
Hydrol. Earth Syst. Sci., 23, 493–513, 2019
https://doi.org/10.5194/hess-23-493-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Subseasonal hydrometeorological ensemble predictions in
small- and medium-sized mountainous catchments:
benefits of the NWP approach
Samuel Monhart1,2,3, Massimiliano Zappa1, Christoph Spirig2, Christoph Schär3, and Konrad Bogner1

1Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Mountain Hydrology
and Mass Movements, Birmensdorf, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, Climate Prediction, Zurich Airport, Switzerland
3ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Correspondence: Samuel Monhart (samuel.monhart@wsl.ch)

Received: 28 August 2018 – Discussion started: 21 September 2018
Revised: 13 December 2018 – Accepted: 22 December 2018 – Published: 28 January 2019

Abstract. Traditional ensemble streamflow prediction (ESP)
systems are known to provide a valuable baseline to predict
streamflows at the subseasonal to seasonal timescale. They
exploit a combination of initial conditions and past meteoro-
logical observations, and can often provide useful forecasts
of the expected streamflow in the upcoming month. In re-
cent years, numerical weather prediction (NWP) models for
subseasonal to seasonal timescales have made large progress
and can provide added value to such a traditional ESP ap-
proach. Before using such meteorological predictions two
major problems need to be solved: the correction of biases,
and downscaling to increase the spatial resolution. Various
methods exist to overcome these problems, but the poten-
tial of using NWP information and the relative merit of the
different statistical and modelling steps remain open. To ad-
dress this question, we compare a traditional ESP system
with a subseasonal hydrometeorological ensemble predic-
tion system in three alpine catchments with varying hydro-
climatic conditions and areas between 80 and 1700 km2. Un-
corrected and corrected (pre-processed) temperature and pre-
cipitation reforecasts from the ECMWF subseasonal NWP
model are used to run the hydrological simulations and the
performance of the resulting streamflow predictions is as-
sessed with commonly used verification scores characteriz-
ing different aspects of the forecasts (ensemble mean and
spread). Our results indicate that the NWP-based approach
can provide superior prediction to the ESP approach, espe-
cially at shorter lead times. In snow-dominated catchments
the pre-processing of the meteorological input further im-

proves the performance of the predictions. This is most pro-
nounced in late winter and spring when snow melting oc-
curs. Moreover, our results highlight the importance of snow-
related processes for subseasonal streamflow predictions in
mountainous regions.

1 Introduction

Subseasonal hydrometeorological predictions are of special
interest for many different applications in the public and pri-
vate sectors, for example, to develop early warning systems
for flood and drought preparedness for the general public
(Bogner et al., 2018; Cloke and Pappenberger, 2009; Fundel
et al., 2013; Van Lanen et al., 2016; Schär et al., 2004; White
et al., 2017), to optimize the production of renewable energy
sources such as wind (Beerli et al., 2017), solar (Inman et al.,
2013), and hydro power (García-Morales and Dubus, 2007),
or to ensure inland waterway transportation (Meißner et al.,
2017).

In recent years the numerical weather prediction (NWP)
systems have greatly evolved (Bauer et al., 2015). The en-
semble forecasting approach introduced 2 decades ago al-
lows the chaotic nature of the atmosphere to be captured in
a probabilistic sense and has extended the horizon to which
weather predictions can provide valuable information. Hy-
drological prediction systems, especially beyond the short-
range lead times, benefit from such an ensemble approach
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(Demargne et al., 2014; Jaun et al., 2008; Schaake et al.,
2007; Verbunt et al., 2007). Ensemble hydrometeorological
end-to-end prediction systems for the subseasonal timescale,
i.e. forecasts for lead times up to 4 to 6 weeks, are now being
developed and investigated for different parts in the world.
Nowadays, different research initiatives (Hao et al., 2018;
Robertson et al., 2015; Vitart et al., 2017; Vitart and Robert-
son, 2018) set their focus on the assessment of predictability
within this lead-time horizon. But still this lead time between
the medium-range forecasts and the seasonal predictions is a
grey zone in both the meteorological and hydrological fore-
casting communities.

However, ensemble prediction systems have extensively
been used for short- to medium-range forecasts and it could
be shown that the resolution of the model plays an im-
portant role for a good performance of ensemble precipita-
tion forecasts (Marsigli et al., 2008; Montani et al., 2001,
2003). A higher resolution can be achieved by dynami-
cally downscaling the ensemble predictions, which led to a
gain in predictability in ensemble precipitation forecast over
the past years in the medium-range timescale (Montani et
al., 2011). From a hydrological perspective flood peaks can
much better be predicted using mesoscale ensemble forecast
models compared to global models (Davolio et al., 2012).
In such operational short- to medium-range forecasting sys-
tems, dynamical downscaling methods are a valuable tool
to increase the resolution of the forecasts, but for long-term
predictions the computational demand of dynamical down-
scaling methods is a limiting factor, and it has been shown
that similar results can be achieved with statistical down-
scaling methods (Díez et al., 2005; Manzanas et al., 2018).
In recent years, seasonal ensemble prediction systems have
increasingly been used in the hydrological forecasting con-
text. At this timescale downscaling is usually included in sta-
tistical processing techniques that primarily aim at correct-
ing the bias of the meteorological forecast. Different statis-
tical bias correction techniques can be used to improve the
skill of seasonal forecasts (Bohn et al., 2010; Crochemore
et al., 2016; Kumar et al., 2014). An alternative approach
for seasonal streamflow prediction is the traditional ensem-
ble prediction system (ESP) first introduced by Day (1985).
In this approach, observed historical meteorological condi-
tions are used to generate the streamflow forecasts. Several
studies have shown that ESP can provide skilful seasonal
streamflow prediction (Harrigan et al., 2018) and seasonal
hydrometeorological prediction systems have difficulties in
outperforming the ESP beyond a 1-month lead time (Ar-
nal et al., 2018; Lucatero et al., 2018b). Irrespective of the
methodology used, the performance of ensemble streamflow
forecasts depends to a large degree on the initial condition
within the catchment, especially for small catchments (Van
Dijk et al., 2013; Thirel et al., 2010). In subseasonal to sea-
sonal hydrometeorological predictions, the memory of the
river networks is predominately driven by the initial con-
ditions of the land surface characteristics, i.e. soil moisture

and snow cover (Jörg-Hess et al., 2015a). It has been shown
that these parameters play an important role for skilful hy-
drometeorological forecasts using NWP inputs in hydrologi-
cal models for streamflow forecasting (Orth and Seneviratne,
2013b; Sinha and Sankarasubramanian, 2013). However, for
small snow-dominated catchments the benefit of using pre-
processed subseasonal NWP input has not yet been inves-
tigated. The three main reasons for the lack of studies at
smaller scales is the fact that the driving meteorological mod-
els are calculated on a global scale with coarse resolution.
Therefore, small catchments are often smaller than the nomi-
nal resolution of these models, making a pre-processing step
necessary to bias-correct and downscale the meteorological
forecasts to an adequate spatial resolution as an input to the
hydrological models. The second reason is that small catch-
ments usually do not have a long temporal memory and pro-
cesses leading to runoff are rather quick and therefore the
skill in early lead times does not extend into longer lead times
(Orth and Seneviratne, 2013a). As a consequence, the up-
per limits of the forecast skill at the subseasonal timescale
strongly depend on such catchment characteristics (Bogner
et al., 2016, 2018). Finally, previous generations of subsea-
sonal to seasonal climate forecasts rapidly lost skill beyond
the first 2 weeks (see for example Lavers et al., 2009).

