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ABSTRACT. Any model of snow avalanches must be able to reproduce velocity profiles. This is a key
problem in avalanche science because the profiles are the result of a multitude of snow/ice particle
interactions that, in the end, define the rheology of flowing snow. Recent measurements on real-scale
avalanches show that the velocity profiles change from a highly sheared profile at the avalanche front
to a plug-like profile at the avalanche tail, preventing the application of a single, simple rheology to
the avalanche problem. In this paper, we model not only the velocity profiles but also the evolution
of the velocity profiles, by taking into account the production and decay of the kinetic energy of the
random motion of the snow granules. We find that the generation of this random energy depends on the
distribution of viscous shearing within the avalanche. Conversely, the viscous shearing depends on the
magnitude of the random energy and therefore its collisional dissipation. Thus, there is a self-consistency
problem that must be resolved in order to predict the amount of random energy and therefore the
velocity profiles. We solve this problem by stating equations that describe the production and decay of
random energy in avalanches. An important guide to the form of these equations is that the generation
of random energy is irreversible. We show that our approach successfully accounts for measured profiles
in natural avalanches.

1. INTRODUCTION
A fundamental problem in avalanche science is to accurately
describe the rheology of flowing snow. Solving this problem
is central to developing avalanche-dynamics models that can
reliably predict avalanche velocities and run-out distances in
general, three-dimensional terrain. This problem is especially
difficult since the rheology of flowing snow is governed
by the shearing and collisional interactions of millions of
hard snow/ice particles. Although, in principle, it would be
possible to calculate the trajectory of every particle in such a
many-bodied system, many practical difficulties would still
remain, such as the problem of particle formation and their
certain abrasive degradation; the problem of the granule
size and shape distributions; and quantifying the collisional
properties of the granules as a function of temperature and
frequency of collisions. The number of particles, the massive
number of interactions and the uncertainty of the initial and
boundary conditions make a purely dynamical description
of snow avalanches both unfeasible and impractical.
In this paper, we address the avalanche problem at the

level of the macroscopic properties of the granular system,
not at the level of the individual particle trajectories. Our
goal is to find a reduced description of the flow rheology
that accounts for the granular interactions without over-
simplifying the problem by lumping the granular effects into
a single constitutive parameter such as an ’effective’ viscosity
or ’turbulent’ friction (Salm, 1993). At the same timewe avoid
a formulation requiring the micro-collisional properties of
the granules (coefficient of restitution) or the particle size
and shape distributions (Jenkins and Savage, 1983; Hutter
and others, 1987; Jenkins and Askari, 1994; Louge, 2003).
We describe the motion of an avalanche in simple

shear in a two-dimensional coordinate system, x–z, by the
superposition of the horizontal and vertical random velocity
of the granules, ur(z, t ) and wr(z, t ), respectively, on the

corresponding laminar (the velocity parallel to the slope),
steady-on-average flow fields, u(z) and w (z) (Fig. 1):

u(z, t ) = u(z) + ur(z, t ) and w (z, t ) = w (z) +wr(z, t ), (1)

where u(z) and w (z) are given by

u(z) = 〈u(z, t )〉 and w (z) = 0. (2)

Let f 2 be the mean-square random velocity

f 2(z, t ) = u2r (z, t ) +w
2
r (z, t ). (3)

Then the translational (in the direction of flow) and random
kinetic energies of the avalanche are

K (z) = ρ

(
u2(z)
2

)
and R(z) = ρ

(
f 2(z)
2

)
, (4)

respectively, where ρ is the avalanche density. In this paper,
granular effects are characterized by the distribution of
random kinetic energy of the particles, R(z). Note that the
sum of K (z) and R(z) is the total kinetic energy of the
particles.
The evolution in time of the function R(z) is the sum of

two different processes. The random velocity of the particles
varies both as (1) a result of the viscous shear work done on
the particle and (2) a result of the inelastic collisions between
particles. These granular processes define two additional
macroscopic energy fluxes. In this paper, we are confronted
with the problem of calculating, on average, how the random
kinetic energy is produced by the available shear work (the
source of R(z), the first energy flux) and how it decays
by collisions (the sink of R(z), the second energy flux). In
conventional avalanche models, the energy fluxes are the
reversible transformation of potential energy to translational
kinetic energy, K , and the irreversible transformation of the
mechanical energy to heat, internal energy, E .
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Fig. 1. Velocity distribution and shear stress for an avalanche in simple shear.

