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Abstract. Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating
forest succession and species range dynamics under current and future conditions based on
mathematical representations of the three key processes regeneration, growth, and mortality.
However, mortality formulations in DVMs are typically coarse and often lack an empirical
basis, which increases the uncertainty of projections of future forest dynamics and hinders their
use for developing adaptation strategies to climate change. Thus, sound tree mortality models
are highly needed. We developed parsimonious, species-specific mortality models for 18 Euro-
pean tree species using >90,000 records from inventories in Swiss and German strict forest
reserves along a considerable environmental gradient. We comprehensively evaluated model
performance and incorporated the new mortality functions in the dynamic forest model For-
Clim. Tree mortality was successfully predicted by tree size and growth. Only a few species
required additional covariates in their final model to consider aspects of stand structure or cli-
mate. The relationships between mortality and its predictors reflect the indirect influences of
resource availability and tree vitality, which are further shaped by species-specific attributes
such as maximum longevity and shade tolerance. Considering that the behavior of the models
was biologically meaningful, and that their performance was reasonably high and not impacted
by changes in the sampling design, we suggest that the mortality algorithms developed here are
suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality
functions resulted in simulations of stand basal area and species composition that were gener-
ally close to historical observations. However, ForClim performance was poorer than when
using the original, coarse mortality formulation. The difficulties of simulating stand structure
and species composition, which were most evident for Fagus sylvatica L. and in long-term sim-
ulations, resulted from feedbacks between simulated growth and mortality as well as from
extrapolation to very small and very large trees. Growth and mortality processes and their
species-specific differences should thus be revisited jointly, with a particular focus on small
and very large trees in relation to their shade tolerance.

Key words:  dynamic vegetation models; empirical mortality models; European tree species; forest inventory
data; forest reserves; generalized logistic regression; individual tree mortality, tree growth.

INTRODUCTION

Tree mortality, one of the key demographic processes
that shape forest ecosystems, has significant short- and
long-term implications for a wide range of forest ecosys-
tem services (Van Mantgem et al. 2009, Millar and
Stephenson 2015). Management for ecosystem services
therefore requires a good understanding of tree death
and of its determinants, in particular since drought-
induced dieback and other mortality hazards are likely
to increase in response to future climate change (Allen
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et al. 2010, Steinkamp et al. 2015). Tree mortality is a
highly complex and multifactorial process, and the scien-
tific community still faces difficulties to understand the
underlying mechanisms (Sala et al. 2010) and predict
mortality from the individual to the regional level
(Weiskittel et al. 2011, Adams et al. 2013, McDowell
et al. 2013, Meir et al. 2015).

This difficulty has implications for predictive mortal-
ity functions as an essential component of forest simula-
tion models, which are used for short-term forest
planning (growth-and-yield models; Hasenauer 2006)
and for assessing the long-term consequences of climate
change (Dynamic Vegetation Models DVM; Bugmann
2001, Smith et al. 2001, Friend et al. 2014). While much
effort has been devoted to accurately predicting tree
growth, mortality formulations in DVMs are typically
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coarse and usually lack an empirical basis (Loehle and
LeBlanc 1996, Keane et al. 2001) or robust mechanistic
foundation (Allen et al. 2015). The poor representation
of tree mortality in DVMs has critical consequences for
the accuracy of their predictions, and thus for the
reliability of their projections (Keane et al. 2001, Reyer
et al. 2015), which may impede the timely initiation of
measures that maintain ecosystem services (De Groot
et al. 2002, Temperli et al. 2012).

Besides theoretical (“data-free””) and physiological pro-
cess-based approaches (cf. Wunder et al. 2006, Weiskittel
et al. 2011, Meir et al. 2015 for respective advantages and
drawbacks), empirical mortality models have been sug-
gested as a valid and pragmatic alternative (Adams et al.
2013). Such empirical mortality models are not only
highly valuable for the reliable simulation of future forest
dynamics, but also to improve our understanding of the
mortality process (Cailleret et al. 2016). Among other
approaches, tree size and radial stem growth can be used
as predictors of tree death (Cailleret et al. 2017, Hiillsmann
et al. 2017), which is supported by the assumption that
the dimensions of a tree, typically expressed via its stem
diameter, are a proxy for the access to resources and con-
straints on the hydraulic system (Grote et al. 2016), and
that radial growth provides an indication of individual
tree vitality (Harcombe 1987, Dobbertin 2005).

Growth-based mortality models have been fitted using
forest inventory (Ruiz-Benito et al. 2013) or den-
drochronological data (Gillner et al. 2013) and a variety
of methodological approaches (Hawkes 2000, Weiskittel
et al. 2011, Cailleret et al. 2016). However, most of them
(1) do not adequately consider species differences for a
wide range of species, (2) are not sensitive to the varia-
tion in climate and site conditions, and (3) have not been
implemented in DVMs and validated in this context (cf.
Larocque et al. 2011, Bircher et al. 2015). The obstacles
to achieve this arise from the fact that mortality of indi-
viduals having outgrown the seedling stage is rare and
highly variable in space and time (Eid and Tuhus 2001),
and there is a general scarcity of data for describing
long-term processes (Bugmann 1996b, Hawkes 2000).

In DVMs, tree regeneration, growth, and mortality
are simulated for individual tree species or Plant
Functional Types (PFTs; Bugmann 19964, Wullschleger
et al. 2014). By grouping species with similar ecological
characteristics to PFTs, mortality models can be cali-
brated and validated even for rare species. Yet, modeling
approaches are mostly limited to one or few species
(Holzwarth et al. 2013, Neuner et al. 2015, but see
Waunder et al. 2008). Thus, there is no comprehensive evi-
dence of how life history traits such as shade tolerance
and longevity (Bugmann 1994) determine the mortality
patterns of tree species, and that PFTs are a useful and
robust concept for mortality predictions.

Moreover, only few studies have accounted for the
spatial and temporal variability in size-mortality and
growth—mortality relationships (Wunder et al. 2008,
Dietze and Moorcroft 2011) by including additional
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covariates in mortality models (but see Condés and Del
Rio 2015). Climate or stand characteristics may be
required as driving factors of mortality under conditions
of drought or high competition, since they are only
partly reflected in size or growth variables (Rowland
et al. 2015). However, data sets with a representative
sampling along major environmental gradients and over
long time periods that allow for a systematic analysis of
environmental influences on the relationship between
tree size, growth, and mortality are rare.

To verify the suitability of growth-based empirical
mortality functions for DVMs, their predictive perfor-
mance, i.e., the accuracy of a model when applied to new
data, should be evaluated wusing -cross-validation
approaches or by validation with independent external
data (cf. Hiilsmann et al. 2016). Subsequently, such mor-
tality models should be incorporated in DVMs, a step
that is made only rarely (but see Wyckoff and Clark
2002, Wernsdorfer et al. 2008, Larocque et al. 2011,
Bircher et al. 2015). Thus, a comprehensive and sound
assessment of empirical mortality models in DVMs is
still lacking, and it remains unclear whether more empiri-
cism in mortality modeling would actually advance the
quality of simulations from DVMs.

Thus, the overall objectives of this study were to develop
parsimonious mortality models for a large set of European
tree species, to comprehensively evaluate their perfor-
mance, and to incorporate them in a specific DVM (For-
Clim; cf. Bugmann 1996b). To this end, we used extensive
inventory data from strict forest reserves, i.e., areas with-
out forest management, in Switzerland and Germany
along a large environmental gradient. We followed the
approach of model calibration and evaluation that was
established and tested for Fagus sylvatica L. in Hillsmann
et al. (2016). Specifically, we addressed three main ques-
tions: (1) Can life history traits such as maximum longev-
ity and shade tolerance be used to group tree species into
meaningful PFTs that account for species differences in
mortality? (2) How successful are mortality models that
are based on size and growth alone compared to models
that include further climate or stand characteristics in
accurately predicting tree mortality? (3) How do the new
mortality functions perform when embedded in a DVM?

