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A B S T R A C T

It is generally acknowledged in the environmental sciences that the choice of a computational model impacts the
research results. In this study of a flood and drought event in the Swiss Thur basin, we show that modeling
decisions during the model configuration, beyond the model choice, also impact the model results. In our
carefully designed experiment we investigated four modeling decisions in ten nested basins: the spatial re-
solution of the model, the spatial representation of the forcing data, the calibration period, and the performance
metric. The flood characteristics were mainly affected by the performance metric, whereas the drought char-
acteristics were mainly affected by the calibration period. The results could be related to the processes that
triggered the particular events studied. The impact of the modeling decisions on the simulations did, however,
vary among the investigated sub-basins. In spite of the limitations of this study, our findings have important
implications for the understanding and quantification of uncertainty in any hydrological or even environmental
model. Modeling decisions during model configuration introduce subjectivity from the modeler. Multiple
working hypotheses during model configuration can provide insights on the impact of such subjective modeling
decisions.

1. Introduction

In jury sports, such as gymnastics, the jury is supposed to objectively
evaluate the outcome of the competition. In a study on home advantage
for the Summer Olympic Games it was, however, shown that jury sports
experience a significant home advantage, in contrast to sports which
are based on objective measurements (Balmer et al., 2003). This sug-
gests that the jury is actually making subjective decisions, despite their
expert knowledge and all the rubrics and directives that have been
drafted in order to objectify their decision.

It is generally acknowledged that models in Earth and environ-
mental sciences are affected by several sources of uncertainty (Oreskes
et al., 1994). Uncertainty can, for example, stem from the randomness
of natural processes (so-called aleatoric uncertainty), or from an in-
sufficient representation of the involved processes (epistemic un-
certainty). There is agreement that the model choice, basically the
choice for a particular representation of the processes, affects the

output and thus the results of the study, as shown by numerous model
intercomparison studies (see e.g. Joussaume et al. (1999) on climate
modeling, Holländer et al. (2009) and Clark et al. (2015) on hydro-
logical modeling, Freni et al. (2009) on urban stormwater modeling and
Bennett et al. (2013) on benchmarking environmental models). The
modeler or expert acts as jury to determine the most appropriate model
for the question at hand (Crout et al., 2009), while model inter-
comparison studies provide the modeler with rubrics and directives to
judge the model performance in a fair way. As such, the model choice
can be justified based on expert knowledge and the rubrics and direc-
tives from model intercomparison studies.

It should be noted, however, that expert knowledge is actually a
mixture of opinion and knowledge (Krueger et al., 2012), also inter-
estingly shown by the model-intercomparison of Holländer et al.
(2009), where different modelers decided differently on which pro-
cesses were relevant enough to represent in the model. The opinion-part
of expert knowledge introduces subjectivity in the model choice, in the
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same way that the gymnastics jury at the Olympic Games showed to
cause home advantage: different experts could make different choices
based on the same information. Furthermore, model choice is only the
first decision in a sequence of decisions a modeler has to make during
model configuration. The impact of those modeling decisions is cur-
rently overlooked in most, if not all, model intercomparison studies,
and an assessment of their relative importance is lacking.

Several studies in different research disciplines have shown that
individual modeling decisions during model configuration can have a
large impact on model results. Cosgrove et al. (2003), for example,
showed how the length of the spin-up period affects NLDAS simula-
tions, illustrating the large effects that chosen spin-up periods can have
on land surface modeling. This study explicitly validates a spin-up
modeling decision in the NLDAS project. Pappenberger et al. (2006)
explicitly study the effect of upstream boundary conditions and the way
bridges are represented in the model on flood inundation predictions. It
was demonstrated that the upstream boundary condition had sig-
nificant impact on the model results. A recent study by Hauser et al.
(2017) shows that, dependent on the adopted methodology and input
data (besides the choice for a particular model), the European 2015
drought was more likely, less likely, or unaffected by anthropogenic for-
cing. This demonstrates the large uncertainties that are introduced by
methodological choices, such as modeling decisions.

Different model configurations are, however, not always identified
as ‘modeling decisions’, and the subjectivity of these decisions is hardly
ever acknowledged. For instance, Ettema et al. (2009) showed that 24%
more annual precipitation over the Greenland ice sheet was obtained
from a high-resolution regional climate model (RCM) compared to
coarser resolution RCM output. Though it may depend on the available
data or the available computational resources, the spatial resolution of
the model is often a choice of the modeler. Neal et al. (2010) compared
three parallelization methods to model 2D flood inundations, where
each method – i.e. modeling decision – had particular drawbacks.
Neither Ettema et al. (2009) nor Neal et al. (2010) explicitly discuss
their results as modeling decisions.

Some sources of uncertainty, for example concerning model choice
(model intercomparison studies) or “optimal” model parameters (cali-
bration studies), have been scrutinized in detail, whereas other sources
of uncertainty, such as modeling decisions during model configuration,
received considerably less attention or are not recognized as such, al-
though they might have an equally relevant impact on the model re-
sults. A possible explanation can be that the uncertainty caused by
modeling decisions is introduced before the first model calculations
start, making it difficult to quantify this source of uncertainty. We note,

however, a slowly growing interest in describing and comprehending
modeling decisions and their impact on model output, for example in
the fields of water resources (Maier and Dandy, 2000) and hydrology
(Clark and Kavetski, 2010; Kavetski and Clark, 2010; Clark et al., 2011;
Ceola et al., 2015; Mendoza et al., 2016; Mendoza et al., 2015; Fenicia
et al., 2016). The attention for this topic in the hydrological sciences is a
logical extension of the ambition to improve realism in hydrological
models (e.g. Beven, 1989; McDonnell et al., 2007; Clark et al., 2016),
which are generally known for their conceptual nature, especially
compared to other environmental sciences such as meteorology and
oceanography.

In this study, we argue that the choice for a particular model is only
one of several modeling decisions, and we illustrate the importance of
modeling decisions during model configuration through an example
from hydrology. In particular, we investigate the impacts of four
modeling decisions on the simulation of a flood and drought event in
the Swiss Thur basin. Our aim is to demonstrate the impact of multiple
modeling decisions on model results, and to raise awareness to re-
cognize the uncertainty introduced by modeling decisions. A novel
contribution of this study is that we systematically investigate and
quantify the statistical significance of multiple modeling decisions.
Furthermore, the results of this study are particularly relevant because
both floods and drought can have a strong societal and economic im-
pact, which water managers aim to mitigate by model predictions.