Although K and R are both kinetic energies, they possess
a fundamental difference: the transformation of potential
energy to translational kinetic energy is reversible, whereas
the production of random kinetic energy is irreversible.
The irreversibility of R can be shown by considering the
mechanical work done by the random forces, Wr, arising
from the random motion of the snow clods:

Wr =
∫
x
Fr(t ) dx = 0, (5)

where Fr(t ) is the resultant force of the random collisional
processes per unit area in the direction of the flow, x (Bartelt
and others, 2006). The mean value – over a large enough
time interval – in the integral Equation (5) is zero since the
random forces, Fr(t ), arise from random velocities,

〈Fr(t )〉 = 0. (6)

Moreover, the force, Fr(t ), averaged over time must be zero,
since it arises from the random motion which is without
bias (Langevin, 1908). Since the random fluctuations can
do no work in the mean over time, they cannot produce
a change in the translational kinetic energy of the avalanche
(by the work–energy theorem). This is similar to turbulence
theory where the fictitious Reynolds stresses, arising from
averaging of the velocity fluctuations, cannot create or
destroy mechanical energy (Davidson, 2004). The fluctuating
motion of the snow granules can only decay by collisional
processes, producing heat and only heat. Therefore, we
cannot place energy into the random motion of the granules
and then extract the energy to increase the potential energy of
the system. The irreversibility of the random energy implies
that it is a type of internal energy, similar to heat, but not
yet heat. However, unlike heat, R must disappear when the
avalanche stops.
The primary goal of this paper is, therefore, to exploit the

random-energy fluxes to develop new constitutive models
for avalanche flow. Since the production of R(z) is the result
of internal shearing, which is defined by the constitutive
model, the constitutive equations not only define how
mechanical energy is dissipated, but also the source of the
random energy. A constitutive model no longer describes
a single process (viscous dissipation); now the model must

additionally describe the interaction between the viscous
and collisional processes. These two processes must be
symmetric in the sense that the total dissipation remains
constant: the amount the viscous process does not dissipate
is left to the collisional process. We demonstrate this result by
modifying an existing model for avalanche flow (Norem and
others, 1987) and then predicting the evolution of measured
velocity gradients in real-scale avalanches.

2. PRODUCTION AND DECAY OF RANDOM
ENERGY

Conservation of energy demands that the sum of the rate of
change of the total energy inside a volume element within the
avalanche is equal to the rate of work done by the external
forces (Anderson, 1996; Davidson, 2004):

d
dt
(K + E ) = K̇ + Ė = Ẇg − Ẇf , (7)

where K̇ is the rate of change of translational kinetic energy
per unit volume, Ẇg is the positive work rate of gravity and
Ẇf is the always negative rate of frictional work done by
viscous shear forces (or frictional work rate). The quantity Ė
is the rate of change in internal energy, including both the
rise in heat, Φ̇, and the net random kinetic-energy change,
Ṙ:

Ė = Φ̇ + Ṙ. (8)

Although Ṙ is part of the total kinetic energy, we transfer it
to the internal energy, Ė , making use of the fact that both Φ̇
and Ṙ are irreversible and therefore contribute to the internal
energy rise. The work done by gravity is equivalent to the
change in potential energy of the avalanche, U̇g,

Ẇg = −U̇g. (9)

The negative sign arises because the loss of potential energy
does positivework on the avalanche. Therefore, conservation
of energy (Equation (7)) requires that

d
dt

(
K +Ug + E +Wf

)
= 0, (10)
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or, after substitution of Equation (8),

d
dt

(
K +Ug + Φ + R +Wf

)
= 0. (11)

The frictional work rate can be decomposed into two parts
(Davidson, 2004):

Ẇf = Ẇf−→K + Ẇf−→E , (12)

where Ẇf−→K represents the rate of increase of mechanical
energy, the sum of the reversible kinetic and potential
energies. That is, time rate of change in mechanical energy
is

K̇ + U̇g = −Ẇf−→K . (13)

The remaining part of the frictional work rate, Ẇf−→E ,
increases the internal energy, Ė :

Ė = −Ẇf−→E . (14)

Because Ẇf−→E is always negative, the increase in internal
energy is always positive, in accordance with the second
law of thermodynamics (Glansdorf and Prigogine, 1974). In
steady state, the change in kinetic energy K̇ = 0. Therefore,
we have from Equation (13)

U̇g + Ẇf−→K = −Ẇg + Ẇf−→K = 0. (15)