MATERIAL AND METHODS

Study areas and inventory data

We used inventory data from 54 strict forest reserves
in Switzerland and Lower Saxony/Germany to develop
the mortality models (cf. Meyer et al. 2006, 2015, Brang
et al. 2011). Measurements had been conducted repeat-
edly on up to 14 permanent plots per reserve for up to
60 yr with remeasurement intervals of 4-27 yr. The
permanent plots vary in size between 0.03 and 3.47 ha.
The inventories provide diameter measurements at
breast height (DBH) and information on the species and
status (alive or dead) of trees with DBH >4 cm for



524

Switzerland and >7 cm for Germany. As ForClim does
not explicitly simulate natural large-scale disturbances,
only plots without substantial fire or bark beetle events
at the stand scale were used to derive the mortality mod-
els. To this end, we excluded three permanent plots
where at least 80% of the trees died during an interval of
10 yr, and mortality could be clearly assigned to a dis-
turbance agent. Mortality in the remaining stands was
rather low, with a mean annual mortality rate of 1.5%
and strong variation between plots from 0% to 6.5%
(assessed for trees of all species with DBH > 7 cm).

We only used data from permanent plots with at least
20 trees per species to obtain reliable plot-level mortality
rates even for species with low mortality rates (about 5%
during 10 yr), and selected tree species occurring on at
least 10 plots to cover sufficient ecological gradients.
This led to a data set of 197 permanent plots and 18 tree
or shrub species: Abies alba Mill., Acer campestre L.,
Acer pseudoplatanus L., Alnus incana Moench., Betula
pendula Roth, Carpinus betulus L., Cornus mas L., Cory-
lus avellana L., Fagus sylvatica L., Fraxinus excelsior L.,
Picea abies (L.) Karst, Pinus mugo Turra, Pinus sylvestris
L., Quercus pubescens Willd., Quercus spp. (Q. petraea
Liebl. and Q. robur L.; not properly differentiated in the
Swiss inventories), Sorbus aria Crantz, Tilia cordata
Mill., and Ulmus glabra Huds. (Table 1).

Mortality information and tree characteristics

We considered tree size and growth as key indicators
for mortality risk (Monserud 1976). Radial stem growth
between the first and second inventory and DBH (mm)
at the second inventory were used to predict tree status
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(alive or dead) at the third inventory. To this end, the
annual relative basal area increment (relBAI;; cf. Bigler
and Bugmann 2004) was calculated as the compound
annual growth rate of the trees’ basal area (BA,;) using

1

BA; 200\ ™
IBAL = (i)™
e (BAi‘lst)

with Az denoting the number of years of the growth per-
iod. Several sets of three inventories per tree were used if
more than three inventories were available. Thus, 26.5%
of the trees appeared more than once in the data set (for
verification cf. Hiillsmann et al. 2016).

To improve the relationship between the explanatory
variables and mortality, suitable transformations were
applied (cf. Mosteller and Tukey 1977), i.e., In(DBH)
and log;o(relBAI). The latter is a modified transforma-
tion based on the common logarithm that is applicable
even to those 8.8% of the records with relBAI =0
(Stahel 2015; cf. Appendix S2).

(M

Climate and stand characteristics

We included additional climate and stand characteris-
tics in the mortality models to address spatial and tempo-
ral differences in mortality rates between permanent plots
and inventories that cannot be explained by changes in
growth rates alone (cf. Table S1, see Appendix S1 for
all additional tables and figures). To this end, mean
annual precipitation sum (P) and mean annual air
temperature (mT) were calculated between the second
and the third inventory (for their derivation -cf.
Appendix S2).

TaBLE 1. Number of records per tree species.

Species Total Germany Switzerland Dead Reserves Permanent plots
Abies alba 7,140 0 7,140 1,147 7 31
Acer campestre 1,183 0 1,183 256 5 19
Acer pseudoplatanus 1,399 24 1,375 255 12 26
Alnus incana 1,252 0 1,252 734 5 11
Betula pendula 1,847 300 1,547 723 7 14
Carpinus betulus 5,789 1,637 4,152 1,283 19 28
Cornus mas 1,123 0 1,123 215 1 10
Corylus avellana 1,427 0 1,427 739 8 14
Fagus sylvatica 26,645 6,899 19,746 4,018 40 118
Fraxinus excelsior 7,645 142 7,503 1,715 19 52
Picea abies 12,965 458 12,507 2,209 20 59
Pinus mugo 7,376 0 7,376 1,250 4 21
Pinus sylvestris 2,925 317 2,608 519 10 24
Quercus pubescens 2,968 0 2,968 429 2 15
Quercus spp. 7,250 832 6,418 1,536 22 48
Sorbus aria 1,546 0 1,546 492 8 23
Tilia cordata 1,911 0 1,911 344 8 16
Ulmus glabra 631 20 611 137 11
All 93,022 10,629 82,393 18,001 54 197

Notes: Numbers are given for the total data set, per country and for those that resulted in tree death. Additionally, the number of
reserves and permanent plots that are covered in the data of each species are indicated. Quercus spp. refers to both Q. petraea and
Q. robur.



March 2018

As a proxy for stand age and structural complexity, the
mean and the interquartile range of DBH were calculated
at the permanent plot level (mDBH, iqrDBH). To account
for stand density, basal area (BA) and the number of trees
(N) per hectare were considered. These stand characteris-
tics were calculated for the second inventory based on all
living trees >7 cm. We did not further expand the set of
climate and stand characteristics considered to keep the
models simple and thus also applicable in DVMs.

Mortality models

Generalized logistic regression (Monserud 1976,
Weiskittel et al. 2011, Yang and Huang 2013) was used
to model mortality probability. This was necessary to
account for the unequal remeasurement intervals in the
inventory data. The annual mortality probability of tree
i (piar = 1) was defined as

pine1 = logit™ (XiB) = % @

with X; denoting the design matrix of the linear predic-
tor and B the respective parameter vector. The annual
probability was scaled to the length of the respective
mortality period of Az years using

piar=1—(1 _pf.At:I)A’ (3)

and then fitted against the observed status of the tree (y;
1 = dead, 0 = alive) using maximum-likelihood estimation
for the parameters of B. Standard errors, confidence inter-
vals, and P values of the parameter estimates were derived
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using the Fisher information based on the Hessian matrix
(cf. Hiilsmann et al. 2016).

Model selection and performance criteria

In a first step, the most promising climate or stand
characteristic and its most suitable transformation (log,
square root, or none) were identified for each species. To
this end, covariates were included in highly flexible mod-
els to capture linear, non-linear, and interacting influences
of In(DBH) and log;(relBAI) on mortality (cf. Table 2,
Formula C12 with different transformations of the cli-
mate and stand characteristics). We selected the covariate
that resulted in the smallest Brier Score (BS). BS corre-
sponds to the mean squared error of the model defined as

n

BS = -3 (prar— 1)’ @

i3

and ranges between 0 and 1, with low values indicating
good model calibration and discrimination, i.e., correct
mortality rates and attribution of dead/alive status (cf.
Harrell 2015). BS does, however, not allow for the com-
parison of models based on different data sets since it
depends on the overall mortality rate that varies between
species (Steyerberg et al. 2010).

In a second step, the final model was selected from a
large set of model formulae (cf. Table 2) with varying
complexity and flexibility that are based on the terms In
(DBH), logo(relBAI), their interaction and the respective
quadratic terms (Formulae 1-12). These models were ana-
lyzed without an additional covariate (Formulae A1-12),
with the most promising climate or stand characteristic

TaBLE 2. Model formulae considered during model selection and their degree of complexity.