2. Modeling decisions in hydrology

The sources of uncertainty in hydrological modeling have been an
inspiration for an abundance of scientific literature (e.g. Wagener and
Gupta, 2005; Liu and Gupta, 2007), and have led to methods to esti-
mate and quantify uncertainty (among others Beven and Binley, 1992;
Vrugt and Sadegh, 2013). Vrugt and Sadegh (2013) developed a
Bayesian evaluation framework that explicitly recognizes six different
sources of uncertainty (parameters, forcing, initial state, model struc-
ture, output, and new states), as shown in Fig. 1. Hydrologic modeling,
however, is also surrounded by modeling decisions, as illustrated in the
ellipse in Fig. 1 and discussed in Clark et al. (2011, 2015). These
modeling decisions do not only introduce uncertainty not incorporated
in the Bayesian evaluation framework in Fig. 1, they also influence the
uncertainty estimated with the framework. For example, they de-
termine the prior in a Bayesian framework, or parameter uncertainty as
affected by the parameter boundaries.

Many modeling decisions are relevant during the process (some-
times referred to as ‘the art’) of modeling (Fig. 1). In this study we focus

Fig. 1. Bayesian model evaluation framework for
a hydrological model, based on Fig. 1 of Vrugt
and Sadegh (2013), which explicitly recognizes
uncertainty in parameters, forcing data, initial
state, model structure, output and model state.
The Bayesian framework is surrounded by deci-
sions that a modeler has to make during model
configuration. Note that the modeling decisions
in this figure are non-exhaustive. The modeling
decisions discussed in this study are highlighted
in red. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the web version of this article.)
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on four modeling decisions for which the scientific literature provides
ambiguous advice to the hydrologic modeler: the spatial resolution, the
spatial representation of the forcing, the calibration period, and the
performance metric. We aim to illustrate and rank the effects of these
decisions on the simulation of a flood and a drought event in the Swiss
Thur basin. We recognize that, since we focus on only four modeling
decisions and only two events in one basin, the results of our study will
be impacted by many other modeling decisions that we (as authors)
made during model configuration, and on the specifics of the in-
vestigated events. This is further discussed in Section 5.

2.1. Spatial resolution

An important decision that modelers make when setting up a dis-
tributed hydrological model is how to represent the spatial distribution.
The use of a constant grid is already a first modeling decision, leaving
aside options such as hydrological response units (HRU’s) or sub-basins.
The second decision is the spatial resolution. This choice is often
bounded by the available data or the calculation time. Nowadays, both
the availability of spatially-distributed data at high resolution and the
computational power are increasing. This has led to the call for large-
scale hyper-resolution hydrological modeling (Wood et al., 2011). For
the Variable Infiltration Capacity (VIC) model (Liang et al., 1994) it was
shown that the spatial resolution applied in the scientific literature has
increased over the years (Melsen et al., 2016a). Several studies have
investigated the effect of spatial resolution (e.g. Haddeland et al., 2002;
Liang et al., 2004; Troy et al., 2008; Melsen et al., 2016b), but the
reported results are ambiguous. Troy et al. (2008) for example, found a
high sensitivity of the optimal parameter values to the spatial resolu-
tion, whereas Melsen et al. (2016b) found exactly the opposite for the
same model: Both studies applied a different strategy to identify para-
meters of a distributed model. In this study, we compare three different
spatial resolutions, ranging from the so-called hyper-resolution as ad-
vocated by Wood et al. (2011) ( ×1 1 km) to ‘regional scale’ hydrology
( ×10 10 km) representing the finest test resolution of Troy et al. (2008),
and an intermediate spatial resolution ( ×5 5 km).

2.2. Spatial representation of forcing

Another important choice for distributed hydrological modeling is
the spatial representation of the forcing data. In this paper, we explore
the question: do we apply the forcing in a lumped fashion over the
basin, or in a distributed fashion? The choice of forcing data is in many
applications a matter of choice between existing datasets, whose spatial
resolution is already determined. One could subjectively select global

data sets like WATCH or ERA-Interim, which are available at 0.5° or
0.25° resolution worldwide. Otherwise one needs to invest time and
resources in high-resolution forcing data, e.g. obtained directly from
meteorological stations or weather radars. Several studies already
compared predictive accuracy and summary metrics for hydrologic
models fed with spatially-distributed and uniform forcing data, starting
with Wilson et al. (1979), followed by e.g. Beven and Hornberger
(1982, 1994, 2008, 2013, 2014). None of the studies based on a large
range of basins (Zhao et al., 2013; Lobligeois et al., 2014) reported
consistent results. The benefit of distributed data depends on the spatial
variability of rainfall in the region and at the time scale of interest, as
pointed out by Lobligeois et al. (2014). In the basin where our study is
conducted (see Section 3.1) topography causes a high spatial variability
in rainfall. Therefore, spatially-distributed forcing could potentially be
of added value, although this could differ for the flood (short time
scale) and drought (long time scale) event. In this study, we use spa-
tially interpolated (also a modeling decision!) data based on nine me-
teorological stations in and around the basin of interest (see Section
3.1). We compare uniformly applied (representing global datasets like
WATCH and ERA-Interim) versus spatially-distributed (representing
gauge networks or radars) forcing.

2.3. Calibration period

The choice of the calibration period is critical for studies where
models are used to extrapolate observations in time, for example to
investigate the effects of climate or land use change. Future high or low
flow events may be beyond the range of historically observed events
(Wagener et al., 2010), suggesting that parameter values obtained from
calibration on current day observations may not be the most suitable for
a future climate. To mimic this effect, several studies applied a differ-
ential split sample test (Klemeš, 1986), in which the calibration and
validation periods are significantly different in terms of precipitation
and flow regime (see e.g. Coron et al., 2012; Li et al., 2012; Merz et al.,
2011). Coron et al. (2012) showed that the effect of the chosen cali-
bration period on average runoff volume differed per sub-basin con-
sidered, and Li et al. (2012) concluded that some parameters are more
sensitive to that choice than others. Further, Merz et al. (2011) found
that many parameters which are assumed to be time-invariant are ac-
tually not. These considerations make it extremely difficult for a
modeler to decide on an appropriate calibration period. In this study we
compare a high flow calibration period to a low flow calibration period,
thus applying the differential split sample test (shown in Fig. 2). Note,
however, that the length of the calibration period can also impact the
modeling results (see amongst others Vaze et al., 2010; Melsen et al.,

Fig. 2. Left panel: The Thur basin and the nine (nested) sub-basins (see also Table 1). The basins have been named after their gauge location, except for the Thur
basin and the Rietholzbach basins. Right panel: Hourly discharge in the Thur basin, with the calibration period and validation period (flood and drought events)
indicated. The numbers indicate the three flood events that have been studied in more detail. Upper panels: The flow duration curve based on 39 years of hourly
discharge data (light grey). The dark grey dots indicate which part of the flow duration curve is covered in the validation/calibration period.
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2014). This point is further discussed in Section 5.