Small- and medium-sized catchments in mountainous re-
gions such as the Alps are often snow dominated; hence
the streamflow, and especially the forecasts thereof, depend
to a large degree on snowmelt processes that are driven
by temperature (Hock, 2003; Ohmura, 2001; Zappa et al.,
2003). Monhart et al. (2018) have shown that the statis-
tically corrected subseasonal temperature forecasts exhibit
positive skill compared to the climatological reference of up
to 3 weeks, whereas positive skill of precipitation forecasts
is restricted to the first 10 days. Hence, the question arises
whether and to what extent the positive skill of temperature
forecasts in meteorological prediction models further pro-
gresses to the streamflow forecasts. Skilful streamflow fore-
casts might not directly be related to the skill in temperature
forecasts but rather in an appropriate sampling of the ini-
tial conditions and the actual snow cover (snow water equiv-
alent) at initialization (Jörg-Hess et al., 2015a). Therefore,
the skill of the streamflow forecasts will not solely depend
on the quality of temperature forecasts alone. To investigate
this question, ensemble streamflow prediction can be used to
evaluate the importance of the initial conditions. The com-
parison of the skill of an ESP forecast and the skill of ac-
tual hydrometeorological predictions can indicate the rela-
tive importance of using physically consistent meteorologi-
cal forecasts to produce skilful streamflow predictions. After
presenting the methods used for the pre-processing and the
verification of the different forecasts in Sect. 2, the meteoro-
logical and hydrological data are described in Sect. 3. The re-
sults obtained are presented in detail in Sect. 4 and followed
by a discussion (Sect. 5) to put the results in the current sci-
entific context.
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Figure 1. Conceptual design of the NWP-Hydro-chain with and without pre-processing (left) and the ESP chain (right).

2 Methods

The conceptual framework used in this study is presented in
Fig. 1. The hydrological model is run with different meteoro-
logical forcings to provide ensemble streamflow predictions.
A traditional ESP approach using 34 years of meteorological
observations provides the baseline forecasts. A second input
is based on the reforecasts from the ECMWF subseasonal
prediction system as described in Sect. 3.1. Along this chain
four different configurations are used to feed the hydrological
model and generate streamflow predictions: the raw refore-
casts for both temperature and precipitation, the raw precip-
itation reforecast and pre-processed temperature reforecasts
and vice versa, and both parameters pre-processed.

2.1 Pre-processing in the hydrometeorological model
chain

In the pre-processing step a quantile mapping (QM) tech-
nique is applied in a leave-one-year-out set-up to correct
each re-forecast year separately. The corrections are applied
in a lead-time-dependent manner. A description of the pre-
processing set-up can be found in Monhart et al. (2018).
This cross-calibration framework ensures a cross-validation
described in Sect. 2.3. In contrast to the site-specific pre-
processing set-up used in Monhart et al. (2018), a gridded
observational product is used here. The pre-processing is per-
formed for temperature and precipitation and involves not
only a bias correction, but also a downscaling because of the
higher resolution of the gridded observation data used in this
study. The observation and forecast data used in this study are
described in more detail in Sect. 3. However, it is worth men-
tioning here that the raw model resolution of 50 km is bias
corrected with QM using gridded observations with a higher
spatial resolution of 2 km. This resolution corresponds to the
meteorological input of the hydrological model, for which

observations from station data are interpolated to 2 km grids
(see Sect. 3.2). The QM technique is a simple and widely
used method for pre-processing hydrometeorological fore-
casts (e.g. Kang et al., 2010; Lucatero et al., 2018b; Verkade
et al., 2013). For a given target day of a reforecast the cor-
rection is derived from the distribution of all the reforecasts
within a 3-week window around the same lead day and the
corresponding observations; hence, the correction depends
on both the lead time and the period of the years. For tem-
perature an additive correction and for precipitation a multi-
plicative correction is applied. Using the multiplicative ver-
sion of QM for temperature allows us to include zero value
without special treatment. Hence, no precipitation can be
generated if the raw forecasts do not exhibit any rain.

2.2 ESP

The ensemble streamflow predictions follow the established
procedure first proposed by Day (1985). Many studies have
shown the potential of this method to provide skilful stream-
flow predictions at the subseasonal to seasonal timescale in
Europe (e.g. Arnal et al., 2018; Harrigan et al., 2018). The
basic principle behind the ESP is to create an ensemble of
streamflows based on known initial conditions and forced by
historic climate sequences. The historical record used in this
study covers the period from 1980 to 2014, resulting in 34
members for each forecast. As in the hydrometeorological
model chain, the ESP approach is set up in a leave-one-year-
out manner to ensure that the information of the year to be
verified is not part of the forecasts itself. ESPs can be skilful
especially in catchments where the predictability is mainly
driven by the initial conditions, although the quality of the
predictions depends on the seasons and hydroclimatic char-
acteristics (Wood and Lettenmaier, 2008).
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2.3 Hydrological simulations

The hydrological simulations are performed with the
Precipitation-Runoff-Evapotranspiration-Hydrotope model
(PREVAH) (Gurtz et al., 1999; Viviroli et al., 2009a; Zappa
et al., 2003). In this study, the distributed model version
which requires gridded input data is used as described in
Speich et al. (2015) and first applied in a hydrological
study by Schattan et al. (2013). The model requires spatial
information (land use, aspect, and elevation) and gridded
meteorological variables. Besides the statistically corrected
temperature and precipitation predictions, relative humidity,
sunshine duration, surface albedo, and solar radiation are
needed to run PREVAH. For the initialization of the model
the required fields (i.e. soil moisture, groundwater storages,
snow cover) are used from a reference simulation driven with
the gridded meteorological observation dataset as described
in Sect. 3.4. The distributed hydrological model is run at a
resolution of 200 m× 200 m; hence, the same model-internal
procedures are used to further downscale the meteorological
inputs for all different experiments. Namely, an interpolation
based on inverse distance weighting (IDW) and different
height- and terrain-specific corrections are applied to the
input variables (adiabatic lapse rate correction; aspect and
slope corrections) as described in Zappa et al. (2003). A
more extensive description of the model and a comparison
to the HRU-based version of the model can be found in
Jörg-Hess et al. (2015a).

