔௦௦௧௢௧௔௟	௕௜௢௠௔௦௦ቁ൰, 320 

where live biomass is the standing stock during peak season and total biomass is live biomass 321 

plus litter collected at the same time
30

. Although our experimental system is not a forested 322 

system as modeled in Olson�s paper, both are deciduous with annual biomass contributions to the 323 



15 
 

litter pool. Native dominance as a proxy for invasion resistance was estimated as the ratio of 324 

native to invasive species cover. Note that some sites measured only a subset of these eight 325 

functions (Supplementary Table 1). In the calculation of multifunctionality, we used the inverse 326 

of soil N, P and K as lower levels of unconsumed resources are consistent with higher uptake and 327 

lower potential for leaching. 328 

 329 

Trade-offs between functions. To investigate potential trade-offs between individual functions, 330 

we calculated Pearson's correlation coefficients between each pair of individual standardized 331 

functions. Of the possible 28 combinations of pairs of functions, we found significant positive 332 

correlations between eleven pairs and significant negative correlations between five pairs 333 

(Supplementary Table 2). We found a strong negative correlation between our inverse measure 334 

of percent total N and percent total C (-0.96). We kept both variables in our analyses because a 335 

negative correlation meant that choosing one function or the other would favour either a positive 336 

or negative impact of diversity on average multifunctionality. In contrast, retaining both 337 

variables demonstrates a trade-off between them. Moreover, our results were qualitatively 338 

similar when we used either percent total N or the soil C:N ratio. All the other correlations were 339 

lower than 0.30. 340 

 341 

Community-level analyses.  342 

Ecosystem multifunctionality. We quantified ecosystem multifunctionality in whole communities 343 

of interacting species using two methods
21

: the average and multiple threshold approaches.  344 

We standardized each function by the maximum observed value across all sites to remove the 345 

effects of differences in measurement scale between functions
21

. We then calculated block 346 



16 
 

average multifunctionality as the mean of all standardized functions within spatial blocks
8
. The 347 

average multifunctionality metric is intuitive and easy to interpret, but it does not incorporate 348 

potential tradeoffs between functions that perform at high levels when others perform at low 349 

levels. 350 

The multiple threshold approach
8,23,31,32

 overcomes this limitation and tests whether diversity is 351 

associated with higher numbers of functions exceeding discrete threshold values considered to be 352 

minimal for desirable ecosystem functioning. We calculated the number of functions per plot that 353 

exceeded a given threshold value, expressed as a percentage of each maximum function value. 354 

Here, we defined maximum level of functioning for each function as the average of the top four 355 

values for each function across all sites. We then calculated multiple-threshold 356 

multifunctionality23
 as the mean number of functions that exceeded a given threshold within 357 

spatial blocks. In practice, a range of thresholds is usually explored. We calculated the average 358 

number of functions exceeding functional thresholds between 5 and 95% of this maximum per 359 

plot. Thus, for each block, 91 values (counts of functions) were generated, one for each discrete 360 

threshold value between 5 and 95%. 361 

 362 

Association between plant diversity and ecosystem functioning (average multifunctionality). We 363 

explored the direct relationships of plant diversity, measured as the average species richness (Ƚഥ), 364 

community dissimilarity (ȕ) and their interaction (Ƚഥ:ȕ), with each individual standardized 365 

function and the average multifunctionality across the 65 sites (Fig. 1, Fig. 2a) and within habitat 366 

types (Fig. 2b) using generalized linear models (GLMs) with a quasibinomial error distribution 367 

and logit link function. See the section hereafter �Assessing whether ecological interactions 368 

between interconnected communities contribute to ecosystem multifunctionality� for a 369 
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description of how the habitat types were selected. In order to visualize the interactive effect of Ƚഥ 370 

and ȕ diversity on average multifunctionality, we divided the data set into three equal groups 371 

corresponding to low (Low), intermediate (Int) and high (High) levels of Ƚഥ or ȕ diversity and 372 

fitted separate models for each group. This means that we fitted relationships between Ƚഥ diversity 373 

and average multifunctionality at low, intermediate and high levels of ȕ diversity. Similarly, we 374 

fitted relationships between ȕ diversity and average multifunctionality at low, intermediate and 375 

high levels of Ƚഥ diversity. Due to similar fit we subsequently grouped the intermediate and high 376 

levels (Int-High) of Ƚഥ diversity and the low and intermediate levels (Low-Int) of ȕ diversity (Fig. 377 