2.4. Performance metric

The Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) is the
most widely used performance metric in hydrology, even though sev-
eral caveats have been identified (Schaefli and Gupta, 2007). Alter-
natives for the NSE have been proposed, for example the Kling-Gupta
Efficiency (KGE, Gupta et al., 2009), which allows for a better weighing
of a correlation term, a bias term, and a measure of relative variability.
Another approach is to use multiple criteria, e.g. in a Pareto optimi-
zation framework (e.g. Madsen, 2003). Since the call for a more pro-
cess-based evaluation of hydrologic models (McDonnell et al., 2007;
Gupta et al., 2008; Clark et al., 2016), hydrologic signatures have be-
come more popular as performance metrics. Hydrologic signatures –
e.g. the slope of the flow duration curve, or ecologically relevant
streamflow indicators as in Pool et al. (2017) – help in providing in-
sights on how adequate process representations are (Sawicz et al.,
2011). In this study we compare the NSE(Q) and NSE(logQ), for floods
and drought respectively, with the KGE(Q), representing ‘average’ flow
conditions.

3. Methods

In this section, the basin, the investigated extreme events, and the
conducted analyses are discussed. A schematic overview of the analysis
is provided in Fig. 3.

3.1. Basin and data description

This study has been conducted on the Thur basin (1703 km2) and its
nine (nested) sub-basins of various sizes (Fig. 2 and Table 1), in South-
Eastern Switzerland. The Thur basin is characterized by strong topo-
graphic variations, with the highest point at the Säntis alpine peak of
2502m a.s.l., and the lowest point at the outlet in Andelfingen at 356m
a.s.l. The large elevation difference causes orographic effects in the
precipitation pattern, and temperature gradients within the basin. The
climate in the Thur can be characterized as an alpine/pre-alpine cli-
matic regime with long-term average precipitation varying from
2500mm yr−1 in the Säntis region to 1000mm yr−1 in the lower parts
of the basin. In the winter season, some parts of the basin are covered
with snow. Because the sub-basins are nested, the ten basins considered
in this study are not completely independent. Five basins have up-
stream nested basins: Frauenfeld, St.Gallen, Jonschwil, Halden, and the
Thur (see Fig. 2). The Rietholzbach, the smallest sub-basin of the Thur,
is a research basin since 1976 (Seneviratne et al., 2012).

Hourly discharge observations were obtained for the ten basins for
the period 2002–2003. The discharge observation record is short, which
also results in short calibration and validation periods. Although a short
observation record clearly is a disadvantage in a modelling exercise, we
do believe that this short observation period is representative for many
practical applications where limited data are available (Seibert and
Beven, 2009; Tada and Beven, 2012).

Hourly forcing data for the same period have been obtained from
nine meteorological stations in and around the basin. These were spa-
tially interpolated using the WINMET tool (Viviroli et al., 2009). This
provided us with spatially-distributed forcing data with a resolution of
1× 1 km. In order to compare the distributed forcing data with uniform
forcing data (Section 2.2), uniform forcing data have been obtained by
spatially averaging the distributed forcing data for every time step. A
more elaborate description of the discharge and forcing data used in
this study can be found in Melsen et al. (2016b).

3.2. Extreme events

The period 1 August 2002–31 August 2003 is characterized by three
flood events in the Thur basin (August, September 2002) as well as the
severe 2003 drought (June, July, August 2003); see Fig. 2 and
Supporting information S1. The rapid succession of these two con-
trasting hydrological events makes this period very interesting for our
analysis.

Although a range of flood-triggering mechanisms can occur in the
alpine/pre-alpine region (Parajka et al., 2010; Hall et al., 2014), the
Thur flood events in 2002 were triggered by high rainfall (Zappa and
Kan, 2007). The events have an estimated return period of 15 to 20
years. The rainfall was part of a larger system, a so-called VB event
(Becker and Grünewald, 2003; Schmocker-Fackel and Naef, 2010)

Fig. 3. Flow chart of the methodology. Hydrological models were constructed and calibrated to represent the different factors. Subsequently, response vectors were
determined by obtaining the error between modeled and observed (events indicated in Fig. 2) for several flood and drought characteristics, for the different factor-
combinations. Finally, ANOVA was conducted to test the significance of the factors on the response vector. The threshold for significance in the ANOVA was set at
0.05.

Table 1
Descriptors of the Thur basin and the nine sub-basins.

Basin Area
(km2)

Mean elev. (m
a.s.l.)

Mean slope
(°)

Dominant land use

Rietholzbach 3.3 795 8.3 Pastures
Herisau 17.8 834 6.8 Pastures
Appenzell 74.2 1255 18.9 Sub-alpine

meadow
Wängi 78.9 650 5.6 Pastures
Mogelsberg 88.2 938 11.1 Pastures
Frauenfeld 212 592 4.9 Pastures
St.Gallen 261 1040 12.5 Pastures
Jonschwil 493 1016 13.4 Pastures
Halden 1085 909 10.5 Pastures
Thur 1703 765 8.1 Pastures
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where a low pressure system was travelling from the Atlantic south-east
to the Mediterranean and from there north-east across the Alps. The
same system was responsible for severe flooding in central Europe
during this period (Becker and Grünewald, 2003).