2.4 Verification

To verify the predictions, various metrics are used to assess
the forecast performance according to different characteris-
tics or attributes of the forecasts respectively. The verification
is performed for the two variables streamflow and snow water
equivalent (SWE). For the selection of verification metrics
we follow the procedures presented in Brown et al. (2010)
and we combine deterministic and probabilistic measures of
skill to assess the forecast performance. More detailed re-
views of ensemble forecast verification can be found in Jol-
liffe and Stephenson (2012) and Wilks (2011). Besides the
Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)
widely used to assess the performance of hydrological mod-
els and the logarithmic version thereof (NSE log), which is
more sensitive to low flows (Krause et al., 2005), we use
the ensemble mean error (bias) and the mean absolute er-
ror (MAE). For both versions of the NSE and the bias the
ensemble mean is used for the calculation. Although these
metrics can describe the average characteristics of the en-
semble forecasts, it has been shown that it is crucial to con-
sider the spread of the ensemble forecast as well to properly
assess the forecast performance in particular at the subsea-
sonal to seasonal timescale (Kumar et al., 2014). Therefore
the continuous ranked probability skill score (CRPSS) with
the extension proposed by Ferro (2014) to account for small

ensemble sizes is used to characterize the performance of the
full ensemble (Hersbach, 2000; Müller et al., 2005). In addi-
tion, we use the spread-to-error ratio (SprErr) as an indica-
tor of the forecast reliability (Hopson, 2014). The SprErr is
defined as the ratio between the variance of the forecast en-
semble (forecast spread) and the mean squared error (MSE)
of the ensemble forecast (forecast error). For reliable fore-
casts the spread and the error are equal, resulting in a SprErr
of 1, whereas values below 1 indicate overconfidence (errors
are larger compared to the spread) and values above 1 in-
dicate overdispersion (the spread is larger compared to the
error). Finally, rank histograms are used to visually examine
the reliability of the forecasts (Anderson, 1996; Talagrand et
al., 1997; Hamill and Colucci, 1997). In each of these scores
the reforecasts are compared to observations (ME and MAE)
and the climatology of the reference simulation is used as a
reference climatology for NSE and CRPSS. In this study we
use pseudo observations from a reference simulation to sub-
stitute real observations for the streamflow forecast verifica-
tion. This is done to separate the effect on the performance
of the hydrological predictions resulting either from different
meteorological input forecasts or from the deficits in the hy-
drological model in simulating low flows. The set-up of the
reference simulation to generate the pseudo observations is
described in data Sect. 3.4.

3 Data

3.1 Meteorological reforecast data

We obtained the subseasonal reforecasts from ECMWF
Integrated Forecasting System (IFS) version CY40r1.
This version was operational from 19 November 2013
to 12 May 2015. This is a unique dataset because
no system change occurred for nearly 1.5 years (http:
//www.ecmwf.int/en/forecasts/documentation-and-support/
changes-ecmwf-model/cycle-40r1/cycle-40r1, last access:
1 August 2018, for the documentation of IFS CY40r1).
Routinely the model is updated more frequently within
1 year and therefore changes in the system, e.g. changes
to the horizontal and vertical resolution or changes in the
parametrization of physical processes, affect the skill of
the forecast over the course of the year. The same dataset
is used as in the study presented by Monhart et al. (2018)
and can be referred to for a more detailed description of the
forecast system and for an extensive verification of these
meteorological forecasts.

In this study the historical five-member reforecasts (i.e.
hindcasts) are used to drive the hydrological simulations.
These meteorological reforecasts are run for all forecasts
issued on Thursdays using ERA-Interim analysis for the
initialization (ECMWF, 2014) covering the period from
April 1994 to March 2014, resulting in a total of 1040 indi-
vidual reforecasts that are analysed within this study. These
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reforecasts are essential for the post-processing of the me-
teorological forecasts (i.e. pre-processing from a hydrologi-
cal point of view). The bias of the forecasting system can be
estimated using the reforecasts and future forecasts can be
corrected (or, as in this analysis, the reforecasts themselves).

3.2 Meteorological observational data

We use gridded observation datasets at 2 km× 2 km resolu-
tion for daily temperature and precipitation to pre-process
the meteorological reforecasts and for the verification thereof
(Frei, 2014; Isotta et al., 2014; Meteoswiss, 2016a, b). These
products are based on surface observations and are often used
in climatological studies for Switzerland (e.g. Addor et al.,
2016; Begert and Frei, 2018, Orth et al., 2015 for a hydro-
logical model study with the same model version we use in
this study). Nevertheless such gridded observational products
exhibit limitations especially in complex terrain with high
mountain peaks because of the interpolation errors and er-
rors induced by natural variability (Frei, 2014; Addor and
Fischer, 2015). Despite these limitations the analysis bene-
fits by using the gridded version because of the scarcity of
meteorological stations available in the catchment areas. The
additional meteorological variables (relative humidity, sun-
shine duration, surface albedo and solar radiation) needed to
run the PREVAH hydrological model are directly used from
the (raw) meteorological forecasts and are inherently down-
scaled with the PREVAH internal methodology. Although
these parameters could influence the hydrological relevant
processes, e.g. evaporation rates from snow based on the
relative humidity which could change after a downscaling,
a thorough assessment of the effect of bias correcting and
downscaling of these additional variables is out of scope of
the current study.

3.3 Catchment characteristics and hydrological data

The experiments analysed in this study are performed for
three alpine catchments with various hydro-climatic char-
acteristics. This allows identification of the underlying pro-
cesses that lead to skilful subseasonal streamflow predic-
tions. The selection of the catchments is a compromise be-
tween the intended applications of our results within hy-
dropower optimization in the Alpine region and adequately
meeting the requirements of a scientific analysis. Hence, the
Klöntal and the Verzasca catchment both are selected be-
cause of existing hydropower installations in these water-
sheds and the Thur catchment was chosen as a representa-
tive catchment with different hydroclimatic characteristics
and because this catchment is often considered in hydrolog-
ical research in Switzerland. An overview of the catchment
characteristics can be found in Table 1.

The Verzasca catchment located in the southern part of the
Alps is snow dominated in the cold seasons and more precip-
itation dominated in warm seasons (Wöhling et al., 2006).

The average height of the catchment is 1651 m a.s.l. with a
maximum height of 2864 m a.s.l. and a minimum height at
the gauging station of 490 m a.s.l. Despite this height differ-
ence the catchment is of medium size only, with a total of
185 km2. The runoff in this catchment is low in winter due to
accumulation of snow in elevated regions and highly dynam-
ical in late spring to early autumn because the area is prone
to heavy thunderstorm activity (Bogner et al., 2018; Liechti
et al., 2013). The data used for calibration of the hydrological
model and for the verification of the reference simulation are
provided by the Federal Office for the Environment (FOEN)
for the Lavertezzo gauging station.