The loss in potential energy is equal to the (negative) work
done by the frictional forces (Bartelt and others, 2005).
However, in order to achieve this mechanical steady state
(K̇ = 0, constant translational velocity), the rate of change of
the internal energy must likewise be zero (Ė = 0, constant
temperature rise). Since the internal energy is the sum of the
irreversible thermal and random kinetic energies, this fact
indicates that a steady state can only be achieved when the
rate of change of random kinetic energy in the avalanche is
Ṙ = 0 (the random energy is constant).
It has often been assumed that the rate of internal energy

rise is equivalent to the rise in thermal energy only (e.g. Salm,
1993), i.e. Ė = Φ̇. We now suppose the mechanical work
of the frictional forces raises the total internal energy of the
avalanche, raising the thermal energy and creating random
kinetic energy, R, at the rate, Ṙ:

Ė = −Ẇf−→E = Ṙ + Φ̇. (16)

Let us consider Ṙ in detail. The simplest and most plausible
assumption we can make is that R decays to heat (or internal
energy) in proportion to its amount. The net change, Ṙ, is
part of the total kinetic-energy change, or total dissipation.
However, since it is difficult to measure the total kinetic-
energy change directly and we know the total dissipation
(because we have some constitutive relation which fits the
measurements), we have chosen to produce R by taking
some fraction of the total dissipation. Thus,

Ṙ = αĖ − βR = −αẆf−→E − βR, (17)

where −αẆf−→E is the part of the frictional work rate
producing random energy and βR is the decay of random
energy (or heat produced) caused by the inelastic collisions
of the snow granules. The rise in thermal energy must be

Φ̇ = (1− α)Ė + βR = −(1− α)Ẇf−→E + βR. (18)

The parameters α and β determine the production and
decay of random energy, respectively, and therefore the total
amount of random energy at any given time or position
within the avalanche, α ∈ [0, 1] and β ≥ 0. By addition

Fig. 2. Energy flow without random kinetic energy. Potential energy
is converted into kinetic energy, K , and internal energy (heat), Φ. The
reversibility of the kinetic energy is depicted with a double arrow.

of Equations (17) and (18), we recover Equation (16). This
formulation satisfies energy conservation always, since we
find by substitution of Equation (16) into Equation (10)

d
dt
(R + Φ+ K ) = Ẇg − Ẇf . (19)

The rate of change of the sum of the kinetic, thermal and
random kinetic energies is equal to the rate of work done by
gravity and frictional forces. Thus, this formulation, which
now accounts for random kinetic energy, is always energy-
conserving if the change in random energy, Ṙ, is governed
by a production–decay relation such as the one given by
Equation (17).

3. ENERGY FLUXES IN AVALANCHES
The production and decay of random kinetic energy (Equa-
tion (17)) contains two additional energy fluxes. The
traditional picture of energy transformations is that potential
energy, Ug, the only energy source, is dissipated entirely to
heat, Φ (Fig. 2). The increase or decrease of kinetic energy, K ,
depends on the sign of the sum of gravitational and frictional
work rates. That is, if

Ẇg − Ẇf−→K > 0 (acceleration)
Ẇg − Ẇf−→K = 0 (steady state)
Ẇg − Ẇf−→K < 0 (deceleration).

(20)

Since the energy exchange between Ug and K is reversible it
is depicted in Figure 2 with a double arrow. Energy-balance
calculations of natural avalanches captured at the Swiss
Vallée de la Sionne test site indicate 0.1 < K/Ug < 0.2.
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Fig. 3. Energy flow with random kinetic energy, R. The frictional
work rate, Ẇf−→E , is divided into αẆf−→E (production of random
kinetic energy) and (1 − α)Ẇf−→E . The random kinetic energy
decays at the rate βR.

That is, only 10–20% of the available potential energy is
transformed to kinetic energy (Sovilla and others, 2006).
Figure 3 depicts the modified energy flow in an avalanche,

including the production and decay of random energy which
is governed by Equation (17). The transfer of energy from the
mean flow field to the random kinetic energy is governed
by the production term, αẆf−→E . As long as the avalanche
is in motion, random kinetic energy can be generated.
The remaining part of (1 − α)Ẇf−→E is dissipated as heat.
The random energy decays at the rate βR. The balance
between the production term and the decay term determines
whether the random energy intensifies, or begins to die
away. When the avalanche stops, the generation of random
energy ceases and the random energy disappears. When
the production rate of random kinetic energy is equal to
the collisional dissipation rate, there is no change in R
(Ṙ = 0). In this case, the avalanche might attain a steady
flow state if the gravitational work rate (or driving force) is
additionally in balance with Ẇf−→K (or the frictional force).
Since avalanches are finite mass flows, it is unlikely that such
steady flow states can be maintained for long periods of time.