Contrary to the wet 2002 autumn, the 2003 summer was extremely
warm and dry in Western and Central Europe, with Switzerland being
among the hottest and driest regions (Zappa and Kan, 2007). The 2003
hydrological drought (that is, anomalies in runoff) was not only caused
by precipitation anomalies, but also by high evapotranspiration rates.
Precipitation deficits already occurred in the early spring of 2003,
thereby declining runoff. However, Seneviratne et al. (2012) demon-
strate, based on lysimeter data from the Rietholzbach, that the onset of
soil moisture deficit was only from June onwards, caused by evapo-
transpiration excess, which further declined runoff.

3.3. Model, routing and calibration

The model choice is probably one of the most important decisions a
modeler makes. The goal of this study was, however, to show the im-
pact of modeling decisions during model configuration, beyond the
model choice. To illustrate this, the impact of modeling decisions has
been tested for one widely used hydrological model.

Three Variable Infiltration Capacity (VIC) models (version 4.1.2.i)
were configured with different spatial resolutions (1× 1 km, 5× 5 km,
10× 10 km). The model was run at an hourly time step (solving both
the water balance and the energy balance) for the period 1 May
2002–31 August 2003, where the first three months were used as spin-
up period. In Melsen et al. (2016b) it was shown that three months are
enough to remove the effect of initial conditions (model spin-up). Total
runoff was routed through the channel network using the MizuRoute
routine (Mizukami et al., 2016). Because drought events usually have a
process time scale in the order of weeks or months, they do not require
to be evaluated at an hourly resolution. Therefore, the model output has
first been aggregated from an hourly to a daily time step to analyze the
drought event. Finally, six models were configured; three different
spatial resolutions, with two different spatial representations of forcing.

To identify the most sensitive parameters in the VIC model, the
Distributed Evaluation of Local Sensitivity Analysis (DELSA) method
(Rakovec et al., 2014) has been applied on a selection of 28 parameters,
including several soil-, vegetation- and snow parameters. For compu-
tational efficiency, the sensitivity analysis has been applied to a lumped
version of the VIC model of the Thur. However, to investigate the effect
of spatial resolution on parameter sensitivity, two lumped models of
sub-basins of the Thur have also been subject to a sensitivity analysis:
the Jonschwil sub-basin (495 km2) and the Rietholzbach sub-basin
(3.3 km2). The most sensitive parameters have been identified based on
the KGE(Q), the NSE(Q) and the NSE(logQ). Sensitivity analysis on the
three lumped models revealed that parameter sensitivity did not change
considerably over the assessed scales and objective functions. For the
three lumped models, four parameters showed high sensitivity (the first
four parameters in Table 2), although the relative sensitivity differed
for different spatial scales and objective functions. The results of this
sensitivity analysis closely resembled the results of Demaria et al.
(2007), who conducted a sensitivity analysis of the VIC model for four

basins in the United States. A fifth parameter was added to the selection
because Demaria et al. (2007) found it to be highly sensitive (parameter
number 5 in Table 2). Furthermore, two MizuRoute-parameters were
added to the selection because they control the lateral exchange of
water between grid cells. A more elaborate description of the sensitivity
analysis, as well as an overview of the included parameters and their
boundaries, can be found in Melsen et al. (2016b).

The seven selected parameters in Table 2 of the VIC model and the
routing routine have been sampled 3150 times, using a Hierarchical
Latin Hypercube Sample (Voȓechovský, 2015). A Latin Hypercube
sampling strategy was chosen because this is more efficient than
random sampling strategies. The advantage of the hierarchical method
is that the size of the sample can be extended step by step. Inherent to
the Hierarchical Latin Hypercube Sample (Voȓechovský, 2015) is that
every sample extension is twice as large as the previous sample. The
starting sample size was set at 350, sampled based on a space-filling
criterion with a uniform prior. The next sample size was (350× 2 plus
the first sample, 350) 1,050 samples in total. With a Kolmogorov-
Smirnov test, it was tested whether the cumulative distribution function
(CDF) of the objective functions significantly changed with an increased
sample size. It was shown that the CDF did not significantly change
from 1050 samples to 3150 samples, indicating that 3150 samples were
enough to cover the parameter space (Melsen et al., 2016b). The VIC
model has been run with all 3150 parameter samples. The seven sam-
pled parameters (Table 2) have been applied uniformly over the basin,
whereas the other soil- and land use parameters have been applied in a
distributed fashion (separate value for each grid cell) based on data
provided by the Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL, swisstopo license JA100118) and the Harmonized
World Soil Database (FAO et al., 2012). A more elaborate description of
these data can be found in Melsen et al. (2016b).

The different model configurations have been run with the full
parameter sample over the model period (Fig. 2). The use of a complete
parameter sample instead of a calibration algorithm allowed us to make
a fair comparison between the different model configurations, avoiding
pitfalls like local minima, sensitivity to starting values, or sensitivity to
the calibration algorithm.

Finally, ‘calibration’ (selection of behavioral parameter sets) is
performed by identifying the best performing 1% (32 runs) of the 3,150
runs, for each case separately. The different cases consist of all the
different combinations of the three investigated spatial resolutions with
two different spatial representations of the forcing. The best 1% was
selected based on the NSE(Q) for the flood events, and the NSE(logQ)
for the drought event, and based on the KGE(Q) for both events to in-
vestigate the influence of the performance metric (one of the modeling
decisions). Because the calibration period is also one of the modeling
decisions investigated, the best performing 32 runs have been de-
termined separately for the high flow calibration period and the low
flow calibration period. The two calibration periods are indicated in
Fig. 2.

An overview of the model performance, expressed in NSE(Q) and
NSE(logQ) for the respective validation periods is given in Supporting
information S2. Although direct comparison with obtained model per-
formance in other studies is not fair due to different model periods,

Table 2
Sampled model parameters. The parameter boundaries are suggested by the developers of the VIC model ( http://vic.readthedocs.io/en/develop/).