The Klöntal catchment, located in the northern part of the
Alps, is mainly snow dominated and inherits a glaciated area
of about 3 km2 (<5 %). The maximum height is 2883 m a.s.l.
and the minimum height, corresponding to the height of
Lake Klöntal, is 847 m a.s.l. with a catchment area of 83 km2

categorized as a small catchment. The lake is used for hy-
dropower generation. The data provided by the hydropower
operator are used for calibration of the hydrological model
and the verification of the streamflow reforecasts. Due to the
absence of gauging stations, these data are an estimate of the
streamflow at the lake outlet and deduced from the water bal-
ance of historical lake levels. Hence, the quality of the data
is lower compared to the other two catchments, and there-
fore the interpretation especially under low-flow conditions
should be treated with care.

The third catchment under investigation is the pre-alpine
Thur catchment. This catchment is of medium size with
1696 km2 and mainly precipitation dominated. The highest
elevation is 2505 m, the lowest elevation at the gauging sta-
tion in Andelfingen provided by the FOEN is 356 m, and the
mean catchment height is 770 m a.s.l. This catchment has fre-
quently been analysed in the literature (Bogner et al., 2016;
Fundel et al., 2013; Jörg-Hess et al., 2015b).

3.4 Hydrological pseudo observations: the reference
simulation

For all three catchments described above, the reference simu-
lation is generated using an observed gridded meteorological
dataset for the meteorological variables (temperature, precip-
itation, relative humidity, sunshine duration, surface albedo,
and solar radiation) to run the PREVAH hydrological model
(see Sect. 2.3) in the same setting as used for different pre-
vious studies (Orth et al., 2015; Schattan et al., 2013; Spe-
ich et al., 2015). The gridding of all the meteorological vari-
ables makes use of elevation-based de-trending and inverse-
distance-based interpolation as detailed in the baseline pub-
lication on PREVAH and its tools (Viviroli et al., 2009a) and
also used for application of other hydrological models (e.g.
Melsen et al., 2016). The reference simulation is a single time
series starting in 1992 (after a spin-up period of 3 years) and
ending in 2015. The spin-up period ensures the stability of
the streamflow simulations and is of particular importance to
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Table 1. Overview of the catchment characteristics for the three catchments analysed.

Verzasca Klöntal Thur

Catchment area (km2) 185 83 1696

Altitude range (m) maximum elevation 2864 2883 2505
average elevation 1651 1704 770
minimum elevation 490 847 356

Dominant hydroclimatic snow snow and precipi-
regime glacial tation

fill low-frequency storages for baseflow and snow (Viviroli et
al., 2009b). In addition the spin-up times highly vary across
catchments depending on the hydroclimatic characteristics
and catchment size (Rahman et al., 2016; Seck et al., 2015).
The climatology of the reference simulation is referred to as
the reference climatology and is used as a reference for the
computation of skill scores.

4 Results

4.1 Performance of the reference simulation

The reference simulation is analysed over the full 20-year pe-
riod of the reforecasts. The verification of the reference simu-
lation against observations, summarized in Table 2, generally
shows high agreement of the simulation with the correspond-
ing observations.

The NSE coefficient for the entire analysis period (Ful-
lYear) exhibits values above 0.84 for all catchments. Best
performance can be observed in spring and lowest perfor-
mance in winter when low flows dominate. The logarithmic
form of the NSE (NSE log) shows a similar picture with bet-
ter performance in the Thur catchment. Some difficulties oc-
cur in DJF in the Verzasca catchment and in DJF and SON
in the Klöntal catchment. In the Verzasca and the Klöntal
catchment the MAE and the absolute bias are constant over
the course of the year except in winter. But compared to the
mean annual flows of the specific catchments largest relative
biases are observed during DJF. The Thur catchment exhibits
smallest relative biases except in JJA when low flows occur
because of the absence of snow in this catchment. Various
applications do not focus on low flows but rather on flow
volumes, e.g. hydropower operations are more interested in
forecasts about the total upcoming flow volume to adapt and
optimize their production. Therefore, we here focus on the
standard Nash–Sutcliffe coefficient instead of the logarith-
mic form thereof.

We hereafter verify streamflow predictions against the ref-
erence simulation to focus on analysing the effect of the
different meteorological input forecasts. This allows us to
solely assess the effect of the pre-processing on the hydro-
logical predictions by suppressing the hydrological errors

themselves and is often done to evaluate operational fore-
casting systems (Alfieri et al., 2014), to assess the contribu-
tions of uncertainty on the hydrological forecasts (Voisin et
al., 2011), or for a comparison of the skill of different fore-
casting systems (Pappenberger et al., 2015). Such an evalu-
ation against a reference simulation also minimizes the in-
fluence of the deficits of the hydrological model under low-
flow conditions on the verification analysis as found for the
reference simulation described above. However, the effect of
pre-processing on the performance if real observations are
used for the verification reveals interesting aspects of the
deficits of the hydrological simulations and will be discussed
in Sect. 5.

4.2 Skill of the meteorological input

The raw and bias-corrected temperature and precipitation re-
forecasts used to drive the hydrological predictions are veri-
fied against the gridded observations in the Verzasca domain.
In Fig. 3, the CRPSS for the raw and bias-corrected temper-
ature and precipitation reforecasts is shown. Raw tempera-
ture reforecasts mainly exhibit negative CRPSS values, in-
dicating essentially no skill compared to climatology. After
bias correction using the quantile mapping technique the re-
forecasts exhibit positive CRPSS up to 18–24 lead days in
all seasons but spring (MAM). Raw precipitation reforecasts
exhibit positive skill for lead days 5–11 in all seasons and
negative CRPSS for longer lead times. After bias correction
the skill is higher, with a positive CRPSS of up to 3 weeks in
MAM. In JJA the positive skill is only observed for a 2-week
lead time and in SON and DJF for the first week only. Similar
results are obtained for the Klöntal and the Thur catchment
(not shown).

4.3 Streamflow prediction performance

4.3.1 Prediction performance

The performance of the reforecasts is analysed for all avail-
able reforecast dates within the period 1994–2014. In Fig. 4
the resulting scores (NSE, Bias, CRPSS, and the spread–
error ratio) for all three catchments are presented, indicating
the skill of the prediction system against the reference sim-
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Figure 2. Location and extent of the three selected catchments and their corresponding streamflow and SWE climatology. The Verzasca
catchment in the south, the Klöntal catchment in the centre, and the Thur catchment in the north-east.

Table 2. Verification of the reference simulation with corresponding observations for the Verzasca catchment, the Klöntal catchment, and the
Thur catchment. In each catchment the NSE, the NSE log, the bias, and the mean absolute error are shown. The verification is done for the
full simulation period (FullYear: 1994–2014) and the individual seasons within the full period (DJF, MAM, JJA, SON). A perfect simulation
would have NSE=1, and positive values of NSE indicated better skill than the reference climatology.