In fact, as the velocity of the avalanche decreases in the
run-out zone, the decay of R will overcome the production.
This process has been linked to avalanches starving on steep
slopes (Bartelt and others, 2007).

4. AVALANCHE FLOW IN SIMPLE SHEAR
The energy arguments of the preceding section implicitly
account for gradients of velocity produced by shearing
tractions. To explicitly include the effect of shear gradients,
we consider a fluid element in an avalanche of density ρ
flowing down a slope of angle φ (Fig. 1). The forces acting
on an element of the avalanche are divided into body forces
(gravity) and surface tractions (shear stresses). For reasons of
clarity, we restrict our analysis to a two-dimensional element
in x–z space in simple shear. Therefore, shear stresses, Szx ,
act on the upper and lower boundaries of the element,
resisting motion in the x direction. The shearing tractions
create a velocity distribution, u(z), in the z direction. The
velocity gradient is ∂u(z)/∂z. The work done by gravity is

Ẇg(z) = ρg (u(z) sin(φ)) , (21)

where g is gravitational acceleration. The frictional work rate
is

Ẇf (z) =
∂

∂z
(Szx (z)u(z)) = u(z)

∂Szx (z)
∂z

+ Szx (z)
∂u(z)
∂z

. (22)

The rate of change of the translational kinetic energy in the
x direction (cf. Equation (13)) is

K̇ (z) = ρg (u(z) sin(φ)) + u(z)
∂Szx (z)

∂z
. (23)

This equation is equivalent to the momentum equation in
one dimension (Davidson, 2004). We find

Ẇf−→K = u
∂Szx
∂z

(24)

and, subsequently, by Equation (12),

Ẇf−→E = Szx
∂u
∂z

. (25)

Therefore, the production–decay equation for random kinetic
energy for an avalanche in simple shear is

d
dt
(R) = −α

(
Szx

∂u
∂z

)
− βR (26)

and the corresponding change in thermal energy is given by

d
dt
(Φ) = −(1− α)

(
Szx

∂u
∂z

)
+ βR. (27)

Equations (26) and (27) can be modified to include energy
transport by diffusion. Assuming Fourier-type laws for diffu-
sion in both the x and z directions we find

D
Dt
(R) = kR

(
∂2R
∂x2

+
∂2R
∂z2

)
− α

(
Szx

∂u
∂z

)
− βR (28)

and

D
Dt
(Φ) = kT

(
∂2T
∂x2

+
∂2T
∂z2

)
− (1−α)

(
Szx

∂u
∂z

)
+βR, (29)

where kR and kT are the conductivities of random and
thermal energy. T is the true ’thermal’ temperature of the
avalanche (whereas R can be considered the ’granular’ tem-
perature). In the above equation we have, for completeness,
replaced the time derivates of R and Φ with the substantial
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derivatives. Therefore, the energy removed from the mean
motion of the flow at one point need not represent the total
heat or random kinetic energy at the same location. In this
paper, we do not treat diffusion processes explicitly.
Since there are heat and random-energy fluxes through

the bottom and top surface of the avalanche, Equations (28)
and (29) must be supplemented with appropriate boundary
conditions (Jenkins, 1992). Melt layers are often the result
of the heat flux at the bottom of the avalanche. When
random energy escapes a boundary, it is no longer random,
since in the absence of collisions it will lose its non-
directional quality. Beyond the upper surface, or avalanche
front, random energy can be transformed to potential or
kinetic energy.

5. CONSTITUTIVE MODEL
A constitutive equation for flowing snow must be able
to model both solid- and fluid-flow behaviour. Several
authors have therefore proposed writing the in-plane shear
stress, Szx (z), (Fig. 1) as the sum of a Coulomb-like friction
(accounting for the solid part with or without cohesion) and a
viscous resistance (accounting for the fluid part). Norem and
others (1987) generalized this idea and proposed an equation
(in simple shear) of the form:

Szx (z) = a + b (N(z))
k +m (γ̇(z))n , (30)

where a is the cohesion, b is the Coulomb friction coefficient
operating on the normal or overburden stress, N(z), and m
is the shear viscosity. We, like Norem and others (1987),
denote the shear rate

γ̇(z) =
∂u(z)
∂z

. (31)