Parameter Units Lower value Upper value Description

1 bi – 10−5 0.4 Variable infiltration curve parameter
2 ds – 10−4 1.0 Fraction of ds max, where non-linear base flow starts
3 dm mmd−1 1.0 50 Maximum velocity of the base flow
4 expt2 – 4.0 18.0 Exponent of the Brooks-Corey drainage equation for layer 2
5 Depth2 m Depth1+0.1 Depth1+3 Depth of soil layer 2
6 C m s−1 0.5 4 Advection coefficient of horizontal routing
7 D m2 s−1 200 4000 Diffusion coefficient of horizontal routing
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calibration strategies, and objective functions, it can provide context on
how well our model is able to capture the basin dynamics. The highest
achieved model performance in the Thur basin for the flood validation
period in our set-up with the VIC model is NSE(Q)= 0.85, and for the
drought validation period NSE(logQ)= 0.58. This compares with the
model performance obtained with the SWAT model by Yang et al.
(2007), with a NSE(Q) of 0.77 for the calibration period, and is for the
drought-period lower than performances obtained with the PREVAH
model by Zappa and Kan (2007), with a NSE(Q) and NSE(logQ) higher
than 0.85 for both calibration and validation period. The highest model
performance for the Rietholzbach basin for the validation period of this
study is NSE(Q)=0.53 and NSE(logQ)= 0.63. This is lower than
model performances reported by Gurtz et al. (2003) for the Rietholz-
bach using the WaSiM-ETH model (NSE(Q)= 0.80, NSE(logQ)=0.82)
and the PREVAH model (NSE(Q)=0.71,NSE(logQ)=0.89) over the
validation period 1981–1998. Melsen et al. (2014) applied a parsimo-
nious stage-discharge-model to the Rietholzbach and reported NSE
(Q)=0.69, and NSE(logQ)= 0.74 for the validation period. Given the
relatively limited part of the parameter space that was explored in this
study compared to the calibration strategies applied in the studies cited,
model performance was expected to be somewhat lower. The best
performing runs are, however, in range with the literature and there-
fore seem to be able to mimic the behavior of the Thur basin and the
Rietholzbach basin quite well.

By selecting the best performing 1% of the runs, all model config-
urations have an equally-sized set of runs defined as behavioral. This
improves the robustness of the statistical test (Analysis of Variance). An
implication of this approach is that the selected runs can have a rela-
tively low model performance. We do not expect that this influences our
results to a significant extent, either positively or negatively, because
we investigate the sensitivity of several characteristics for modeling
decisions, rather than evaluating the model performance directly.

In total, six different model configurations were tested: three spatial
resolutions and two spatial representations of forcing (uniform, dis-
tributed), which have been calibrated on two periods (a high flow ca-
libration period from mid-September to mid-February, and a low flow
calibration period from mid-February to mid-July), with two objective
functions (NSE(Q) versus KGE(Q) for the flood events, and NSE(logQ)
versus KGE(Q) for the drought event). Finally, the calibrated model
configurations were validated for events that were not included in the
calibration periods: three flood events and one drought event (Fig. 2).

3.4. Flood and drought characteristics

To investigate the effect of subjective modeling decisions on ex-
treme hydrological events, the error in flood and drought character-
istics between observations and simulations were investigated for dif-
ferent model configurations (Fig. 3). The flood characteristics have
been validated for three flood events (Fig. 2), and the drought char-
acteristics have been validated for one drought event (Fig. 2).

The three main characteristics of a flood event are the peak height,
the timing, and the volume (Lobligeois et al., 2014). For each beha-
vioral model run, the peak error, timing error and relative volume error
compared to observations were computed. The peak error ( QΔ p) de-
scribes the difference between the maximum observed (Q p

obs) and si-
mulated (Q p

sim) discharges:

= −Q Q QΔ ,p
p p
sim obs (1)

The timing error is defined as the difference, in hours, between the
observed and the modeled peak:

= −t t Q t QΔ ( ) ( ),p
p p
sim obs (2)

where t Q( )p
sim is the timing of the modeled peak and t Q( )p

obs is the timing
of the observed peak. Both the peak error and the timing error are
sensitive to small discharge fluctuations. The Relative Volume Error
(RVE) is the relative difference in total flow volume between observed

and modeled discharge:

=
∑ −

∑
Q Q

Q
RVE

( )
,sim obs

obs (3)

where ∑ −Q Q( )sim obs is the summation of the difference in the simu-
lated (Qsim) and observed (Qobs) discharge over all the time steps in the
flood event. To determine the beginning and the end of the flood event,
an adapted version of the method of Lobligeois et al. (2014) is used,
which is based on a threshold level Q0. The lowest (modeled) discharge
Qmin in four days before and four days after the observed discharge peak
is determined. Then the threshold level, based on the defined Qmin is
calculated:

= + −− +Q Q Q Q Qmax ( /4, 0.05·( )).t t
p

min
p

min0 4, 4 obs obs (4)

The flood event starts as soon as the discharge exceeds threshold
level Q0, and ends when the discharge drops below Q0. With this defi-
nition, the flood event cannot start earlier than four days before the
observed peak discharge, and the end of the flood event cannot be later
than four days after the observed peak discharge (eight days in total).
The response times in our system are short (in terms of several hours up
to one day for the largest basin, the Thur) and therefore four days
should be sufficient to capture the flood event.

The error between simulations and observations for three specific
drought characteristics has been investigated (Fig. 3). Drought duration
and deficit are the two most common characteristics for a drought event
(Van Loon et al., 2014). However, drought duration was difficult to
determine because the drought event was occasionally interrupted by
short discharge peaks (Supporting information S1). For ecology and
navigation, the minimum flow is a relevant indicator, and therefore the
error in minimum flow and the error in timing of the minimum flow
have been determined, in addition to the error in drought deficit. All
errors in drought characteristics have been computed using a daily time
step. The error in minimum flow QΔ min is defined as

= −Q Q QΔ ,min min min,sim ,obs (5)

which is simply the difference between the lowest simulated discharge
(Qmin,sim), and the lowest observed discharge (Qmin,obs) during the
drought event. The error in the timing of the minimum flow tΔ min is
defined in the same way as the timing error for the peak flow events;

= −t t Q t QΔ ( ) ( ).min
min min
sim obs (6)

Here, t Q( )min
sim is the timing of the lowest simulated discharge, and

t Q( )min
obs is the timing of the lowest observed discharge. In order to define

drought deficit, first a variable threshold level τ (Hisdal et al., 2004) for
drought was defined. In this study, a drought starts as the discharge
drops below the lowest 10% (Q90) of the observations. The threshold
level was determined based on 39 years of daily observations, identi-
fying the lowest 10% of the discharge with a moving window of 31 days
(15 days before and 15 days after the date for which the threshold level
is determined). Drought deficit is then defined as the integral of the
deviations (d) between the threshold level and the actual discharge
(Van Loon et al., 2014). The deviation is defined as:

= ⎧
⎨⎩

− <
⩾

d t
τ t Q t Q t τ t

Q t τ t
( )

( ) ( ) if ( ) ( )
0 if ( ) ( ).