Use of additional climate or stand characteristics

Number Formula A B C
1 In(DBH) 1 11

2 In(DBH) + (In(DBH))? 2 12

3 log;o(relBAT) 1 11 21
4 log;o(relBAI) + (logm(relBAI))2 2 12 22
5 In(DBH) + log;(relBAI) 3 13 23
6 In(DBH) + (In(DBH))? + log;o(relBAT) 4 14 24
7 In(DBH) + log;o(relBAI) + (log;o(relBAI))? 4 14 24
8 In(DBH) + (In(DBH))? + log;o(relBAI) + (log;o(relBAI))> 5 15 25
9 In(DBH) x log;(relBAI) 6 16 26
10 In(DBH) x log;o(relBAI) + (In(DBH))? 7 17 27
11 In(DBH) x log;(relBAI) + (logm(relBAI))2 7 17 27
12 In(DBH) x log;o(relBAI) + (In(DBH))? + (logo(relBAI))? 8 18 28

Notes: Model numbers 1-12 in the first column refer to formulae with increasing flexibility of the influence of the tree covariates
diameter at breast height (DBH, mm, log-transformed) and annual relative basal area increment (relBAI, dimensionless, log;g-
transformed). The letters A—C refer to the use of additional climate or stand characteristics: A, without an additional characteris-
tic; B, with an additional characteristic; C, with an additional characteristic and its interaction with log;o(relBAI). The numbers of
1-28 in columns A—C indicate increasing complexity of the formulae and were used to select the most parsimonious models during
10-fold cross-validation (cf. Appendix S2). For instance, model B3 in line 3 and column B stands for the formula “log;(relBAI)”
plus an additional climate or stand characteristic and has a complexity of 11. The complexity of a model was assigned considering
the number of predictors and their flexibility (quadratic terms, interactions). Note that the additional characteristic was selected
separately for each species (cf. Appendix S1: Table S4).
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(B1-12), and in interaction with log;o(relBAI) (C3-12). To
this end, we calculated BS in repeated 10-fold cross-valida-
tion and applied the “one standard error rule” to avoid
overfitting and overly complex models (cf. Appendix S2
for details; Breiman et al. 1984, Hastie et al. 2001). For
models that included an additional climate or stand char-
acteristic, an alternative model without that covariate was
derived to compare its performance with the respective full
model. These were selected by applying the “one standard
error rule” to Formulae A1-12 only.

Several performance criteria were reported to take into
account that calibration and discrimination are not neces-
sarily correlated (Bravo-Oviedo et al. 2006). In addition
to BS, the Area under the receiver operating characteristic
Curve (AUC) was calculated, which is a threshold-inde-
pendent measure of classification accuracy. Following
Hosmer and Lemeshow (2000), the discriminative ability
is rated as acceptable (0.7 < AUC < 0.8), excellent
(0.8 < AUC < 0.9), or outstanding (AUC > 0.9).

Since all data were used for model development, no
external validation of the models using independent data
could be carried out. However, to correct for overfitting
and assess the predictive behavior in external application,
i.e., when applied to new data from the same domain,
BS and AUC from cross-validation were reported (cf.
Appendix S2). Furthermore, AUC was calculated for
diameter classes to assess the calibration success of the
models with respect to tree size.

Commonly, performance criteria used in mortality
studies do not convey an intuitive expectation of the pre-
dictive behavior of mortality models at the level of forest
stands. Therefore, we selected an additional performance
criterion that facilitates the evaluation of model perfor-
mance with respect to the application in DVMs. We
defined the prediction bias py;,s as the difference of the
mean predicted annual mortality probability (simulated
mortality) pa,—; and the mean annual mortality rate (ob-
served mortality) ya,—; calculated at the level of single
inventories of permanent plots (cf. Appendix S2) and
reported the mean absolute deviation (mad) of py;.s. This
allowed us to quantify the variation in prediction accu-
racy, i.e., how well the models can deal with the high
variability of mortality rates and patterns in space and
time (Wunder et al. 2008, Dietze and Moorcroft 2011).
Observed variability and mad py;,s increase with increas-
ing mortality rates. Therefore, we additionally calculated
the respective relative value (rmad py;as), 1.€., the ratio of
mad py;,s and the observed annual mortality rate ya,—;.
Both values were used to evaluate the models with
respect to their ability to predict correct mortality rates
in space and time.

Model calibration and evaluation was performed with
R (R Core Team 2015). The function logl0() from the
package regr0 (Version 1.0-4/r46, 2015) was used for
the relBAI transformation. The function optim() and the
BFGS method were applied for maximum-likelihood esti-
mation. AUC was calculated using a modified version of
the auc() function from the package SDMTools (Version
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1.1-221, 2014) to allow for values below 0.5, which is nec-
essary to calculate AUC in cross-validation.

Implementation of inventory-based mortality models
in ForClim

Model description.—To examine the performance and
behavior of the new mortality functions in DVMs, we
used the climate-sensitive forest gap model ForClim,
which simulates the dynamics of forest stands on short
and long time scales (Bugmann 1996b). Establishment,
growth and mortality for cohorts of individual trees
are simulated on independent patches (~800 m?) at an
annual resolution based on species-specific parameters
(e.g., shade and drought tolerance), environmental con-
ditions (light availability, temperature, soil nitrogen, and
water availability), and tree characteristics (cf. Bugmann
1996b, Didion et al. 2011, Rasche et al. 2012).

In the latest model version, ForClim 3.3 (Mina et al.
2015), tree mortality is modeled as a combination of a
constant ‘background’ mortality that depends on the
species-specific maximum age and a stress-induced mor-
tality that is activated if the annual diameter increment
is lower than an absolute or relative growth threshold
(3 mm or 10% of the species-specific maximum growth
rate at a given tree size, respectively) for more than two
consecutive years. Mortality is modeled individually for
each tree of a cohort based on a stochastic approach
that results in tree death if a uniformly distributed ran-
dom number between 0 and 1 is below the annual mor-
tality probability. A more detailed description of the
mortality function is provided in Bircher et al. (2015).

This mortality formulation was replaced by the new
inventory-based models (IM) without environmental
covariates, i.e., alternative models, based on tree size and
growth only. The models were implemented following
two approaches: (1) with mean parameter estimates
(IM_mean) and (2) by randomly sampling the parame-
ters using their mean and standard error to account for
the uncertainty in model estimates (IM_sd, assuming a
normal distribution of the parameters).

The mortality functions were applied to all trees irre-
spective of their DBH although this led to extrapolation at
least for the small trees (initial DBH of trees in ForClim is
1.27 cm whereas the calipering threshold in the inventories
is 4 cm or more). Since no mortality function could be
developed for some species in the validation data, we used
the models from species of the same genus: the model of
Acer pseudoplatanus for A. platanoides, Alnus incana for
A. glutinosa and A. viridis, Sorbus aria for S. aucuparia,
and Tilia cordata for T. platyphyllos. Simulation results for
these species were jointly reported (e.g., Tilia spp.). Species
for which no mortality model could be developed and that
were present in minor abundance were excluded from the
simulations (e.g., Populus nigra, Taxus baccata).

Simulation setup and model validation.—We ran short-
and long-term simulations to assess the performance
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and behavior of the two new mortality functions
(IM_mean, IM_sd) and to compare them with the origi-
nal model version (ForClim 3.3), as follows.

Short-term simulations.—To validate the new mortality
functions in ForClim, we simulated historical forest
dynamics based on past climate data (cf. Appendix S2)
and compared the results against inventory measure-
ments. To this end, permanent plots were selected from
the Swiss forest reserves according to the following crite-
ria: (1) inventory data should cover at least a period of
35 yr, (2) plot size had to exceed 0.2 ha to ensure a rep-
resentative structure and composition of the forest, and
(3) recent dynamics had to be unaffected by severe natu-
ral disturbances, which are not accounted for in the
model. We ended up with 28 permanent plots located in
13 forest reserves (Appendix S1: Table S2) that were all
part of the calibration data set. ForClim was initialized
with single-tree data (species, DBH) from the first avail-
able inventory of each permanent plot. As spatial infor-
mation about tree positions on the plots was not
available, trees were allocated randomly and evenly to an
initial set of patches, each with a size of 800 m? (Wehrli
et al. 2005). Depending on the ratio of permanent plot
area and patch size (Appendix S1: Table S2), this
resulted in the direct initialization of 2-44 patches. To
average over the stochasticity across patches, the initial
set of patches was replicated to 200. For evaluating the
goodness-of-fit of the historical runs, we compared sim-
ulated and measured stand- and species-specific BA at
the last inventory and the cumulative number of dead
trees (Ngeaq) over the whole period. The root mean
square error (RMSE) as well as the relative bias (rbias)
were reported for both criteria separately per species and
permanent plot.