1, Supplementary Fig. 5). We also assessed the relative contribution of Ƚഥ, ȕ diversity and Ƚഥ:ȕ to 378 

average multifunctionality by using multivariate models to calculate standardized regression 379 

coefficients (Supplementary Fig. 2) and the percentage of variance explained (percent of R
2
, 380 

Supplementary Fig. 3) for each diversity metric.  381 

 382 

Association between plant diversity and ecosystem functioning (multiple-threshold 383 

multifunctionality). To assess the relationship between plant diversity and multiple-threshold 384 

multifunctionality, we fitted separate models for each of the 91 discrete threshold values between 385 

5 and 95%, and recorded the slope and associated 95% confidence intervals (Supplementary Fig. 386 

4). Because the responses in each of the 91 models were integers (counts of functions exceeding 387 

the particular threshold) we used GLMs with a quasipoisson error distribution (to account for 388 

observed over-dispersion) and identity link function
21

. We rerun the analysis adjusting for the 389 

fact that some functions were not measured for all sites by measuring the percentage of measured 390 

functions exceeding a given threshold. Because the responses in each of the 91 models were 391 

percentages we fitted GLMs with a quasibinomial error distribution and logit link function
21

. 392 
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Results did not qualitatively differ between the two analyses. For both analyses, we included 393 

environmental variables because the relationship between plant diversity and multifunctionality 394 

may covary with environmental factors correlated to both plant diversity and ecosystem 395 

multifunctionality. 396 

 397 

Relative importance of plant diversity and environmental predictors. We used a multi-model 398 

inference approach based on Akaike information criterion (AIC) and ordinary least square (OLS) 399 

regression to assess the relative importance of Ƚഥ, ȕ diversity and Ƚഥ:ȕ and key environmental 400 

predictors on each individual function and on the average multifunctionality (Supplementary Fig. 401 

6, Supplementary Table 4). We fitted separate models for each function and the average 402 

multifunctionality as response variables and fifteen potential environmental predictors including 403 

geographic, climatic and edaphic variables. Geographic variables included latitude and 404 

longitude. Climatic variables were derived from the WorldClim Global Climate database 405 

(version 1.4; http://www.worldclim.org/)
33

. Due to multicollinearity between many of the 406 

climatic variables, we first fitted a principal component analysis (PCA) to reduce their number, 407 

resulting in a subset of bioclimatic variables representing annual trends (mean annual 408 

temperature (°C) and precipitation (mm)), seasonality (mean annual range in temperature, 409 

standard deviation in temperature, coefficient of variation of precipitation) and extreme or 410 

limiting environmental factors (mean temperature during the wettest four months)
34

. Edaphic 411 

variables included pH, bulk density, soil nutrient heterogeneity (coefficient of variation in total 412 

soil nitrogen, extractable soil phosphorus and extractable soil potassium) and soil texture 413 

(percent silt, percent clay and percent sand). Again due to multicollinearity between soil texture 414 

variables, we used percent silt and percent clay in our analyses.  415 

 416 
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Relationship between plant diversity and average multifunctionality across environmental 417 

gradients. To assess whether the relationship between plant diversity and average 418 

multifunctionality varied across environmental gradients, we first determined the slopes of the 419 

relationships of Ƚഥ and ȕ diversity with average multifunctionality within each site using linear 420 

mixed-effects models and site as random effect allowing both the intercepts and slopes of the 421 

regression to vary among sites. We then assessed the relationships between the slopes of 422 

relationships of Ƚഥ and ȕ diversity with average multifunctionality as response variable and each 423 

environmental variable as explanatory variables (Supplementary Table 5). 424 

 425 

Assessing whether ecological interactions between interconnected communities contribute 426 

to ecosystem multifunctionality. 427 

To assess the contribution of ecological interactions to multifunctionality, we constructed 428 

artificial landscapes from our grassland plots belonging either to different blocks within sites 429 

(average interconnection) or to different sites within habitats (low interconnection); and from 430 

which Ƚഥ and ȕ diversity and average multifunctionality were calculated as described above.  431 

Simulated landscapes within sites. Within each site, we constructed 100 artificial landscapes 432 

each composed of ten plots randomly selected, without replacement, across the different blocks. 433 

With 65 sites, this resulted in 6500 landscapes. 434 

Simulated landscapes within habitats. Within each habitat (Supplementary Table 1), we 435 

constructed 1000 artificial landscapes each composed of ten plots randomly selected, without 436 

replacement, across the different sites. The number of sites within each habitat was relatively low 437 