Verzasca Klöntal Thur

NSE FullYear 0.85 0.84 0.84
DJF 0.38 0.39 0.83
MAM 0.88 0.82 0.85
JJA 0.82 0.75 0.79
SON 0.84 0.75 0.86

NSE log FullYear 0.87 0.68 0.87
DJF 0.44 −0.14 0.82
MAM 0.90 0.84 0.87
JJA 0.86 0.78 0.85
SON 0.89 0.43 0.88

MAE FullYear 2.84 (25.9) 1.19 (26.6) 10.54 (22.5)
(m3 s−1) (%) DJF 1.35 (36.1) 0.73 (50.7) 10.89 (25.2)

MAM 3.16 (18.7) 1.20 (19.1) 11.53 (16.2)
JJA 3.40 (33.9) 1.63 (26.7) 11.30 (28.7)
SON 3.45 (23.1) 1.21 (39.6) 8.50 (23.9)

Bias FullYear 0.28 (2.5) 0.26 (5.9) −0.42 (−0.9)
(m3 s−1) (%) DJF 1.07 (28.7) 0.39 (27.2) 2.49 (5.8)

MAM −0.06 (−0.4) −0.01 (−0.2) −1.47 (−2.1)
JJA 0.23 (2.3) 0.04 (0.6) −4.41 (−11.2)
SON −0.11 (−0.7) 0.66 (5.9) 1.74 (4.9)
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Figure 3. Overview of the CRPSS for weekly mean temperatures (a) and weekly precipitation sums (b) in 1994–2014 reforecasts grouped by
season (DJF, MAM, JJA and SON) for all grid points within the Verzasca catchment. The shading of the boxes denotes lead time, where week
1 corresponds to day 5–11, week 2 to days 12–18 and so on. Grey shading for raw forecast and blue shading for pre-processed reforecasts.
An individual box shows the distribution of the CRPSS for all grid points within the catchment averaged over all 13 reforecast initialization
dates within one season. The boxes depict the interquartile range, the mean is indicated by the horizontal line and the whiskers span the
length of 1.5× standard deviation of the data. A perfect forecast has CRPSS= 1, and positive values indicate better skill than the reference
climatology.

ulation, i.e. the expected performance of the system for any
date throughout the year.

For the Verzasca catchment, the skill in terms of the NSE
from the ESPs suddenly drops after the initialization of the
forecasts, whereas the prediction system using meteorolog-
ical reforecasts provides positive NSE up to 7 days. Pre-
processing of precipitation generally even lowers the NSE,
indicating positive skill only for 5 lead days. Pre-processing
of temperature does enhance the skill with positive NSE up to
a 13-day lead time. If both variables (precipitation and tem-
perature) are pre-processed the positive effect of the temper-
ature pre-processing on NSE is diminished by the negative
effect of precipitation pre-processing.

The negative biases of the ESP approach indicate an under-
estimation of the streamflows for all lead times in the Verza-
sca catchment. Raw forecasts show even stronger underesti-
mation. After pre-processing either precipitation or tempera-
ture, this underestimation is lower and reaches similar biases
to the ESPs. If both parameters are pre-processed the biases
are close to 0 or slightly positive, indicating that the stream-
flows are neither underestimated nor overestimated.

The overall performance characterized by the CRPSS in-
dicates positive skill for the ESPs up to 15 days lead time for
the Verzasca, but the skill drops quickly after the initializa-
tion of the forecasts as in the NSE. Raw forecasts only show
a positive CRPSS for the first 5 lead days. Pre-processing of
precipitation increases the CRPSS at short lead times. Tem-
perature pre-processing enhances the skill at early lead times
and in addition elongates positive skill up to 15 days lead
time. This is even more pronounced if both variables are pre-
processed.

The spread–error ratio of the ESPs is below 1 for all lead
times, indicating overconfidence. For the NWP-Hydro-chain
the overconfidence is even higher for raw and temperature-
only pre-processed (ppT) reforecasts. Pre-processed precipi-

tation (ppP) reforecasts can partly correct the overconfidence
of the streamflow reforecasts and if both variables are pre-
processed (ppTP), the spread–error ratio indicates reliable
forecasts.

These skill signatures are similar in the other two catch-
ments analysed in this study (Fig. 4), although not in an ab-
solute sense. In the small, semi-glaciated Klöntal catchment
the absolute skill generally is higher, and the skill of the pre-
dictions extends to longer lead times. In particular the raw
and temperature-only pre-processed reforecasts (ppT) show
positive skill in terms of the NSE throughout all lead times.
In the Thur catchment the skill of the raw reforecasts outper-
forms the ESPs as well, but in contrast to both other catch-
ments, the effect of pre-processing is negligibly small.

4.3.2 Seasonal variations in skill

The prediction skill of the different approaches does not only
vary across catchments, but also across seasons. In Fig. 5 the
performance in the Verzasca catchment for the four seasons
DJF, MAM, JJA, and SON is shown. The general character-
istics are similar to those observed for the entire year; i.e.
the ESP-based predictions exhibit a sudden drop in the NSE
after initialization and most benefits (positive skill to longer
lead times) are obtained if temperature-only is pre-processed
(ppT). In DJF and MAM this skilful horizon is extended by
ppT, from 5 (3) days to up to 16 (9) days in MAM (DJF), and
the bias is reduced.

The overall performance (CRPSS) for the ESPs is better
than the reference climatology for all lead times in MAM and
clearly outperforms the raw reforecasts and precipitation-
only pre-processed reforecasts (ppP) in MAM and DJF. For
the temperature-only pre-processed reforecasts (ppT) and if
both variables are pre-processed (ppTP), the predictions in
these seasons (DJF and MAM) outperform the ESP fore-
casts for lead times up to 12 to 15 days and are equal for
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Figure 4. Verification of the streamflow forecasts for the Verzasca (a), Klöntal (b), and Thur (c) catchments considering all forecasts within
the reforecast period. The NSE coefficient in the upper most panel, the mean bias (Bias) in the second, the CRPSS in the third, and the
spread-error relationship (SprErr) in the lowest panel. For each score the five different set-ups are shown. The first row corresponds to the
ESP approach (esp), the second row to the reforecasts using both pre-processed temperature and precipitation (ppTP), the third row to the
pre-processed temperature-only (ppT), the fourth row to the pre-processed precipitation-only (ppP), and the fifth row to the reforecasts using
the raw meteorological input reforecasts (raw). The NSE and the CRPSS span from −infinity to 1, with a perfect score being 1; a bias of 0
indicates no forecast error, with negative values indicating underestimation and positive values indicating overestimation of the flow; reliable
forecasts exhibit a SprErr of 1, lower values indicate overconfidence, and greater values indicate overdispersion.

longer lead times. In JJA (and SON, not shown) the ESPs
only exhibit a positive CRPSS up to 5 and 9 days, whereas
the raw reforecasts (i.e. without any pre-processing) indicate
positive skill up to lead times of 10 and up to 15 days. How-
ever, in contrast to DJF and MAM, the influence of the pre-
processing on the performance is negligible in JJA. Further-
more, in JJA the bias and the spread–error ratio are only bet-
ter if the pre-processing includes precipitation.