Long-term simulations.—As model validation is con-
strained by the short length of the empirical data series, we
also simulated Potential Natural Vegetation (PNV), ie.,
the species composition expected in a pseudo-equilibrium
state in the absence of anthropogenic influences (Ellenberg
2009), at seven sites along a well-studied environmental
gradient in Switzerland (cf. Bugmann and Solomon 2000).
Note that we could not apply the models at the sites
Grande Dixence and Bever, since we were not able to cali-
brate a mortality model for Pinus cembra L. Starting from
bare ground, forest dynamics were simulated for 1,500 yr
without any large-scale disturbances, and forest structure
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and composition at the end of the simulation were exam-
ined qualitatively for their plausibility (Rasche et al. 2012).

REsuULTS

Size and growth influences on mortality

Formulae of the final models varied between tree species
with respect to the flexibility of the covariates DBH and
relBAI (Appendix S1: Table S3). Nevertheless, all models
except for those of Cornus mas, Pinus mugo, and Ulmus
glabra, which were based on tree growth alone (Formulae
3 and 4), included both explanatory variables. Most com-
mon was Formula 7 with medium complexity and the
terms In(DBH) + log;o(relBAI) + (log;o(relBAI))?, which
was selected for 10 species. Mortality of three species was
best predicted using Formula 5, including only DBH and
relBAI without any quadratic term or interaction. Only
for Tilia cordata (Formula 9) and Fraxinus excelsior (For-
mula 11), models were more complex and included also
the interaction between In(DBH) and log;(relBAI).

In spite of the different model formulae, the overall pat-
tern of simulated mortality with respect to the main pre-
dictors was very similar for most species, i.e., mortality
risk decreased with increasing tree size and growth result-
ing in reverse J-shaped mortality over DBH and relBAI
(Fig. 1). However, the models differed concerning (1) the
respective influence of size and growth as characterized
by the steepness of the slope of mortality over DBH and
relBAI, and (2) the overall level of mortality probabilities.
Based on these two criteria, each species could be visually
assigned to one of four main patterns: (1) low overall
mortality and a slight effect of DBH and relBAI (A4bies
alba, Cornus mas, Fagus sylvatica, Picea abies, Pinus
mugo, Tilia cordata and Ulmus glabra), (2) high overall
mortality, also in large trees, and a strong growth influ-
ence on mortality (A/nus incana, Betula pendula, Corylus
avellana and Sorbus aria), (3) strong impacts of DBH and
relBAI on mortality (Acer pseudoplatanus, Pinus sylves-
tris, Quercus pubescens and Quercus spp.), and (4) inter-
mediate impacts of DBH and relBAI on mortality (Acer
campestre, Carpinus betulus and Fraxinus excelsior).

None of the species-specific models included a quadra-
tic term for DBH, which would suggest a U-shaped mor-
tality pattern, i.e., higher mortality for both small and
larger trees. The quadratic term of log;o(relBAI), which
was included in 12 of the 18 final models, dominantly
resulted in a pronounced decrease of mortality probability

Fic. 1.

Prediction maps of 10-yr mortality probability as a function of diameter at breast height (DBH, mm) and relative basal

area increment (relBAI). In accordance with the variable transformations applied in the models, logarithmic scales are used for plot-
ting, i.e., natural logarithm for DBH and the base 10 logarithm for reIBAI (cf. logl0 transformation; Stahel 2015). The interval
At = 10 yr for the mortality probability was selected to increase the contrast of the typically very low annual mortality probabilities.
Predictions of models that included an additional climate or stand characteristic are shown for the additional covariate fixed at its
mean value as indicated in the plot. Additional covariates are BA, stand basal area (m*ha); P, mean annual precipitation sum
(mm); mDBH, arithmetic mean DBH (mm); mT, mean annual air temperature (°C); or none. Observations of DBH and relBAI
are shown with black triangles. No-growth observations are located at the lower limit of the predictive map defined by back-

transformed log10(0), i.e., 0.0008029.
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with increasing growth. For Alnus incana, Fraxinus excel-
sior, and Sorbus aria, the quadratic growth term decreased
the predicted mortality probability of trees with very slow
growth (relBAI < 0.002), but did not modify the overall
positive effect of growth on survival.

Climate and stand influences on mortality

From the set of the most promising climate or stand
characteristics selected for each species (cf. Appendix S1:
Table S4), only a few remained in the final models
(Appendix S1: Table S3). Additional covariates consider-
ably improved the models of Alnus incana (improved by
BA), Corylus avellana (P), Picea abies (mDBH), Pinus
mugo (P), Quercus pubescens (mT), and Quercus spp.
(BA). The two stand variables (BA and mDBH) were
positively correlated with mortality (cf. Appendix SlI:
Fig. S1). The effect of precipitation (P) was inconsistent.
At high P, mortality probability was lower for Pinus
mugo but higher for Corylus avellana. Higher mean tem-
perature (mT) increased mortality of Quercus pubescens.
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None of the additional covariates that remained in the
models required an interaction term with tree growth.
Thus, the general relationship between relBAI and mor-
tality was not altered.

Alternative models without the additional covariate
were based on the same or a similar formula as the full
model (cf. Appendix S1: Table S5). Thus, they indicate a
similar complexity and shape of the relationship between
DBH, relBAI, and mortality (cf. Appendix S1: Fig. S2).
For Corylus avellana, Picea abies, and Quercus pubes-
cens, a formula with lower flexibility was selected for the
alternative model, which resulted in size-independent
mortality for Picea abies.

Calibration performance

Discrimination accuracy (AUC) was high for most
species (Table 3). While the ability of the models to cor-
rectly identify tree status was acceptable for seven species
(0.7 < AUC < 0.8), it was even excellent for nine species
(0.8 < AUC < 0.9). Only the models of Picea abies

TaBLE 3. Performance criteria of the calibrated models.
AUC

Species Formula  Covariate BS BSCV  AUC Ccv Ya=1 (%) mad ppias (%) rmad ppias
Abies alba A7 - 0.1233  0.1235  0.721  0.720 1.3 0.7 0.53
Acer campestre A7 - 0.1310  0.1323  0.815  0.813 2.2 1.5 0.68
Acer pseudoplatanus AS - 0.1114  0.1121 0.847  0.846 1.7 0.8 0.48
Alnus incana B7 BA 0.1828  0.1843  0.790  0.788 9.1 2.7 0.30
Alnus incana A7 - 0.1869  0.1881  0.778  0.777 9.1 4.6 0.51
Betula pendula A7 - 0.1878  0.1886  0.766  0.765 4.5 23 0.51
Carpinus betulus A7 - 0.1335  0.1337  0.806  0.806 22 1.3 0.59
Cornus mas A4 - 0.1270  0.1280  0.790  0.789 1.8 0.6 0.32
Corylus avellana B7 ) 0.2024  0.2037 0.753  0.751 6.7 1.6 0.24
Corylus avellana AS - 0.2144  0.2152  0.725  0.724 6.7 32 0.48
Fagus sylvatica A7 - 0.1032  0.1032  0.814 0.814 1.4 0.5 0.36
Fraxinus excelsior All - 0.1326  0.1328  0.813  0.813 2.2 1.1 0.48
Picea abies B5 mDBH 0.1348  0.1349  0.659  0.658 1.5 1.1 0.72
Picea abies A3 - 0.1371  0.1372  0.616  0.616 1.5 1.0 0.68
Pinus mugo B3 P 0.1217  0.1218  0.766  0.766 1.2 0.5 0.44
Pinus mugo A3 - 0.1266  0.1267  0.720  0.720 1.2 1.0 0.84
Pinus sylvestris AS - 0.1128  0.1132  0.815  0.814 1.7 0.6 0.36
Quercus pubescens B7 mT 0.0777  0.0782  0.892  0.891 1.6 0.4 0.22
Quercus pubescens AS - 0.0840  0.0843  0.884  0.884 1.6 0.7 0.46
Quercus spp. B7 BA 0.1123  0.1125  0.842  0.842 2.0 1.0 0.51
Quercus spp. A7 - 0.1150  0.1152  0.838  0.838 2.0 1.1 0.56
Sorbus aria A7 - 0.1563  0.1573  0.821  0.821 33 1.8 0.55
Tilia cordata A9 - 0.1233  0.1240  0.798  0.796 1.5 1.3 0.89
Ulmus glabra A3 - 0.1658  0.1672  0.616  0.614 1.8 1.0 0.53