Chute experiments with flowing snow (Platzer and others,
2007) show k =1, indicating a linear relationship between
normal stress, N(z), and shear strength. Opinions differ on
the choice of shear-rate exponent, n. Using experiments
with granular materials as a guide, Norem and others (1987)
proposed n=2, following Bagnold (1954). Experiments with
snow (Dent and Lang, 1983; Nishimura and Maeno, 1987)
seem to suggest Newtonian behaviour (n=1). To model
’plug’ flows, which have been observed in many real-scale
experiments (Dent and others, 1998; Kern and others, in
press), the shear stresses must be higher than a (Dent and
Lang, 1983;Nishimura andMaeno, 1987;Norem and others,
1987).
In the following we modify the constitutive equation

(Equation (30)) to

Szx (z) = bN(z) +
(
m −m′) γ̇(z), (32)

where the parameter m′ accounts for the shear thinning
induced by collisional interactions within the fluidized
region which requires R(z) > 0 (Salm and Gubler, 1985;
Gubler, 1987). Moreover, m′ > 0 when R(z) > 0 and
m′ = 0, when R(z) = 0. Thus, m represents the viscosity
of the non-fluidized snow. This value is large, because it
accounts for sintering processes between particles that can
occur when the fluctuation energy is zero. We set a = 0, as
we show it is possible to model plug flows in regions where
R(z) = 0; that is, without assuming somematerial yield stress
or cohesion. Clearly,

(
m −m′) ≥ 0 always.

5.1. Symmetric interactions
The parameter m′ can be found by noting that, at any given
instant, the energy dissipated by viscous shearing is

Φ̇v = (1− α)
(
m −m′) γ̇(z)2. (33)

The energy dissipated by the product of the overburden
pressure and shear rate,

Φ̇n = (1− α)bN(z)γ̇(z), (34)

likewise contributes to the production of random kinetic
energy (it is multiplied by (1 − α)). The random energy
transformed to heat energy is

Φ̇r = βR. (35)

The reduction of viscous shearing by m′ is entirely due
to the amount of R. Assuming, additionally, that the main
production of R is due to viscous shearing alone, we
arrive at a self-consistent description of the interaction
between viscous dissipation and random-energy production.
This assumption does not influence the choice of a single
parameter, β, to describe the decay of random energy. The
decay of random energy must be independent of its origin.
However, we should find that b is a constant.
By completing the square of the sum of the dissipated

viscous (Φ̇v) and random kinetic (Φ̇r) energies, we therefore
ensure that the division between these two dissipative
processes always conserves the sum and the interaction is
self-consistent. As stated in the introduction, any decrease
in dissipation caused by the generation of random kinetic
energy will eventually be balanced by a corresponding
increase in collisional dissipation. This procedure ensures
that the total irreversible energy is conserved and enforces
that the random kinetic energy has a true one-way character:
once it is created, it can only be transformed into heat. We
therefore obtain a coefficient, m′, of the form

m′ = 2
ψ

(1− α)

√
R

γ̇
, (36)

where

ψ =
√
(1− α)mβ. (37)

This result, apart from its practical value (we have reduced
the number of model parameters), shows an interesting
property: it is symmetric within the two dissipating processes.
To demonstrate this symmetry of the viscous and collisional
processes, we let the symbols Xv and Xr denote the viscous
shear and collisional processes which are defined in terms
of the shear rate and the square root of the random kinetic
energy:

{X} =
{
Xv
Xr

}
=

{
γ̇√
R

}
. (38)

The sum of the viscous and collisional dissipation can be
written as a quadratic equation in terms of Xv and Xr. The
associated matrix form is

Φ̇ = {X}T [L] {X}, (39)

where [L] is the matrix of the quadratic form:

[L] =
[
Lvv Lvr
Lrv Lrr

]
=

⎡
⎣ (1− α)m −ψ

−ψ β

⎤
⎦ . (40)



8 Buser and Bartelt: Production and decay of random energy in avalanches

Fig. 4. Velocity profiles measured at the front of two avalanches and comparison to theory. (a) Avalanche No. 7226 (time interval [10 s,
12 s]) and (b) avalanche No. 816 (time interval [2.1 s, 5.4 s]). Constitutive parameters are listed in Table 1.