The seasonal variation in performance holds true as well
for the other catchments, i.e. reforecasts initiated in win-
ter and spring show highest benefits over the reference cli-
matology. In contrast to the Verzasca catchment, the raw
and precipitation only pre-processed reforecasts show higher
streamflows than the reference climatology in MAM and the
raw and temperature pre-processed reforecast show a posi-
tive NSE up to 30 lead time days (Fig. 6, left).

Less seasonal variation is observed in the Thur catchment
although the general signatures are evident as well. In MAM
(Fig. 6, right) all methods perform better than the reference
simulation (positive CRPSS) over the full forecast range.
Generally worst performance is found for the ESP. The ef-
fect of the pre-preprocessing is limited and can mainly be
noticed if precipitation is pre-processed, resulting in smaller

biases and a spread-to-error ratio closer to 1, indicating a re-
duction in overconfidence.

4.3.3 Reliability of the ensembles

An additional important forecast characteristic is the reliabil-
ity of the predictions, which cannot directly be deduced from
the metrics shown above. Therefore, the rank histogram for
the full period (Full year) and MAM reforecasts in the Verza-
sca catchment for all model configurations is shown in Fig. 7
to assess the reliability of the streamflow forecasts. As an
example we focus on the rank histograms of the full period
(Full year) and the MAM reforecasts, because of its represen-
tativeness for the seasonality of performance. In MAM, both
versions, raw and precipitation-only pre-processed refore-
casts, show an underestimation of the flows (negative bias)
indicating that most reforecast members tend to be lower than
the corresponding observations. The strong negative bias is
reduced if temperature-only pre-processed reforecasts (ppT)
are used. But still a U-shape is evident in the histograms that
indicates overconfidence and thus confirms the conclusions
from the spread–error ratio.

If both temperature and precipitation is pre-processed
(ppTP) the resulting rank histograms become more uniform,

www.hydrol-earth-syst-sci.net/23/493/2019/ Hydrol. Earth Syst. Sci., 23, 493–513, 2019



502 S. Monhart et al.: Subseasonal hydrometeorological ensemble predictions

Figure 5. Same as Fig. 4 but seasonally aggregated (DJF, MAM, JJA, and SON) for the Verzasca catchment.
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Figure 6. Same as Fig. 4 but for the Klöntal and the Thur catchment in MAM.

in particular for longer lead times indicating a reduction of
the overconfidence. But shorter lead times still exhibit some
overconfidence. The rank histograms for the ESPs do pro-
vide more uniform rank histograms with a weak tendency of
a negative bias. Although slight differences can be observed
between different seasons, the main characteristics are simi-
lar for the full period.

The rank histograms for the Klöntal and Thur catchments
(supplementary material) exhibit the same general behaviour
regarding the reliability, but improvements by pre-processing
are less pronounced for the Thur catchment and the rank his-
tograms still indicate overconfidence even if both variables
are pre-processed.

4.3.4 Snow water equivalent verification

To generate skilful streamflow predictions in mountainous
catchments, the snow in the catchment is a crucial variable.
Therefore, the SWE in the hydrological model is analysed ac-
cording to different elevation regions. For the verification we
analyse the SWE at elevations above and below 1500 m a.s.l.
As in the verification of the streamflow reforecasts, the SWE
is verified against the SWE of the reference simulation to
replace the observations. A verification of modelled SWE
against a consistent and homogenized climatology of grid-
ded SWE based on station information is given by Jörg-Hess

et al. (2014). They have shown that the modelled SWE ex-
hibits errors that are of the same order as natural variability.

In MAM, raw and precipitation-only pre-processed (ppP)
reforecasts highly overestimate the SWE in areas above
1500 m a.s.l. indicated by the MAE and the bias in Fig. 8.
The predictive skill in terms of the CRPSS is lost after a
9-day lead time. In contrast, the reforecasts in DJF show
stronger overestimation in areas below 1500 m a.s.l. and a to-
tal loss of predictive skill after a 15-day lead time in this area.
The lowest biases and highest skill (in terms of the CRPSS)
are evident for reforecasts with pre-processed temperature
and precipitation (ppTP), followed by temperature-only pre-
processed (ppT), both outperforming the ESPs.

For all versions of the meteorological reforecasts (raw and
pre-processed) the resulting SWE reforecasts tend to be over-
confident, with least overconfidence if precipitation-only is
pre-processed according to the spread–error ratio. The ESPs
exhibit less overconfidence for both seasons and regions and
exhibit similar levels in terms of MAE and the bias and
slightly less overall skill (CRPSS) compared to ppT and
ppTP reforecast versions.

The rank histograms confirm the conclusion drawn above.
Raw and precipitation-only pre-processed reforecasts (ppP)
exhibit largest positive biases throughout all lead times. In
case of temperature-only (ppT) and temperature and precip-
itation pre-processed reforecasts (ppTP) the rank histograms
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Figure 7. Rank histograms for all four configurations (raw, ppP, ppT, ppTP) and the ESPs for the full analysis period (Full year) and MAM
in the Verzasca catchment. The basic principle in the rank histograms the assumption that the ensemble members determine bins in which the
corresponding observation can be ranked. For a reliable forecast, the observations are equally distributed across all different bins resulting
in a uniform shape of the rank histograms. If for example the frequency in the lowest (rank 0) and the highest bin (rank 6) is much higher,
the observation tends to be more frequently either higher than all ensemble members or lower than all ensemble members but less often
in between the ensemble members. This specific U-shape indicates that the forecast spread is too narrow and thus the forecasts generally
overconfident. In contrast, if the observations tend to be more often in between the ensemble members (e.g. rank 2 and 3), the rank histogram
exhibit a convex shape and thus the forecast spread is too large indicating overdispersive forecasts.

indicate overconfidence in the beginning which is reduced
for longer lead times.

The SWE verification in the Klöntal catchment shows a
similar behaviour with negative biases and largest MAE for
the raw and precipitation-only pre-preprocessed (ppP) re-
forecasts. In contrast to the Verzasca catchment the CRPSS
stays positive for all versions and for all lead times. A simi-
lar behaviour is observed in the Thur catchment with positive
skill for all lead times but smaller negative biases (the corre-
sponding figures for the Klöntal and the Thur catchment can
be found in the Supplement).