The total deficit D for a drought is then defined as:

∑=
=

D d t t( )·Δ .
t

T

1 (7)

The duration T of a drought is assumed to be the complete drought
event. The error in the drought deficit is the difference between the
observed deficit Dobs and the simulated deficit Dsim:

= −D D DΔ .sim obs (8)
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3.5. Analysis of variance

After computing the error in flood and drought characteristics for all
the behavioral runs and for the different model configurations as shown
in Fig. 3, Analysis of Variance (ANOVA) was conducted (Ott and
Longnecker, 2010). ANOVA allows to test the hypothesis that the means
of several groups (in this case, for example, the peak error obtained
with three different spatial resolutions) are drawn from the same
(normal) distribution. The ANOVA test provides the probability (from
zero, zero probability, to one, certainty) of this hypothesis. Analysis of
Variance was conducted for four factors (the modeling decisions), and
has been applied to six response vectors (the errors in flood and drought
characteristics), as shown in Fig. 3. If the probability <p 0.05, the
factor was assumed to have significant impact on the response vector.

The aim of this study was to demonstrate that modeling decisions
significantly impact the simulation of two hydrological extremes, for a
case-study in the Thur and its nine sub-basins. This can directly be
demonstrated by evaluating if any of the investigated decisions sig-
nificantly (p-value lower than 0.05) impacts the error in any of the
flood or drought characteristics. To investigate how persistent the im-
pact of the modeling decision is on the flood and drought character-
istics, the results of the ten investigated basins are compared. To get
insight in the underlying mechanisms causing the impact of subjective
modeling decisions, it was also investigated how the decisions impact
the parameter distribution, using ANOVA.

4. Results

4.1. Flood characteristics

In this section we focus on three flood events (Fig. 2). Fig. 4 shows
how the different model configurations impact the peak error (panel a),
timing error (panel d), and relative volume error (panel g) for the three
flood events in the Thur basin. Although the magnitude of the error

differs per event, the relative difference between the configurations is
more or less stable over the events, except for the timing error. Fig. 4
also shows to what extent the impact of modeling decisions on the error
in characteristics of the three flood events is significant, using ANOVA
(panels c, f and i).

Fig. 4c shows that the peak error for all basins and for all three flood
events is significantly affected by the spatial representation of the for-
cing, the calibration period and the performance metric. Resolution
plays a significant role in some basins for some events. The impact of
the four investigated modeling decisions on the timing error (Fig. 4f) is
less clear. The spatial representation of the forcing affects many basins
for the first and second event, but for the third event the calibration
period impacts more basins significantly. The performance metric sig-
nificantly affects the timing error in at least six basins. The relative
volume error (Fig. 4i) is mainly impacted by the performance metric,
followed by the spatial representation of the forcing and the calibration
period. Spatial resolution has considerable effects on the relative vo-
lume error only in the smaller basins.

The simulated flood events are mainly affected by the performance
metric, followed by the calibration period and the spatial representa-
tion of the forcing, respectively. The spatial resolution plays a minor
role. The flood peak is the characteristic most affected by subjective
modeling decisions. A summary of the results is given in Table 3.

4.2. Drought characteristics

Fig. 4 shows how the different model configurations affect the error
in minimum flow (panel b), timing error (panel e) and deficit error
(panel h) in the Thur basin and the nine sub-basins. The results show
that the calibration period has a large impact on the error in drought
characteristics. Fig. 4c shows that in all basins the calibration period
significantly impacts the error in the minimum flow. The spatial re-
presentation of the forcing is important for the error in the minimum
flow in four basins, and the spatial resolution only in one basin. Using

Fig. 4. The impact of the investigated
modeling decisions on the error in the
three flood characteristics (peak error,
timing error, relative volume error de-
noted as RVE) and the three drought
characteristics (error in minimum flow,
timing error in minimum flow, and
deficit). Panel a, d, g: The distribution of
the behavioral sets (best 1% expressed
in NSE(Q)) for the error in flood char-
acteristics for three flood events in the
Thur (1× 1 km resolution, NSE(Q) as
objective function). Panels b, e, h: The
distribution of the behavioral sets (best
1% expressed in NSE(logQ)) for the
error in drought characteristics for the
drought event in the Thur (1× 1 km re-
solution, NSE(logQ) as objective func-
tion). The dashed line indicates the op-
timum (no difference between modeled
and observed). The grey boxes show the
distribution of the complete parameter
sample. For clarity, the impact of spatial
resolution and performance metric are
not shown. Panel c, f, i: ANOVA p-value
of the impact of Resolution (R), Forcing
(F), Calibration period (C), and perfor-
mance Metric (M) on the error in flood
and drought characteristics, for the 10
basins. The basins are ordered from
small to large basin size (area).
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the performance metric KGE(Q) as opposed to NSE(logQ) significantly
affects the error in minimum flow in seven out of ten basins. For the
timing error in the minimum flow we recognize the same pattern as for
the timing error in the peak flow (Fig. 4f); the impact of the modeling
decisions does not show a consistent pattern over the ten basins, al-
though the calibration period has a significant impact in all basins. The
spatial resolution and the performance metric show to be important in
at least six basins. For the deficit error (Fig. 4i), the choice of the ca-
libration period seems to be the most important decision, with a sig-
nificant impact in eight out of ten basins. The spatial representation of
the forcing and the performance metric significantly affects the deficit
error in five basins. Spatial resolution significantly affects the deficit
error in only four basins.

These results show that the drought characteristics are mainly af-
fected by the calibration period, followed by the performance metric,
the spatial resolution and the spatial representation of the forcing. The
summary in Table 3 reveals that the timing error in the minimum flow
experiences most impact from the investigated subjective modeling
decisions.

4.3. Impact on parameter distribution

Table 4 provides an overview of the percentage of basins for which
the distribution of the sampled parameters (Table 2) was significantly
affected by any of the four modeling decisions, using ANOVA. For the
flood events, spatial resolution had the lowest impact on the parameter
distribution. Most basins and most parameters were affected by the
calibration period, followed by the performance metric. The most af-
fected parameters are the Depth2, the depth of soil layer 2, and C, the
velocity parameter of the routing scheme.