Notes: For model formulae, refer to Table 2. Brier Score (BS) and Area Under the receiver operating characteristic curve (AUC)
were calculated for the entire calibration data set and during repeated 10-fold cross-validation (CV) to assess the predictive ability
of the mortality models. To quantify the variation in prediction accuracy, the mean absolute deviation (mad) of the prediction bias
Poias defined as the difference of the mean predicted annual mortality probability pa,—; and the mean annual mortality rate ya,—
was calculated at the level of single inventories of permanent plots (cf. Appendix S2). Observed variability and mad py;,s increase
with increasing mortality rates. Therefore, we additionally calculated the respective relative value (rmad py;as), i.€., the ratio of mad
Puias and the observed annual mortality rate y5,—;. Both values were used to evaluate the models with respect to their ability to pre-
dict correct mortality rates in space and time. For species for which the final model included an additional covariate (highlighted in
boldface type), the performance of the best model without an additional covariate (A1-12) is also given (alternative models). Addi-
tional covariates are BA, stand basal area (m*/ha); P, mean annual precipitation sum (mm); mDBH, arithmetic mean DBH (mm);
mT, mean annual air temperature (°C).
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and Ulmus glabra had no discriminative ability. The
over-optimism assessed via cross-validation was low for
all species, i.e., the relative difference between cross-vali-
dation BS and apparent BS was <1% of apparent BS,
and cross-validation AUC was only <0.003 lower than
apparent AUC (Table 3).

AUC plotted as a function of DBH revealed that dis-
crimination was not equally successful across tree size
(Appendix S1: Fig. S3). Mostly, AUC decreased with
increasing DBH, indicating that the models had less or even
no discriminative power for larger trees (cf. Acer pseudopla-
tanus, Fagus sylvatica, Picea abies, Pinus mugo, Quercus
pubescens, Quercus spp., and Ulmus glabra). In contrast, an
increasing AUC trend with tree size was identified for Cor-
nus mas and Corylus avellana. The models of the remaining
species either had the best AUC for medium-sized trees (cf.
Acer campestre and Fraxinus excelsior) or achieved a con-
stant discrimination over the considered DBH range.

The variation of the prediction accuracy between sites
and inventory periods, assessed as rmad pyp;.s, ranged
between 0.22 and 0.89 (Table 3). Fairly large values
resulted for Acer campestre, Picea abies, Pinus mugo, and
Tilia cordata (rmad py;as > 0.68), while models of Alnus
incana, Cornus mas, Corylus avellana, and Quercus pub-
escens achieved lowest rmad ppi,s (<0.32) and hence the
most accurate prediction of mortality rates at the level
of single inventories. The underlying values of mad py;a.s
indicate that the models estimate annual mortality rates
at the level of single inventories with an average absolute
bias of 0.4-4.6% per year.

The alternative models that did not include additional
covariates had reduced discriminative power, i.e., lower
AUC, when compared to the corresponding full model
(Table 3). Nevertheless, the reduction in AUC was small
(<0.03 except for Picea abies and Pinus mugo) and did not
change the discriminative ability, as rated following Hos-
mer and Lemeshow (2000). However, the models’ ability
to accurately predict mortality rates in space and time
was more severely affected when additional covariates
were omitted. Models that included an additional covari-
ate typically had a substantially lower rmad py;,s than the
alternative models for the respective species. Only for
Picea abies was rmad py;,s not reduced by the additional
covariate, which was in accordance with the poor discrim-
inative ability of both model formulations of this species.

Implementation of inventory-based mortality models
in ForClim

Short-term simulations.— Compared with forest inven-
tory data, the new model versions ForClim IM_mean and
IM_sd performed slightly worse than ForClim 3.3 in pre-
dicting stand- and species-specific BA at the end of the
historical runs (Fig. 2, Table 4; Appendix S1: Table S6).
Overall, the inventory-based models overestimated BA.
Although BA of several species was too high, overestima-
tion was particularly driven by Fagus sylvatica (RMSE >
11 m%*ha, rbias > 30%) and occurred especially at
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permanent plots where this species dominates (e.g.,
Firstenhalde and Weidwald; cf. Fig. 2; Appendix Sl1:
Table S6). BA was underestimated by the new mortality
functions for Alnus spp., Betula pendula, Corylus avellana,
Fraxinus excelsior, and Tilia spp. (cf. Table 4). Account-
ing for uncertainty in model parameters resulted in pro-
nounced underestimation of BA, so that the IM_mean
approach achieved better BA performance than ForClim
IM_sd. The reduction of BA caused by the random sam-
pling of the parameters of the mortality formulation was
especially strong for Acer campestre, Carpinus betulus,
Sorbus spp., and Tilia spp. but negligible in the case of
Fagus sylvatica (cf. Fig. 2, Table 4).

In contrast, IM_sd was superior to ForClim 3.3 in pre-
dicting accurate numbers of dead trees for most of the
species (cf. Table 4), but the performance of ForClim 3.3
in predicting Nge.q Was better in the majority of the per-
manent plots (cf. Appendix S1: Table S6) since most of
them were dominated by Fagus sylvatica. For this spe-
cies, mortality rates were strongly underestimated by
both inventory-based mortality functions (cf. Table 4).

Based on the simulation results with the new mortality
functions, three main types of disagreement between
observed and simulated BA and Nge.q could be distin-
guished. For their interpretation, the number of observed
versus simulated Nge.q as a function of DBH (cf.
Appendix S1: Fig. S6) must be considered, as follows.

First, simulated BA for Fagus sylvatica, Pinus mugo,
and Pinus sylvestris was overestimated since mortality
was considerably underestimated, most markedly for
Fagus sylvatica trees with DBH < 20 cm. Second, the
opposite was found for Acer campestre, Carpinus betulus,
Fraxinus excelsior, and Tilia spp. simulated by IM_sd
since too many trees died, in particular between 16 and
40 cm DBH (e.g., Tariche Haute Cote, Weidwald).
Finally, BA and Ng.q were jointly underestimated for
several other species including Picea abies, which is the
result of considerably underestimated mortality of small
trees (DBH < 8 cm) and overestimated mortality of large
trees (e.g., Scatle). However, the prediction accuracy
of trees with large DBH varied among sites. In contrast
to mortality patterns in the inventory data, simulated
mortality over DBH of Acer pseudoplatanus, Fagus sylvatica,
and Picea abies, was not reverse J-shaped but clearly
hump-shaped (cf. Appendix S1: Fig. S6).

Long-term simulations.—Species composition and BA
predicted after 1,500 yr differed considerably between
ForClim 3.3 and ForClim including the new mortality
functions. In the center of the Swiss environmental gradi-
ent, the dominance of Fagus sylvatica as simulated by For-
Clim IM_mean and IM_sd was even more evident than in
short-term simulations (Fig. 3). High BA of Fagus sylvat-
ica was fostered by trees reaching very large DBH (e.g.,
>280 cm in Bern). At the sites dominated by Fagus sylvat-
ica, Carpinus betulus also established in small numbers,
but those trees reached great size and thus contributed
strongly to total BA. In comparison, the BA of other
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model versions of ForClim (from left to right: ForClim 3.3, ForClim IM_mean, ForClim IM_sd) for each permanent plot at the last
inventory. The acronyms of the permanent plots and the years of the last inventories are available in Appendix S1: Table S2.

species was negligible. This is in contrast to ForClim 3.3
and expected PNV under these conditions (Bugmann and
Solomon 2000). The consideration of uncertainty in
model parameters (IM_sd) reduced BA of Carpinus betu-
lus and increased the presence of Picea abies but did not
change the strong prevalence of Fagus sylvatica.

In contrast to expectations and outputs from ForClim
3.3 (Rasche et al. 2012), PNV in Sion simulated by For-
Clim IM_mean and IM_sd was not dominated by Pinus
sylvestris but by Pinus mugo, and BA was comparably low.
In addition, simulations of ForClim IM_mean resulted in
an unexpected large presence of Acer campestre. The

simulated biomass of Picea abies in Davos was lower than
expected and suggested by ForClim 3.3, in particular for
DBH > 115 cm.