5 Discussion

For a proper evaluation of the effect of pre-processing on
the hydrological streamflow predictions the following dis-
cussion considers the verification against the reference sim-
ulation. The meteorological input reforecasts highly ben-

efit from the pre-processing procedure applied. The skill
found for the pre-processed temperature and precipitation
reforecast is comparable to the skill found in Monhart et
al. (2018). In contrast to the present analysis, our earlier
study used station-wise post-processing of the raw forecasts
using the same set-up as in the present study. Similarly, dif-
ferent studies emphasize the benefit of pre-processing pre-
cipitation (Crochemore et al., 2016) and temperature fore-
casts (Lucatero et al., 2018a) at catchments at various spa-
tial scales. The QM method used here is a popular pre-
processing method for hydrometeorological ensemble fore-
casts (e.g. Kang et al., 2010; Lucatero et al., 2018b; Verkade
et al., 2013) but does not come without limitations. In partic-
ular Zhao et al. (2017) point out the inability of QM to pro-
vide fully reliable ensembles for post-processing GCM pre-
cipitation. However, an extensive discussion of the reliability
issue of the pre-processed meteorological input data used in
this study can be found in Monhart et al. (2018). To sum-
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Figure 8. Same as in Fig. 5 but for SWE in DJF and MAM in the Verzasca catchment.

www.hydrol-earth-syst-sci.net/23/493/2019/ Hydrol. Earth Syst. Sci., 23, 493–513, 2019



506 S. Monhart et al.: Subseasonal hydrometeorological ensemble predictions

marize, it was found that the combination of the NWP model
with QM indeed is able to provide reliable ensembles for lead
times beyond 10 days but at shorter lead times the ensembles
tend to be overconfident because the spread in the underly-
ing NWP forecasts tends to be inappropriate what cannot be
corrected using QM. An additional critical limitation of QM
is the issue of variance inflation. Maraun (2013) emphasizes
that the variance of the downscaled product strongly depends
on the variance of the raw model grid box and QM does not
introduce any small-scale variability. This is of particular im-
portance for applications using local-scale information (such
as distributed hydrological modelling) and if extremes are
considered. In CH2018 (2018) these limitations of the QM
method are highlighted for local climate change scenarios in
Switzerland. In particular for convective precipitation events
in summer the variance inflation issue can cause misinterpre-
tation of data at the finer resolved scale. In the present study
we are interested in the average streamflow throughout all
season in the year for the upcoming 32 days and not in pre-
dicting extremes what reduces these implications, but still
the spatial structure especially during convective situations
in summer will likely be misrepresented and can influence
the results. Different alternatives could be used depending
on the specific application of the downscaled information,
e.g. perfect prognosis approaches (Von Storch, 1999), the use
of weather generators (e.g. Peleg et al., 2017) or in general
stochastic methods (e.g. Volosciuk et al., 2017). However,
such methods often require large computational resources.
As the intention of this study is to pioneer the use of sub-
seasonal hydrological predictions towards an operational use,
we decided to use the QM technique despite its limitations.
The results presented above and discussed in the following
paragraphs legitimate our choice. Nevertheless, future stud-
ies should focus on the effect of variance inflation when QM
is used to pre-process the predictions and alternative methods
should be considered.

Our results show that subseasonal streamflow predictions
in mountainous catchments can be skilful for the full 32-day
lead time horizon in winter and spring. The traditional ESP
approach clearly provides skilful predictions for all three
catchments analysed in this study, in terms of the overall skill
(CRPSS) and the reliability. This is in agreement with the
findings from Arnal et al. (2018) comparing the skill of an
ESP and a seasonal forecasting system across many regions
in Europe. They found that the ESP approach can be out-
performed mainly in the first month in terms of the CRPSS.
Nevertheless, if scores evaluating the mean characteristics
are considered (NSE and bias), we observe worse perfor-
mance than suggested by the CRPSS. This indicates that the
ESPs can capture the future evolution of the streamflow in
a probabilistic sense. Furthermore, the substantial decrease
in skill within the first days suggests that the ESPs are not
able to capture the exact evolution, but can rather be used to
estimate the general behaviour within the upcoming weeks.
This is in agreement with the exponential decay in skill with

increasing lead time found for ESP forecasts in UK catch-
ments (Harrigan et al., 2018). If the NWPs are used to pre-
dict the streamflows, the skill can clearly be enhanced, but in
most cases only if the driving meteorological predictions are
pre-processed. This indicates that knowledge of the synop-
tic conditions plays an important role in enhancing the skill
of the streamflow predictions at early lead times and that bi-
ases in these driving predictions need to be corrected prior
to make these predictions useful. Furthermore, the improve-
ments in performance of the streamflow predictions by pre-
processing suggests that the gridded observational dataset
provides a good baseline for this purpose, despite the dif-
ficulties involved in producing a gridded product based on
a limited number of observational stations. In addition, the
performance of the ESPs could potentially be enhanced if
not all but only individual years are taken into account. A
certain guidance based on a selection of years with similar
initial conditions could be taken into account. Crochemore et
al. (2017) have shown that seasonal prediction based on ESP
can benefit from conditioning the forecasts on climatology.
However, an evaluation of such an approach is beyond the
scope of the present study.

The effect of pre-processing is even more pronounced for
the SWE verification. In the NWP chain the SWE is highly
overestimated if temperature is not pre-processed (raw and
ppP). Hence, the hydrological model inherent downscaling
of temperature using an adiabatic lapse rate leads to low skill
in terms of CRPSS at longer lead times. Although temper-
ature lapse rate corrections have been found to be impor-
tant for reproducing streamflow simulation based on regional
climate model outputs in mountainous snow- and glacial-
dominated catchments (Butt and Bilal, 2011; Rahman et al.,
2014), our study suggests that at least in a subseasonal fore-
casting context such corrections are not sufficient. Similarly,
Tobin et al. (2011) have shown that for a flood forecasting
framework constant lapse rate corrections, even if season-
ally derived, are unable to capture the dynamics of tempera-
ture changes during an event. At lower elevations this effect
is even more crucial because the SWE is smaller and tem-
perature biases accelerate melting processes in the model.
If temperature pre-processing is included, these large errors
can be avoided, and the skill of the SWE predictions is sub-
stantially increased. This effect underlines the importance of
pre-processing the subseasonal forecast in snow-dominated
catchments. The importance of the SWE initial conditions
for subseasonal forecasts has been shown by Jörg-Hess et
al. (2015a). They conclude that a better representation of
snowmelt process by improved states of the snow storage can
greatly improve the predictions of streamflow volumes. The
influence of initial conditions of SWE on seasonal stream-
flow predictions in the US is shown by Wood et al. (2016)
in an idealized experiment. Furthermore, they stress that lim-
ited skill in seasonal meteorological predictions can be am-
plified in streamflow prediction skill. Our study suggests that
an additional pre-processing of the meteorological forecasts
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is necessary to maintain the benefit of the initial conditions
and confirms the findings of amplified skill in the streamflow
predictions if the forecasts exhibit some skill. Otherwise, low
skill in performance of the (raw) forecasts and the loss in skill
to predict the SWE over longer lead times directly translates
into low skill of the streamflow forecasts.