For the drought event, calibration period is by far the most im-
portant modeling decision that determines the parameter distribution.

At a distance, this is followed by the performance metric. Especially the
infiltration shape parameter, bi, and the parameter describing the base
flow relation, ds are affected by the modeling decisions.

The affected parameters differ for flood and drought events. For the
flood events, mainly the parameters impacting the response time are
influenced by the modeling decisions, whereas for the low flows the
infiltration and base flow parameter are mostly affected by the deci-
sions. For the low flows, the calibration period is by far the most im-
portant decision, whereas spatial resolution only plays a very minor
role. For high flows the calibration period is most important, followed
closely by the performance metric, and the spatial representation of the
forcing.

5. Discussion

The main point of this study was to demonstrate that subjective
modeling decisions, beyond the model choice, affect the simulation of a
flood and drought event in the Swiss Thur basin. In Section 5.1, we aim
to relate the results to relevant hydrological processes during the in-
vestigate flood and drought event. Section 5.2 discusses several deci-
sions that we, authors and modelers, made during the design of this
study.

5.1. Relation between results and hydrological processes

Preferably, we would be able to couple the impact of the in-
vestigated modeling decisions on our model simulations to the hydro-
logical functioning of our system, or to particular hydrological pro-
cesses. This could help to substantiate certain modeling decisions.
Although this study is a case-study with only one flood and drought
event/type investigated for ten nested basins with comparable climate
and land-use, several links can still be identified.

The clearest example is the limited impact of the spatial re-
presentation of the forcing on the error in drought characteristics. The
studied hydrological drought was partly caused by a lack of precipita-
tion (Seneviratne et al., 2012). When little or no precipitation is falling,
the spatial resolution of the precipitation data is not relevant since it
will remain (nearly) zero throughout the basin. The results seem to
follow the line of expectation. However, Seneviratne et al. (2012) also
demonstrates that high evapotranspiration (ET) rates played an im-
portant role in the onset of the 2003 drought (at least in terms of soil
moisture). Gurtz et al. (1999) emphasize that the spatial resolution of
the model is very important when modelling ET-rates in mountainous
regions. For the Thur, Gurtz et al. (1999) recommend no coarser re-
solution than 2× 2 km and Zappa (2002) even recommends a resolution
of max 1× 1 km in the hilly sub-regions of the Thur, which can explain
why the modelling decision on the resolution of the model had more
impact on the drought simulations compared to the flood simulations
and compared to the spatial representation of the forcing for the
drought simulation. The calibration period and the performance metric
had most influence on the drought simulation, which stresses the im-
portance of modelling decisions concerning calibration strategy. For
other hydrological drought typologies, for example a cold snow season
drought (below-average temperature at the end of the snow season
causing a delay in snow melt; Vann Loon and Van Lanen, 2012), ET-
rates might be less relevant and therefore spatial resolution of the
model might be less important. On the other hand, a high spatial re-
solution might still be needed to capture highly heterogeneous snow
melt processes.

The three high flow events that were studied in the Thur basin and
the nine subbasins were caused by rainfall from a large low pressure
system, although the precipitation still displayed a high spatial varia-
tion (see Fig. 6). Therefore, it can be understood that the spatial re-
presentation of the forcing (i.e., lumped or distributed) did have sub-
stantial impact on the flood simulations in most basins. On the other
hand, the spatial resolution of the model only had minor influence on

Table 3
Number of basins (out of 10 in total) for which the modeling decisions (spatial
resolution R, spatial representation of forcing F, calibration period C, and
performance metric M) significantly impact the error in flood and drought
characteristics (p < 0.05). Note that for the error in flood characteristics, the
average for the three flood events is given, since the number of basins for which
the modelling decisions significantly impacted the flood characteristics could
differ per event.

Characteristic R F C M Average

Peak error 3 10 10 10 8.3
Timing error 4.3 7.3 7 8 6.7
Relative volume error 1.3 6 8.7 9 6.3
Average for flood characteristics 2.9 7.8 8.6 9

Error in min. flow 1 4 10 6 5.3
Timing error in min. flow 8 2 10 6 6.5
Deficit error 4 5 8 5 5.5
Average for drought characteristics 4.4 3.7 9.3 5.7

Table 4
Number of basins (out of 10 in total) for which the parameters were sig-
nificantly (p < 0.05) affected by spatial resolution (R), spatial representation
of forcing (F), calibration period (C), or performance metric (M).

Parameter NSE(Q) (hourly time step) NSE(logQ) (daily time step)

R F C M R F C M

bi 2 7 9 4 0 5 8 8
ds 4 8 5 5 3 5 8 8
dm 2 5 7 5 0 3 10 5
expt2 1 2 9 6 2 3 8 4
Depth2 2 7 7 9 1 4 8 6
C 3 5 8 9 0 5 6 5
D 0 2 3 8 0 3 7 4

L.A. Melsen et al. Journal of Hydrology 568 (2019) 1093–1104

1100



the flood simulations. With a high spatial resolution, the model can
better capture spatial variability in soil moisture which can influence
surface-runoff processes, but perhaps spatial variability in soil moisture
was limited because the wet conditions extended over the complete
basin. For other flood typologies, such as flash floods that usually have
a very local character, the spatial resolution might play a more im-
portant role. As for the drought simulations, calibration period and
performance metric also had most impact on the flood simulations in
this study, underlining the important role of a deliberate calibration in
rainfall-runoff modeling.

Although the results of this study can be explained through process-
reasoning, this section does show that this case study does not yet
provide enough insights to draw robust conclusions to substantiate
hydrological modelling decisions concerning drought and floods.
Different flood and drought typologies, but also a different climate or
spatial variation in elevation or land use (given the variation in results
among the sub-basins), could lead to different decisions that have most
impact on the simulations. More research is needed to provide insights
into the impact of modeling decisions on hydrological extremes.

5.2. Subjectivity in our study-design

The results of this study also depend on model decisions that we, as
modelers and authors, made for the experimental set-up. We only in-
vestigated the effect of four modeling decisions, although many more
decisions were made while setting up our experiments. Clear examples
of these decisions are the uniform application of the sampled para-
meters, the length of the calibration period, the choice for spatially
interpolated station data as forcing, and the selection of the best 1% of
the model runs as ‘behavioral’. Further, we also made important deci-
sions on the parameters included in the sensitivity analysis, their
boundaries and the sampling strategy adopted.