The constitutive formulation is such that Lrv = Lvr. Defining

Φ̇rv = LrvXrXv (41)

and

Φ̇vr = LvrXvXr (42)

we see that Lrv = Lvr =−ψ. The interaction between the
viscous and collisional processes is constructed such that
they are independent of the order of the product between Xv
and Xr. This ensures that the interaction behind the viscous
and collisional processes defines a unique, dissipative
process. Of significance is the minus sign (−ψ), for it implies
that the increase of random kinetic energy produced by
the viscous shearing and the decrease in heat production
required to produce the random kinetic energy by viscous
shearing are equal. We can write the dissipation as

Φ̇v = JvXv (43)

Φ̇r = JrXr, (44)

where Jv and Jr are:

Jv = (1− α)mXv − ψXr (45)

Jr = −ψXv + βXr. (46)

The diagonal components of the matrix [L] are constant and
satisfy the condition that

Lij =
∂Ji
∂Xj

= constant. (47)

Therefore, the constitutive formulation is linear in Xv and Xr.

5.2. Vallée de la Sionne measurements
Kern and others (in press) obtained velocity profiles of three
natural avalanches at different locations within flow using
optical sensors (Tiefenbacher and Kern, 2004) located on
the 20m high mast at Vallée de la Sionne, canton Valais,
Switzerland. For a detailed description of the site, see Sovilla
and others (2006, 2008). These measurement results are used
to formulate a constitutive model based on the production
and decay of random kinetic energy. We begin with a brief
description of the measured avalanches:

1. Avalanche No. 7226, 21 January 2005. On 21 January
2005 at 1500h an avalanche naturally released. The
measurement system was automatically triggered by
geophones, and the recorded data indicate a dry, dense
flowing avalanche. Moderate snowfall over several days
had added ∼15 cm of new snow to the 105cm thick
snow cover in the release zone. Kern and others (in press)
obtained three velocity profiles measured relative to the
passage of the avalanche front (t = 0). These were located
at time intervals [10 s, 12 s], [44.8 s, 44.9 s] and [55 s,
57 s]. The measured mean velocity behind the avalanche
front was Um = 26.7ms−1, but decreased rapidly
towards the avalanche tail. The measured flow heights of
the dense flowing part remained more-or-less constant for
the three time intervals: h ≈ 2.4m. The velocity profiles
change from a highly sheared profile at the front to a
plug-like flow at the avalanche tail (Figs 4–6).

2. Avalanche No. 816, 6 March 2006. Between 2 and 4
March 2006, 120 cm of new snow was deposited in
Vallée de la Sionne. On 5 March, the temperature rapidly
dropped from −4 to −16◦C in the release zone. The
weather cleared and an avalanche was released artifi-
cially by explosives on the morning of 6 March. The re-
leased avalanche was dry-flowing with powder part. From
the optical-sensor measurements, three velocity profiles
could be ascertained in the flowing core at time intervals
[2.1 s, 5.4 s], [32.4 s, 33.15 s] and [40.4 s, 42.5 s]. The
measured mean velocity directly behind the avalanche
front was Um = 32.2m s−1. Similar to avalanche 7226,
the velocity decreased rapidly towards the avalanche tail.
Unlike avalanche 7226, the flow heights decreased from
front to tail from h≈3.5m to h≈ 1.6m. Again, the vel-
ocity profiles evolved from a highly sheared profile at the
front to a plug-like flow at the avalanche tail (Figs 4–6).

3. Avalanche No. 8448, 1 March 2007. A heavy snowfall
started at midday on 1 March 2007, accumulating
∼60–70 cm of new snow on the existing, 2.6m thick,
snow cover in the release area. The snowfall lasted un-
til the early morning of 2 March. During the snowfall,
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Fig. 5. Velocity profiles measured in the bulk of two avalanches and comparison to theory. (a) Avalanche No. 7226 (time interval [44.8 s,
44.9 s]) and (b) avalanche No. 816 (time interval [32.4 s, 33.15 s]). Constitutive parameters are listed in Table 1.

Fig. 6. Velocity profiles measured at the tail of three avalanches and comparison to theory. (a) Avalanche No. 7226 (time interval [55 s,
57 s]), (b) avalanche No. 816 (time interval [40.4 s, 42.5 s]) and (c) avalanche No. 8448 (time interval [72 s, 74 s]). Constitutive parameters
are listed in Table 1.
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Table 1. Mean velocity, flow height, penetration depth, mean random kinetic energy and values of constitutive parameters for three Vallée
de la Sionne avalanches at the measured time interval