(ranging between one and eight) and many habitats were represented by only a few sites. In order 438 

to ensure that our landscape were composed of unique plot combinations, we selected the 439 
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habitats represented by more than four sites. Due to their similarity, alpine and montane 440 

grasslands were subsequently grouped together. This resulted in five habitats with a total of 5000 441 

landscapes. 442 

For each of the observed and simulated landscapes within sites and within habitats, we quantified 443 

the standardized regression coefficients of the relationships of plant diversity, measured as the 444 

average species richness (Ƚഥ), community dissimilarity (ȕ) and their interaction (Ƚഥ:ȕ), with 445 

average multifunctionality using OLS regression. Again, in order to visualize the interactive 446 

effect of Ƚഥ and ȕ diversity on average multifunctionality, we divided the data set into three equal 447 

groups corresponding to low (Low), intermediate (Int) and high (High) levels of Ƚഥ or ȕ diversity 448 

and fitted separate models for each group (Fig. 2). 449 

 450 

Species-level analyses: assessing whether dissimilarity in functionally important species 451 

contribute to ecosystem multifunctionality. 452 

Identifying sets of species most important for maintaining ecosystem functioning. We started by 453 

identifying the sets of species most important for maintaining ecosystem functioning for each 454 

function in each spatial block at each site, based on three approaches proposed in the ecological 455 

literature that range in how conservative they are in identifying species effects: stepwise-deletion 456 

multiple regression
16,17,35

, randomization 
24

 and multimodel inference
25

. For each approach, we 457 

modeled ecosystem functioning in response to the abundance (percent cover, Fig. 3) or the 458 

presence-absence of each species in each plot (Supplementary Fig. 7). For the presence-absence 459 

analysis, some species were present in every plot within spatial blocks and could not be included 460 

in the analyses as their contributions could not be statistically estimated. However, all species 461 

could be included in analyses using abundance data, as abundance values varied among plots for 462 
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each species. Where the results overlapped with the presence/absence data they were 463 

qualitatively similar (Fig. 3, Supplementary Fig. 7).  464 

Stepwise-deletion multiple regression identified the most parsimonious set of species influencing 465 

each ecosystem function based on information criteria
36

. We implemented this procedure using 466 

the stepAIC function in the MASS library
37

 of R
16,17,35

. In stepwise-deletion analyses, multiple 467 

models can have nearly equivalent support, making it misleading to choose a single best model 468 

in that case. Multimodel inference addresses this problem by accounting for model selection 469 

uncertainty and reducing model selection bias
38

. In this sense multimodel inference is more 470 

robust and conservative than stepwise-deletion. We implemented multimodel inference using the 471 

glmulti function in the glmulti R package
25

. While stepwise-deletion and multimodel inference 472 

require designs that include each species in a variety of compositional treatments (typical of most 473 

but not all biodiversity experiments)
21

, randomization is advocated for observational studies 474 

lacking imposed compositional treatments
24

. The effect of each species on each function is 475 

measured in multiple plots as the difference between the average of a function in the presence 476 

and absence of a particular species. The sets of species that show strong influences on each 477 

function are then identified by randomly reassigning the values of the ecosystem function to the 478 

different plots for 1000 iterations
24

.  479 

 480 

Comparing sets of species most important for maintaining ecosystem functioning. After 481 

identifying the sets of species most important for maintaining ecosystem functioning in each 482 

plot, we quantified overlap ݋ between species sets for each of the stepwise-deletion multiple 483 

regression, randomization and multimodel inference approaches. To test whether different sets of 484 

species maintained ecosystem functioning for different functions in different spatial blocks, we 485 
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quantified functional and spatial overlap between species sets. All comparisons were made 486 

within spatial blocks so that differences between pairs of functions or pairs of spatial blocks were 487 

not due to sampling from multiple species pools. We quantified functional overlap between 488 

functions ܽ and ܾ in a particular spatial block and spatial overlap between spatial blocks ܽ and ܾ 489 

for a particular function using Sørensen�s similarity index
16,17

: 490 

݋ ൌ ȁܧ௔ ת ௔ȁܧ௕ȁͲǤͷሺȁܧ ൅ ȁܧ௕ȁሻ 

Where ȁܧ௔ȁ is the number of species that promoted ecosystem functioning for function or spatial 491 

block ܽ, ȁܧ௕ȁ is the number of species that promoted ecosystem functioning for function or 492 

spatial block ܾ and ȁܧ௔ ת  ௕ȁ is the number of species that promoted ecosystem functioning for 493ܧ

both functions or spatial blocks. This allowed us to test whether identical (overlap ൌ ͳ), unique 494 