The uniform application of the sampled parameters can decrease the
effect of spatial resolution. Most likely, the spatial resolution will be-
come a more important modeling decision when the sampled para-
meters are applied in a distributed fashion. A randomly distributed
sample would, however, be a heavy computational burden. One po-
tential approach is the use of spatial regularization methods, where
transfer functions are formulated to relate the model parameters to
physical characteristics (e.g. Samaniego et al., 2010). With this method,
spatially-distributed parameters can be sampled by perturbing the
coefficient of the transfer function. However, no pedo-transfer functions
have been identified for the VIC model. Therefore, sampling parameters
in a (semi-)distributed fashion was out of reach in our current set-up.

The length of the calibration period was fixed to five months. For
the Rietholzbach basin this was shown to be a sufficient period to ob-
tain stable parameters for a parsimonious model (Melsen et al., 2014).
In this study, the calibration period is one of the most influencing de-
cisions investigated, which implies that, in this case-study, a five-month
calibration period is not sufficient to obtain stable parameters. This
effect can be even stronger when shorter calibration periods are ex-
plored. Therefore, the analysis as shown in Fig. 3 has been repeated
with five different calibration periods; the initial five months, each time
shortened with one month up to a calibration period of one month only.
The different calibration periods have been obtained by decreasing the
period each time with 15 days at the beginning of the period and 15
days at the end of the period. Fig. 5 shows that the investigated mod-
eling decisions still have significant impact on the error in character-
istics of the hydrological extremes for a shorter calibration period. Most
modeling decisions that have shown to significantly impact the error in
the characteristics based on a five-month calibration period, remain
significant for shorter calibration periods and vice versa. Vaze et al.
(2010) showed that model parameters are more resilient for climate
change when they have been calibrated using a period of 20 years or
longer and the mean annual rainfall did not change by more than 20%
(15% decrease or 20% increase). This implies that the impact of the

choice of calibration period decreases when the length of the calibra-
tion period is increased. However, our experimental set-up, with a large
parameter sample, did not allow a very long calibration period for
computational reasons.

The selection of the best 1% of the sample as ‘behavioral’ is not so
much a modeling decision as it is a decision in the research set-up. To
investigate the effect of this choice, the analysis as shown in Fig. 5 was
repeated with 10 different sample sizes; 1% (the initial size), and 10%
up to 100% of the sample, each time increasing with 10%. Fig. 5 shows
that choosing a larger sample affects the results, but in most cases it
increases the significance level of the modeling decisions concerning
the error in characteristics of the extremes. The figure also shows that -
as expected - the choices of calibration period and performance metric
approach =p 1 (a very high probability that the two samples are drawn
from the same distribution, i.e. no significant difference between the
two samples) when the complete sample (100%) is used as ‘behavioral’.
In other words, when the complete parameter sample is used, it be-
comes unimportant which period or metric is used for calibration

Fig. 5. ANOVA p-value versus length of the calibration period (left panels) and
size of the sample selected as ‘behavioral’ (right panels) for the four in-
vestigated modeling decisions. For clarity, only the results for the Thur basin
are shown, and for the error in flood characteristics only the results for Flood
event 1 (see Fig. 2).
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because essentially no calibration is performed. A remarkable result is
that the spatial resolution and the spatial representation of the forcing
remain important for the complete sample. They apparently impact the
model output in such a manner that the complete parameter sample
changes significantly.

Given the caveats discussed above, the order of importance of the
investigated modeling decisions on hydrological extremes could change
if other modeling decisions or experimental configurations would be
adopted. Nevertheless, the conclusion that subjective modeling deci-
sions significantly impact the simulation of hydrological extremes re-
mains valid.

6. Summary and conclusion

Computational models in Earth and environmental sciences have to
deal with uncertainty, which is partially augmented by subjective
modeling decisions (e.g., model choice, performance metric selection).
The impact of model choice on model results is generally acknowl-
edged, whereas the uncertainty introduced by modeling decisions
during the configuration of the model is often neglected. In this study
we show, with an example for a flood and drought event in the Swiss
Thur basin, that modeling decisions, beyond the model choice, affect
model results significantly.

We investigated four modeling decisions (spatial resolution of the
model, spatial representation of the forcing data, calibration period,
and performance metric) and examined the impact of these decisions on
the error in three flood characteristics and three drought characteristics
for a flood and drought event in the Swiss Thur basin. Both extreme
events were mainly impacted by the two calibration-decisions: the ca-
libration period and the performance metric. For the flood events, also
the spatial representation of the forcing was important, which could be
explained by the spatial variability of the precipitation during the stu-
died flood events. For the drought event, the role of spatial resolution of
the model could be related to evapotranspiration processes that played
a role during the onset of the studied drought event. However, extreme
events such as floods and drought can be triggered by different pro-
cesses, and a different typology of any of the events could therefore lead
to a different impact of the modeling decisions on the model simula-
tions. Furthermore, the impact of the investigated modeling decisions
differed from (sub-)basin to (sub-)basin, even though the compared
basins had much in common in terms of climate and land-use.
Therefore, more research is needed to provide insights into the impact
of subjective modeling decisions on model simulations. However, in
spite of the limitations of this study, our results do undeniably show
that modeling decisions impact the simulation of hydrological ex-
tremes. This is undesirable, because it implies that the predicted se-
verity of a hydrological extreme would depend on the (subjective) de-
cisions made by the modeler.

A better understanding of the uncertainty in hydrological model
results can improve the robustness of water management decisions
(McMillan et al., 2017). Many model studies therefore already include
some form of uncertainty analysis, by comparing several models or
several parameter sets. Modeling decisions, however, are hardly ever
included in these analyses, whereas this study has shown that their
impact on the results is significant. An evaluation of the impact of
modeling decisions helps in estimating the value of model results. This
paper provides an example on how to conduct such an assessment for a
specific hydrologic application. Further, it is critical to constrain the
spectrum of options (or hypotheses) for a particular modeling decision
based on the information that can be extracted from different data
sources (e.g. Gupta et al., 2008), which provide additional knowledge
on the behavior of environmental systems. Uncertainty associated to a
particular modeling decision can be characterized through multiple
working hypotheses (Clark et al., 2011; Beven et al., 2012), carefully
selected to avoid over-confident portrayals of environmental processes.
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