Discussion

The development of new inventory-based mortality
models provided novel insights with respect to (1) species-
specific differences of mortality patterns, (2) potential
advances of growth-based mortality models that include
climate and stand characteristics, and (3) the suitability of
empirical mortality models for implementation in DVMs.
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TaBLE 4. Species-specific root mean square error (RMSE, m*ha or ha™!, respectively) and relative bias (rbias, %) of BA and
Ngead simulated by the three ForClim versions: latest model version (3.3), ForClim with new inventory-based mortality models
using mean parameter estimates (IM_mean), and using randomly sampled parameters (IM_sd).

Basal area (BA) Number of dead stems (Ngeaq)
33 IM_mean IM_sd 33 IM_ mean IM_sd

Species RMSE rbias RMSE rbias RMSE rbias RMSE rbias RMSE rbias RMSE rbias
Abies alba 4.6 7.2 4.2 7.6 5.8 —14.3 4.0 —44.0 49 —56.3 3.1 -33.9
Acer campestre 0.1 241.5 0.1 311.7 0.0 148.8 0.1 33.7 0.2 —48.2 0.1 40.0
Acer pseudoplatanus 32 -31.2 1.8 —16.0 2.0 —23.5 1.3 —24.2 1.2 -32.9 0.9 —16.0
Alnus spp. 0.3 -2.7 0.5 —88.6 0.5 -97.2 0.6 2.0 0.2 -8.1 0.2 —104
Betula pendula 1.4 —50.1 1.8 —74.1 22 -99.0 1.5 —194 1.5 —16.3 1.6 —12.5
Carpinus betulus 3.0 —43.1 1.3 9.3 2.5 —38.2 1.1 29.0 1.3 =379 1.4 26.3
Corylus avellana 0.1 —94.4 0.1 —94.3 0.1 -97.8 0.6 -30.4 0.6 =319 0.6 —28.6
Fagus sylvatica 6.4 57 115 33.1 11.2 32.5 3.0 —24.3 5.2 —62.5 4.9 —58.3
Fraxinus excelsior 2.8 —52.1 3.6 —69.2 5.0 -95.1 1.0 —25.7 0.9 -0.5 1.4 44.0
Picea abies 3.0 2.5 32 —19.7 2.9 —17.4 1.6 —41.1 1.4 -33.6 1.4 —34.6
Pinus mugo 2.1 171.9 3.0 240.2 3.1 251.0 3.1 —61.8 3.7 —74.0 3.7 —74.2
Pinus sylvestris 34 10.5 2.2 243 2.3 17.7 0.5 —23.2 0.6 -30.2 0.5 —24.9
Quercus pubescens 0.4 -95.9 04  —100.0 04  —100.0 0.1 —-22.8 0.0 -21.0 0.0 -21.0
Quercus spp. 2.7 243 2.0 10.3 2.8 —17.7 1.7 —66.3 1.0 —38.0 0.4 —4.9
Sorbus spp. 0.3 —53.1 0.5 11.4 0.4 —58.7 0.4 —18.4 0.7 -36.1 0.4 —18.3
Tilia spp. 0.5 -17.6 0.8 -32.2 2.7 -99.2 0.4 —45.5 0.3 -16.5 14 132.0
Ulmus glabra 0.4 262.8 0.2 122.5 0.3 172.5 0.1 —36.8 0.1 -30.6 0.1 2.1
Number of 9 10 7 6 1 1 7 5 4 4 9 10

species with
best performance

Notes: Results are shown for the last inventory of every permanent plot. For each species and variable of interest, the lowest
RMSE and the rbias closest to zero were highlighted in bold. Trees with DBH < 4 cm were not considered.

Species-specific patterns of mortality

Tree mortality over DBH and relBAI was reverse
J-shaped for nearly all species in our study. This is con-
gruent with ecological theory of stress and vigor (Waring
1987), which suggests that individuals with restricted
access to resources, i.e., those that have a small rooting
and crown system (small trees; Harcombe 1987), and
individuals that show reduced vitality (slow-growing
trees; cf. Manion 1981, Stephenson et al. 2011), are
exposed to higher stress and thus usually have a higher
probability to die.

This general relationship between DBH, relBAI, and
mortality is modified by species-specific traits that are
related to life history strategies (cf. Fig. 4; Grime 1977,
Brzeziecki and Kienast 1994). Specifically, species that can
reach high age show lower mortality rates than typical
pioneers. In addition, species with high shade tolerance
are expected to have a good ability to survive in the sub-
canopy (Givnish 1988), i.e., when being small, and to resist
low-growth periods (cf. storage hypothesis; Valladares and
Niinemets 2008). Conversely, less shade-tolerant species
are more likely to show increased mortality at low DBH
and relBAI and thus a pronounced effect of size and
growth on mortality (Kobe and Coates 1997). The four
patterns that we identified for the influences of size and
growth on mortality represent different expressions of
these two traits, as discussed in the following.

The first group features low overall mortality and
weak impacts of DBH and relBAI. It is dominated by
relatively long-lived species with high shade tolerance
(cf. Bugmann 1994 for specifications of maximum age
and shade tolerance). While this applies to Abies alba,
Fagus sylvatica, Picea abies, and Tilia cordata, the lifes-
pan of Ulmus glabra is shorter, and thus the overall mor-
tality rate we found appears low. However, the model for
Ulmus glabra had only low discriminative ability, and
thus this pattern is not necessarily reliable. In turn, Cor-
nus mas and Pinus mugo are less shade-tolerant than the
other species in this group, and the influences of DBH
and relBAI arising from their models appear rather
weak. Bearing in mind the shrubby shape and small size
of Cornus mas, a maximum age of 300 yr can be
regarded as long living (San-Miguel-Ayanz et al. 2016).
When taking into account the narrow DBH range of this
species covered in the data, this may have led to weaker
effects of DBH and relBAI than expected from species
attributes. In contrast, Pinus mugo may not feature par-
ticularly high mortality rates for small and slow-growing
trees due to its occurrence in relatively open stands
under quite stressful conditions with respect to water
and nutrient availability (Ellenberg 2009, Brang et al.
2014). As more competitive species are missing in these
stands, the mortality patterns of Pinus mugo do not indi-
cate high shade tolerance, but rather high tolerance of
drought and lack of nutrients.
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Fic. 3. Potential Natural Vegetation (PNV, BA per species) simulated along the Swiss environmental gradient at the end of a

1,500-yr run using ForClim 3.3 (left bar for each plot), ForClim IM_mean (middle bar), and ForClim IM_sd (right bar). Expecta-
tions of PNV are given according to Rasche et al. (2012). For the color codes of the less abundant species, refer to Fig. 2. Note that
Larix decidua Mill. was not simulated in ForClim since no empirical mortality model could be fitted for this species.

In contrast, high overall mortality was identified for
the second group that consists mainly of short-living
pioneers, i.e., Alnus incana, Betula pendula, Corylus avel-
lana, and Sorbus aria. The high mortality of slow-grow-
ing trees of these species is due to their low shade
tolerance (for similar patterns cf. Wunder et al. 2008,
Moustakas and Evans 2015). Given their low competi-
tiveness, even large trees of these species experience high
mortality risk (Brzeziecki and Kienast 1994).

Species of the third group show a similarly strong influ-
ence of relBAI on mortality, as Pinus sylvestris, Quercus
pubescens, and Quercus spp. feature low shade tolerance
as well. However, due to a higher maximum age, more
large trees survive compared to the second group. In con-
trast, Acer pseudoplatanus is typically considered a shade-
tolerant species, and its seedlings achieve high survival
and low but sustained growth under low light conditions
(Ammer 1996). Nevertheless, shade tolerance consider-
ably decreases when Acer seedlings become taller, which
may explain why mortality decreased strongly with size
and growth for this species (Hein et al. 2008).

The fourth group of Acer campestre, Carpinus betulus,
and Fraxinus excelsior is characterized by medium life

expectancy and medium to high shade tolerance. This is
reflected in mortality patterns with average mortality
effects of tree size and growth, which bridge between the
other groups.