Avalanche Time Mean Flow Penetration Random Coulomb friction, b Production/decay, Goodness
behind front velocity, Um height, h depth, z0 energy, Rm β/(1− α) of fit

s m s−1 m m kJm−3 s−1

7226 [10, 12] 29.6 2.75 0.750 9.30 0.1252 ± 0.0169 0.9870 ± 0.0321 0.9928
7226 [44.8, 44.9] 5.4 2.40 0.240 0.70 0.2554 ± 0.0093 1.0737 ± 0.0508 0.9995
7226 [55, 57] 1.0 2.40 0.135 0.04 0.3214 ± 0.0007 1.0336 ± 0.0242 0.9996
816 [2.1, 5.4] 30.9 3.50 1.500 7.74 0.1607 ± 0.0109 0.7708 ± 0.0216 0.9979
816 [32.4, 33.15] 5.4 2.50 0.100 1.20 0.2916 ± 0.0087 0.8818 ± 0.0511 0.9976
816 [40.4, 42.5] 1.9 1.60 0.090 0.39 0.3046 ± 0.0207 0.7271 ± 0.1251 0.9828
8448 [72, 74] 2.6 3.30 0.034 0.15 0.3148 ± 0.0009 0.8424 ± 0.0464 0.9986

there was moderate wind from westerly directions with
speeds up to 10m s−1. The temperature was about −4◦C
in the release zone and slightly above 0◦C in the run-out.
After an accumulation of ∼40 cm of new snow, an ava-
lanche released spontaneously at 2119h. The avalanche
exhibited typical wet, dense, slow flow. Only one velocity
profile could be obtained from the velocity sensors. This
was at the tail of the flow at time interval [72 s, 74 s].
The mean speed of the avalanche at this stage was small,
only Um =2.6m s−1; however, the flow height was large,
h ≈ 3.3m.

5.3. Comparison to measured velocity profiles
The velocity profiles, u(z), are found by solving the
momentum-balance equation (Anderson, 1996)

∂Szx
∂z

+Gx = 0, u(0) = u0 and Szx (h) = 0, (48)

where Gx is the gravitational-body force Gx = ρgh sin(φ).
The model requires four constitutive parameters (α, β, b
and m) to fit the measurements. For all the measurements,
we assumed a constant non-fluidized snow viscosity of
m = 200Pa s, based on snow-chute experiments (Kern and
others, 2004), and a constant flow density ρ = 350 kgm−3.
The value of fluidization viscosity, m′, is a function of a
combination of α and β, as well as the random kinetic energy
distribution, R(z) (Equation (36)). Because we measure the
velocity profiles at only one position in the avalanche (as
it passes the mast) we cannot separate the production and
decay coefficients and therefore combine α and β into a
single parameter, β/(1− α). We apply a least-squares fitting
procedure to find parameters b and β/(1 − α). Following
earlier work (Salm and Gubler, 1985; Gubler, 1987), we
assume that the distribution of random kinetic energy is
largest at the running surface where the product of the shear
stress and velocity gradient is the largest

R(z) = R0 exp
(−z/z0), (49)

where R0 is the random kinetic energy at z =0 and z0
defines the penetration depth of the energy from the basal
surface. This assumption is based on measurements of
internal avalanche velocities with radar (Gubler and others,
1986). Bartelt and others (2006) also found an exponential
decrease in random kinetic energy in the upper regions of
the avalanche flow, when the production of random energy
is concentrated in a ’slip volume’, located near the basal

surface. With this procedure, they were able to fit velocity
profiles of snow-chute experiments.
Comparisons between the large-scale avalanche measure-

ments at Vallée de la Sionne and the solution to Equation
(48) are depicted in Figures 4 (behind the avalanche front), 5
(interior) and 6 (avalanche tails). The fit parameters, including
the goodness of fit and the fit errors, are reported in Table 1.
The reported values of b for the avalanche tails are in good
agreement with values reported by Lang and Dent (1983)
and Platzer and others (2007). Only at the tail of avalanche
8448 did we assume a slip velocity, u0 = 1m s−1; otherwise
u0 = 0. The mean velocity given in Table 1 is

Um =
1
h

∫ h

0
u(z) dz. (50)

Values of the penetration depth are also provided in Table 1.
Themean random kinetic energy, Rm, is calculated according
to

Rm =
1
h

∫ h

0
R(z) dz. (51)

The mean random kinetic energy decays exponentially as
a function of the position behind the avalanche front (which
we measure as the time behind the leading edge of the
avalanche; Fig. 7). The results of our comparison suggest that
the random energy is created largely at the avalanche front,
but, as the dense core of the avalanche follows, is rapidly
destroyed. The random energy decreases from front to tail.
The coefficient of friction, b, is smaller at higher Rm (Fig. 8).