(overlap ൌ Ͳ) or somewhat different (Ͳ ൏ overlap ൏ ͳ) sets of species promoted ecosystem 495 

functioning for different functions at different spatial blocks. 496 

 497 

Accumulation of species across functions and spatial blocks. For each approach, we then 498 

assessed how the proportion of species maintaining functioning changed as more functions or 499 

spatial blocks were considered. We quantified the accumulation of species that maintained 500 

ecosystem functioning across all combinations of functions for each spatial block and across all 501 

combinations of spatial blocks for each function considered. For example, to estimate how the 502 

proportion of species maintaining functioning changed as more functions were considered, we 503 

sampled all combinations of the eight functions (that is, all pairs, groups of three, etc.), and 504 

recorded the number of unique species that maintained functioning, the total number of species, 505 

for each combination. The proportion of species was then calculated by dividing the number of 506 

species that maintained functioning by the total number of species per spatial block. This was 507 
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repeated for each spatial block, at each site. We modelled the relationships between the 508 

proportion of species that maintained ecosystem functioning and the number of functions or 509 

spatial blocks, for each of the stepwise-deletion multiple regression, randomization tests and 510 

multimodel inference approaches, using quasibinomial GLMs including �approaches� as a factor 511 

with three levels. The number of spatial blocks per site range between one and six, meaning that 512 

the relationship between the proportion of species that maintained ecosystem functioning and the 513 

number of spatial blocks could be driven by the few sites with more than three blocks (Fig. 3). 514 

We therefore re-run the analyses using a subset of the data including only sites with three or 515 

fewer spatial blocks (Supplementary Fig. 7). All analyses were conducted in R 2.15.1
39

. 516 

 517 

Data availability. The datasets generated during and/or analysed during the current study are 518 

available from the corresponding author on reasonable request. 519 
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Figure legends: 639 

 640 

Figure 1. Local species richness (હഥ diversity) and community dissimilarity (ȕ diversity) 641 

interact to affect average multifunctionality. a, average number of species per plot within 642 

spatial blocks (Ƚഥ diversity); b, dissimilarity in species composition among plots within spatial 643 

blocks (ȕ diversity). The average level of multiple functions increased with Ƚഥ diversity at 644 

intermediate to high (Int-High) ȕ diversity (slope and 95% CI on the log Ƚഥ scale = 0.05 (0.021 � 645 

0.086)), and with ȕ diversity at high (High) Ƚഥ diversity (0.10 (0.015 � 0.23)), but was unrelated 646 

to Ƚഥ diversity at low (Low) ȕ diversity (-0.011 (-0.057 � 0.034) and to ȕ diversity at low to 647 

intermediate (Low-Int) Ƚഥ diversity (-0.0044 (-0.051 � 0.059). 648 

 649 

Figure 2. Simulating reduced ecological interactions between local communities did not 650 

influence the relationships of plant diversity with average multifunctionality. Standardized 651 

regression coefficients of local species richness (Ƚഥ) and community dissimilarity (ȕ) with 652 

average multifunctionality for a and b, observed landscapes (spatial blocks) composed of 653 

interconnected local plots within site (a) or within habitat (b), c and d, artificially constructed 654 

landscapes simulating reduced interconnection between local communities within sites (c) or 655 

within habitat (d). Standardized regression coefficients are shown with their 95% confidence 656 

intervals such that diversity effect on multifunctionality is significant when the intervals do not 657 

overlap zero. 658 

 659 

Figure 3. Relationships between the proportion of species maintaining ecosystem 660 

functioning and the number of ecosystem functions (a) or the number of spatial blocks (b) 661 
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considered for each of three analytical approaches: stepwise-deletion multiple regression, 662 

randomization tests and multimodel inference. A higher proportion of species maintained 663 

ecosystem functioning with the independent consideration of a, more functions (slopes and 95% 664 

CI: stepwise-deletion 0.136 (0.130 � 0.142), randomization tests 0.302 (0.295 � 0.308), 665 

multimodel inference 0.247 (0.239 � 0.256)) or b, more spatial blocks (slopes and 95% CI: 666 

stepwise-deletion 0.252 (0.233 � 0.271), randomization tests 0.387 (0.364 � 0.410), multimodel 667 

inference 0.381 (0.345 � 0.418)). Regression lines indicate generalized linear model fit for each 668 

method with 95% confidence intervals. N denotes the number of sites included in each approach.  669 
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α diversity β diversity

α diversity α diversityβ diversity β diversity
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