In contrast to the often proposed U-shaped mortality
over tree size (Buchman et al. 1983, Lorimer and Frelich
1984), we did not find any evidence of a positive quadra-
tic term for DBH in the models. This agrees with the
results of Ruiz-Benito et al. (2013) and a recent assess-
ment of inventory-based mortality models that revealed
U-shaped mortality in four out of 58 cases only
(Hiulsmann et al. 2017). Higher background mortality of
large trees is typically associated with a number of addi-
tional mortality agents such as insect attacks, drought,
rot, or mechanical instability (Franklin et al. 1987, Das
et al. 2016, Grote et al. 2016). In the forest reserves
studied here, the lack of U-shaped mortality is most
likely related to the relatively short time without forest
management (approximately 60 yr, with the exception of
>200 yr in Derborence and Scatle; cf. Heiri et al. 2011,
Meyer and Schmidt 2011). Consequently, a large popu-
lation of big trees that would show the right tail of
the U-shaped mortality is not present yet, in contrast to
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species is shown as a function of tree size (DBH) and growth (relBAI). Species that can reach high age show lower mortality rates
than typical pioneers. In addition, species with high shade tolerance are expected to have a good ability to survive in the sub-canopy,
i.e., when being small, and to resist low-growth periods. Conversely, less shade-tolerant species are more likely to show increased
mortality at low DBH and relBAI and thus a pronounced effect of size and growth on mortality. Axes have the same scales as in

Fig. 1.

true old-growth forests (Hiillsmann et al. 2016; cf.
Appendix S3 for an extended discussion on U-shaped
mortality over tree size and growth).

Climate and stand influences on mortality

The infrequency of additional covariates for climate
or stand properties in the final models does not necessar-
ily disprove any direct long- or short-term environmental
effects on mortality. Rather, this suggests that they are
considered, at least to a large degree, via tree size and
growth. Our study provides ample evidence across a
large number of tree species that size (DBH) and growth
(relBAI) sufficiently capture the influences of climatic
and stand conditions on mortality probability, and tree
size and growth can thus be used as integrative indica-
tors of vitality (cf. Dobbertin 2005). In a previous study,
we showed that not only precipitation and temperature
but also a large variety of drought indices did not sub-
stantially improve mortality predictions for Fagus sylvat-
ica (Hillsmann et al. 2016), a result supported by the
findings of this study. Nevertheless, we were unable to
test the influence of drought on mortality for all species
due to limited data on soil water conditions. In addition,
intense drought or bark beetle attacks may lead to sud-
den tree death (Peterken and Mountford 1996, Meddens
et al. 2012) that cannot be elucidated with multi-annual
remeasurements and would require a higher temporal
resolution via annual inventories (e.g., Neuner et al.

2015) or dendrochronological data (e.g., Cailleret et al.
2017). Similarly, information on climate and stand prop-
erties was available at the level of the permanent plots
only rather than for the local tree neighborhood, which
may have impeded the identification of such effects on
the mortality probability of individual trees.

Species that had additional covariates in the final
model belong to different groups with respect to mortal-
ity patterns as a function of DBH and relBAI, and thus
feature different life history strategies. In addition, these
models included different covariates and effect directions
(cf. influence of precipitation). Accordingly, the covari-
ates do not reflect universal but rather species-specific
environmental influences that may additionally depend
on the available data set, as discussed in more detail in
Appendix S3. Finally, none of the covariates interacted
with relBAI, suggesting that the growth influence on
mortality is constant across different environments.

Although we restricted our analysis to species with a
minimum data coverage of 20 trees per plot and at least
10 permanent plots, the results indicate that the estimation
of environmental effects on mortality critically depends on
sufficiently wide and well supported environmental gra-
dients. Otherwise, questionable effects (Pinus mugo and
Quercus pubescens, cf. Appendix S3) are likely to occur.
In turn, this may have prevented additional covariates to
be retained in the models of other species, because many
reserves are near the center of a species’ range. Thus they
do not encompass marginal populations with truly
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extreme conditions, which however is key for establish-
ing the relationship between environmental effects and
ecological processes.

Suitability of empirical mortality models for
incorporation in DV Ms

Calibration performance.—Mortality models for imple-
mentation in DVMs need to predict accurate mortality
rates (Bircher et al. 2015, Cailleret et al. 2016). We
therefore reported the relative variation in prediction
accuracy between inventories (rmad py;,s), revealing con-
siderable differences between species. On the one hand,
the high accuracy in predicting mortality rates was often
related to homogeneity of the underlying data (few per-
manent plots from one reserve only, cf. Cornus mas).
The mortality model for this species is thus not necessar-
ily better than the others, but it was fitted to rather
homogeneous stand and site conditions. On the other
hand, low rmad py,s values were identified for three
models that included additional covariates (Alnus
incana, Corylus avellana, and Quercus pubescens). Thus,
the covariates improved the representation of variability
in mortality between inventories in these data sets. Nev-
ertheless, prediction accuracy was considerably lower for
other species, even if their model included a climate or
stand characteristic (e.g., Picea abies). This means that
observed and predicted mortality rates deviated consid-
erably for several species and that the models under- or
overestimated annual mortality by up to 2.7% (quanti-
fied as the absolute value mad py;.s; cf. Table 3, Alnus
incana) when applied in the calibration domain.

These findings confirm that the mortality process is
highly variable in space and time (cf. Hawkes 2000,
Wunder 2007), and it remains challenging to explain this
variability with climate and/or stand characteristics
using inventory data with a low temporal resolution.
After all, mortality processes are likely to always be sub-
ject to pronounced stochasticity due to the complexity
of biological, mechanical and competitive influences on
mortality (Allen et al. 2015, Anderegg et al. 2015).
Thus, it may be exceedingly hard to include these pro-
cesses in any mortality functions, even in the most
“mechanistic” approaches (Meir et al. 2015). This sug-
gests that more emphasis should be placed on the ade-
quate representation of the uncertainty in parameter
estimates of empirical-based mortality functions. Param-
eter combinations can be sampled within their confi-
dence intervals in a stochastic way as we did here, but we
acknowledge that an even more beneficial approach
would be to consider the cross-correlations between
parameter values, which can be quantified, e.g., using
Bayesian methods (Hartig et al. 2012).

The differences in AUC between species and trees of
different size and the related uncertainty must be consid-
ered when empirically based mortality models are used
to simulate forest dynamics in DVMs. Nevertheless, low
AUC is less crucial for the implementation of mortality
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functions in DVMs. Poor discriminative ability can be
the result of mortality agents that impair the relationship
between mortality and the predictors chosen, or it can
be due to poor data sources. For example, the unsatisfac-
tory discrimination of Ulmus glabra may be caused by
the rapid decline in response to infection with Ophios-
toma novo-ulmi (Dutch elm disease; Brasier 2000) or by
the small sample size used to calibrate its mortality func-
tion (cf. Table 1). In turn, the poor discrimination
between living and dead trees of Picea abies was most
likely caused by the impacts of small-scale windthrow,
wet snow, or insect attacks that often result in sudden
death irrespective of tree growth (Svoboda et al. 2010).

In a previous study, AUC patterns over DBH provided
novel insights into the mortality processes of Fagus
sylvatica that are changing during a tree’s lifetime
(Hiilsmann et al. 2016). Our results for a much extended
set of species confirm that the models’ discriminative abil-
ity is decreasing with tree size also for several other tree
species. This supports the conclusion that competition,
which disproportionally affects smaller trees (Das et al.
2016), is the dominant mortality process reflected in the
models. As competition becomes lower with increasing
size and other mortality agents gain importance (cf.
Holzwarth et al. 2013), the discriminative ability of the
models is reduced. This is supported by the finding that
Cornus mas and Corylus avellana, which reach small
DBH only, show an increase of AUC with size. However,
models of other species also retained good discriminative
ability for larger DBH, and except for Abies alba, all these
species feature low shade tolerance. This suggests that in
shade-intolerant species even large trees may die due to
competition, or due to mortality agents affecting the
same trees as competition, which confers mortality
models a good discrimination also in large individuals.

Considering that the behavior of parsimonious empiri-
cal models based on tree size and growth was biologi-
cally meaningful for most species, and that their
performance was quite high and not impacted by
changes in the sampling design (as supported by cross-
validation), we propose that the mortality algorithms
developed here are suitable for implementation and eval-
uation in DVMs. Since covariates for climate and stand
were only rarely included and partly revealed ecologi-
cally questionable relationships, we only implemented
models without environmental covariates in ForClim.
This appears appropriate since, from the species con-
cerned, only Picea abies and Quercus spp. are of impor-
tance in the simulated permanent plots.