6. CONCLUSIONS AND OUTLOOK
By introducing the random kinetic energy, R, into an existing
constitutive model we are able to predict the velocity
profiles for different avalanches, as well as the evolution
of the profiles from the avalanche front to tail. In the
proposed model, each parameter has a physical meaning:
the parameter m describes viscous shear resistance, R =0; α
is the degree of particle scattering induced by shear traction
and β is the decay of the random kinetic energy by inelastic
collisions. The scattering parameter, α, appears to depend
on the inhomogeneities of the shearing plane and especially
on the roughness of the boundary. The inverse quantity, 1/β,
can be considered to be the lifetime of the fluctuation energy
and is a function of the collisional properties of the snow,
such as the restitution coefficient. The comparison to the
measured velocity profiles indicates a decrease in random
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Fig. 7.Mean random kinetic energy calculated from velocity profiles
as a function of time behind the leading edge of the avalanche. The
random kinetic energy decays exponentially from front to tail. All
avalanches.

kinetic energy from front to tail of the avalanche. Therefore
1/β is much smaller than 50 s, the approximate time it takes
for the avalanche to pass the measurement location.
The parameter b describes the influence of the overburden

pressure on the shear resistance. In our comparison with the
measured velocity profiles we found b could be written as
an exponential function of R. Therefore,

db
dR

= − b
Rb

with b(R = 0) = b0, (52)

where Rb =10kJm
−3 and b0 =0.32. Moreover, the expo-

nential relationship reflects the fact that the change in b with
respect to R is a function of b itself. Thus, Equation (52)
indicates that shear resistance depends on the magnitude of
the random energy while, conversely, the magnitude of the
random energy depends on the shear. This result suggests a
more complex interaction between Coulomb friction and the
production of random kinetic energy than we assumed in the
constitutive equation (32). Interestingly, the lowest b values
we encountered are in good agreement with values found
for extreme avalanche calculations with numerical models
(Gruber and Bartelt, 2007).
Also note that the penetration depth of random energy

decays exponentially from front to tail (Fig. 9). At the
avalanche front, the penetration depth reaches half the
measured avalanche flow height: z0/h≈0.5. The model
predicts that random energy, and therefore mass, escapes
the top surface of the avalanche (Fig. 4). Interestingly, a
powder cloud developed at the front of both avalanches 7226
and 816. Towards the avalanche tail the penetration depth
decays to values z0/h < 0.1, resulting in plug-like flows. The
random energy does not reach the top surface.
The energy approach does not rely on stationary flow

states. Because we are concerned with energy fluxes, more
insight is gained from the experiments when the fluxes
are not in balance (i.e. when the avalanche is outside of
steady-state equilibrium) and the production and decay of
random energy can be differentiated and therefore separately

Fig. 8. Measurements from Vallée de la Sionne, revealing that the
ratio of b changes exponentially with the mean random kinetic
energy, Rm. All avalanches.

quantified. In steady state, it is impossible to distinguish
between the production and decay of random energy and
viscous dissipation. In this case, the rheology of a granular
avalanche can be well described by an effective viscosity,
or by adjusting the free parameters of the corresponding
constitutive law. Fortunately, avalanches are hardly in steady
state for long time intervals. In future this should allow us to
identify the time-dependent production, diffusion and decay
of random kinetic energy.
The penetration depth, z0, is determined by the diffusion

and lifetime of the random energy. We could not separate
diffusion and penetration depth because the spatial trans-
port of random kinetic energy is inherently a time-dependent
process, which reveals itself only indirectly in the measured

Fig. 9. Measurements from Vallée de la Sionne show that the ratio
of z0/h decays exponentially in time. All avalanches.
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velocity profiles. Interestingly, we found that at the front of
two avalanches the random kinetic energy reached the top
surface of the flow. When this occurs, the random energy
is confronted with a density change. At this point the dir-
ectionlessness and randomness of the kinetic energy is lost.
Mass must escape the top surface of the avalanche. Future
investigations will show if the diffusion of random kinetic
energy describes the initiation of a powder-snow avalanche.
Our constitutive proposal, combining the viscous and

collisional dissipative processes, is a quadratic function in
the shear rate, γ̇, and the square root of the random kinetic
energy,

√
R. Amazingly, it is both linear and symmetric.

According to Glansdorf and Prigogine (1974), this would
imply minimum entropy production if the avalanche was in
steady state.
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