Implementation of the inventory-based mortality models
in ForClim.— Although the predictions of stand basal
area and species composition based on the new ForClim
versions were generally close to historical observations,
their performance was lower than with ForClim 3.3, espe-
cially for two major tree species of Central Europe, Fagus
sylvatica and Picea abies. In the long term, PNV could
not be simulated adequately and showed a strong
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overestimation of Fagus sylvatica (and Carpinus betulus in
case of ForClim IM_mean). This was much to the
detriment of other species such as Picea abies or Tilia
spp., whose growth was excessively reduced by low light
availability. For Picea abies, the new empirical mortal-
ity formulations prevented trees with DBH > 115 cm,
although Picea abies in old-growth, subalpine forests
clearly can attain larger size (Hillgarter 1971). The simula-
tion performance differed considerably among species, and
poor results could be attributed to over- and underestima-
tion of mortality rates for different tree sizes. Overall, the
calibration performance of the inventory-based models was
not necessarily a good predictor for the accuracy of the
simulation of species-specific BA and Nge,q by ForClim.

Since growth is one of the main predictors of tree death,
the parameters determining growth and survival are highly
correlated (Bircher 2015). Hence differences between sim-
ulated and observed growth rates may partly explain dif-
ferences between simulated and observed mortality rates.
For instance, underestimated mortality rates of Fagus syl-
vatica, especially for trees with DBH < 20 cm, can be
related to the overestimation of their simulated relative
growth rates (see Appendix S1: Fig. S4). This systematic
bias, which was also observed for Picea abies and Pinus
sylvestris (albeit to a lower extent), can originate from
multiple sources such as an inaccurate simulation of the
effect of light availability or crown size on tree growth
(Mina et al. 2015), difficulties in the growth equation that
is used to simulate diameter increment (Moore 1989), or
an unrealistic stand initialization in ForClim. Because of
the random and even allocation of trees to an initial set of
patches, which are then replicated to obtain 200 patches
per simulation, the diversity in stand structure among
patches at initialization is much lower than observed in
the field. Similarly, as ForClim does not track tree posi-
tion, the variability in competition intensity among trees
may not be represented accurately enough.

Mortality predictions appeared particularly problematic
for trees with DBH < 10 cm and > 60 cm (cf. Larocque
et al. 2011, Bircher et al. 2015). These difficulties are
likely to result from extrapolation since the inventory
data set is truncated for small DBH (calipering limit of 4
and 7 cm, cf. Material and Methods), and contains fewer
large trees than would occur in true old-growth forests.
In addition, different agents affect the mortality of large
individuals that may not be reflected well in the empiri-
cal mortality models (cf. AUC patterns over DBH).
When implemented in DVMs, U-shaped DBH-mortal-
ity functions may be preferable over J-shaped functions
to avoid the persistence of very large trees in long-term
simulations, as observed here with Fagus sylvatica. To
implement this U-shape in spite of the poor data avail-
ability of large trees, semi-empirical models that com-
bine empirically derived formulations with theoretical
adjustments (e.g., assuming a maximum DBH; Manusch
et al. 2012) may be required. In turn, mortality formula-
tions for small trees should be refined using regeneration
surveys, inventories without calipering limit, stem cross-
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sections, or experiments (Wernsdorfer et al. 2008, Can-
ham and Murphy 2016, Evans and Moustakas 2016). At
the same time, the representation of tree regeneration
and establishment that similarly suffer from a poor
empirical foundation could be improved by extending
mortality models to seedlings (Wehrli et al. 2007).

Due to the non-linearity between the predictors and
the mortality probability (cf. logit link function), which is
then transposed into a binary variable (tree death or sur-
vival) based on a stochastic approach (see Bircher et al.
2015), accounting for uncertainty in model estimates typi-
cally increases mortality rates. Although this approach
can reduce systematic underestimations of tree mortality
rates and thus improve simulation accuracy (unpublished
manuscript), it did not considerably increase mortality
rates of Fagus sylvatica. This may be related to the large
number of records in the calibration data set of this spe-
cies, which resulted in low parameter uncertainty. Never-
theless, accounting for uncertainty appears promising for
species for which inventory sample size is small and diver-
sity in mortality patterns among sites and individuals is
high, and we therefore advocate evaluating this approach
further (Cressie et al. 2009).

CONCLUSION

We identified dominantly reverse J-shaped mortality
over tree size and growth across 18 tree species, using
inventory data from forest reserves. These patterns
reflect the indirect influences of resource availability and
tree vitality on mortality but rebut the assumption of a
general substantial instability of large trees. Further-
more, the patterns confirmed that size- and growth-
dependent mortality relationships are modulated by
species-specific attributes.

If species-specific models are unfeasible due to data lim-
itations, we propose that maximum longevity and shade
tolerance should be used for the classification of tree spe-
cies into PFTs to predict mortality, but we think that this
approach should be tested further (cf. Bircher 2015).
Species with intermediate behavior may be misrepresented
if the continuous traits of lifespan and shade tolerance
are used to build categories, and species are accordingly
assigned to the resulting groups. The same applies if
additional attributes modify the mortality patterns (e.g.,
Cornus mas, Pinus mugo, Ulmus glabra). Therefore,
species-specific mortality models should be favored over
parameterizations for PFTs, so as to obtain DVMs with
an appropriate representation of demographic diversity.

Based on our analysis of the role of environmental
covariates in mortality models, we conclude that tree size
and growth alone are well suited to predict tree death of
most species. These models consider environmental
effects indirectly, i.e., via integrative indicators of tree
vitality such as size and growth. Nevertheless, the cli-
matic sensitivity of growth-based mortality functions
should be verified using data with higher temporal reso-
lution, followed by an in-depth evaluation in DVMs.
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Additionally, the predictive ability of tree size and
growth is restricted to mortality associated with particu-
lar size and growth levels. Thus, processes such as short-
term intense drought, mechanical damage or insect
attacks may not be fully reflected by these models
(Larson and Franklin 2010, Cailleret et al. 2017).
Finally, we emphasize that caution is required when
additional covariates are considered in mortality models.
Their effects may appear erratically if the environmental
gradient underlying the observational data is insuffi-
cient. Applying such models means leaving the domain
of calibration, which can result in unwarranted extrapo-
lation and misleading inference (Hawkes 2000, Woolley
et al. 2012, Kuhn and Johnson 2013). Therefore, the
selection of environmental covariates in mortality mod-
els should be based on the principle of parsimony (Sims
et al. 2009, Burkhart and Tomé 2012).

When incorporated in a DVM, the new inventory-
based mortality models successfully simulated short-
term dynamics but showed weaknesses in simulating
stand structure and species composition in the long
term. These difficulties were the result of feedbacks
between simulated growth and mortality as well as of
extrapolation to small and very large trees. Thus, both,
growth and mortality processes and their species-specific
differences should be revisited jointly, with a particular
focus on small and very large trees, e.g., using a Bayesian
calibration approach (Hartig et al. 2012, Bircher 2015).
Yet, we conclude that inventory-based mortality formu-
lations can replace theoretical concepts of mortality in
DVMs since they provide species-specific mortality rela-
tionships that are not based on single parameters such
as maximum age and growth but on empirical relation-
ships over a tree’s lifetime.

The benefit of empirical mortality models in DVMs
and the accuracy of long-term predictions of PNV could
be enhanced further if disturbance-related mortality was
incorporated more explicitly (Seidl et al. 2011, Temperli
et al. 2013). To this end, the identification and quantifi-
cation of the respective mortality agents under field con-
ditions using at least annual mortality assessments is
necessary (Holzwarth et al. 2013, Lutz 2015), which is
usually not done in data sets with high spatial coverage
(but see Das et al. 2016).

Considering the need to better simulate forest ecosys-
tems and their response to climate change, implementing
accurate mortality functions in DVMs is of utmost
importance due to their cascading effects on recruit-
ment, growth and mortality of the remaining trees, and
consequently on forest structure and species composi-
tion. We strongly recommend inventory-based mortality
formulations, in particular those that consider species-
specific differences, as a promising element to enhance
the robustness and reliability of DVM projections.
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