The comparison of the performance in the three differ-
ent catchments analysed gives further insight into the pre-
dictability of streamflows in alpine catchments and strength-
ens the picture drawn above which shows the importance of
the complex interactions between precipitation, temperature,
and SWE at the subseasonal forecast timescale. In the Thur
catchment, the largest catchment in the analysis, which is
mainly precipitation dominated, the difference in skill be-
tween the ESPs and the NWP-based prediction is smallest.
Similarly, the differences between raw and pre-processed ex-
periments are marginal. Only in spring, if precipitation is
pre-processed (ppP and ppTP), can a small improvement in
the CRPSS be observed at early lead times coinciding with
the lead times where pre-processed precipitations still exhibit
skill. Hence the initial conditions of the model and skilful
precipitation predictions at early lead times determine to a
large degree the skill of the reforecasts, and the negligible
snow-covered area within the catchment does marginally af-
fect the performance of the runoff predictions. In the Thur
catchment two additional subcatchments in the upper Thur
catchment (at runoff stations Halden and Murg) have been
verified to identify the influence of hilliness and catchment
size on the forecast performance. Although the sizes of
the Murg (212 km2) and the Halden catchment (1085 km2)
vary significantly, the hilliness in both is comparable, while
the lower part of the Thur catchment (station Andelfingen,
1696 km2) is a typical lowland region. For all three stations
the skill is very similar (Fig. S4 in the Supplement) and pre-
processing does not vary either. This suggests that neither
hilliness nor catchment size significantly influences the per-
formance of the forecast. In the snow-dominated and par-
tially glaciated Klöntal catchment, the smallest catchment in
this analysis, the high skill in terms of the NSE indicates
a good performance of the ensemble mean, but in terms of
the overall skill (CRPSS) the NWPs are only skilful if tem-
perature pre-processing is considered. This superiority in the
mean is most likely the effect of melting processes. On the
other hand, the Verzasca catchment is snow dominated in el-
evated regions but rain dominated at lower elevations due
to its large gradient of elevations. Therefore, snowmelt pro-
cesses tend to occur more often and are more diverse due
to the higher-elevation gradient within the catchment. The
NSE does indicate skill up to a 13-day lead time for the
temperature-only pre-processed forecast (ppT), but precipita-
tion pre-processing even lowers the skill despite an increase
in skill of the corresponding precipitation inputs. This coun-
terintuitive behaviour of lowering the skill (in terms of NSE)
in the streamflow prediction despite the use of improved pre-
cipitation inputs underlines that for a profound assessment of

the skill of ensemble forecasts, verification metrics focusing
on mean flows can be insufficient and misleading.

The combination of pre-processed subseasonal meteoro-
logical prediction with hydrological simulations can out-
perform a traditional ESP approach in small to medium-
sized alpine catchment. Especially in snow-dominated and
(semi-)glaciated catchments such a prediction chain brings
large benefits in the forecast performance. But tempera-
ture (and precipitation) from the NWP model needs to
be pre-processed prior to be used in hydrological models
to achieve better performance than an ESP approach. In
precipitation-dominated catchments the pre-processing only
shows a marginal improvement in skill, but the NWP chain
clearly outperforms ESPs. Hence, such systems can be of
interest for application when accurate and reliable runoff
predictions are desired, especially in snow-dominated catch-
ments. Furthermore, Frei et al. (2018) have shown that a gen-
eral decrease in snowfall is expected in future climate change
scenarios, while at higher elevation the signal shows a slight
increase in heavy snowfall events, due to a shift of climato-
logical cold areas into a temperature interval which favours
higher snowfall intensities in combination with a general in-
crease in winter precipitation. Especially regarding future
scenarios which expect an increase in hydro power produc-
tion due to melt water in the period from October to April
(Weingartner et al., 2013) such systems might become a valu-
able tool for optimizing hydropower production in moun-
tainous areas. Future work should include statistical post-
processing techniques (of the hydrological output) to correct
the errors and biases of the hydrological simulation and to ac-
count for additional uncertainty induced by the hydrological
model in the ensemble.

The discussion above focused on the effect of pre-
processing hydrometeorological predictions and therefore
only the verification against the reference simulation was
considered and hydrological model errors are thus excluded
from the analysis. However, to estimate the real-world per-
formance, the hydrological model errors need to be taken
into account. To do so we verified the streamflows of the
reference simulation of the PREVAH model against observa-
tions. The evaluation presented in Sect. 4.1 revealed the good
performance of the hydrological model with NSE above 0.8
in most seasons. The largest difficulties are observed in sea-
sons with low-flow conditions (in DJF in the Verzasca, and
in SON and DJF in the Klöntal catchment). This is particu-
larly evident in the logarithmic version of the NSE, in which
flood peaks are flattened to better assess the performance
under low-flow conditions: the difficulties of the model re-
main. These deficits of the hydrological model need to be
considered in the verification of the predictions and are the
reason for verifying the reforecasts against the pseudo ob-
servations from the reference simulation. Otherwise, if the
predictions are verified against real streamflow observations,
the hydrological model deficiencies dominate the skill char-
acteristics of the predictions and possibly impede the identi-
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fication of the effect of pre-processing. An example of such
a deficiency is the uncertainty resulting from the hydrolog-
ical modelling that results in stronger overconfidence espe-
cially at short lead times when the hydrological model un-
certainty may be the dominant source of uncertainty as dis-
cussed for example in Bennett et al. (2014). To illustrate this
for the prediction used in this study, the verification was re-
peated with the real runoff observations. The skill in most
seasons (MAM, JJA, SON) exhibits the same behaviour with
high skill at early lead times and decreasing skill at longer
lead times, and generally higher overconfidence at short lead
times is observed, which confirms the findings by Bennett
et al. (2014). But during low-flow conditions (in DJF in the
Verzasca catchment and in DJF and SON in the Klöntal
catchment), strong negative peaks in skill (in terms of the
CRPSS) are present at short lead times, with increasing skill
at longer lead times (supplementary material). The corre-
sponding input data revealed that this behaviour can be asso-
ciated with predicted snowmelt events that coincide with ob-
served “no melt” events. During such events, all members of
the experiments including pre-processed temperatures (ppT
and ppTP) overestimate the observed runoff peak. The com-
parison of the meteorological input data from the reforecast
with data from an observational station shows an overesti-
mation in both temperature and precipitation. The temper-
ature observations for this event were clearly below freez-
ing, whereas the raw forecast data are close to 0 ◦C, and
the pre-processed temperature is positive. Hence, the melt-
affected area is too large, leading to an overestimation of the
runoff contribution. In addition, overestimated precipitation
will further contribute to runoff, and less deposition of solid
precipitation will occur. Similarly, the reference simulation
does overestimate the runoff peak because of an overestima-
tion of the temperature in the gridded data used to run the
hydrological model. It is known that gridded observations do
inherit errors due to interpolation (Freudiger et al., 2016) and
do have difficulties in resolving small-scale features, such as
cold pools in Alpine valleys (Frei, 2014). This can partly ex-
plain this behaviour. Another potential explanation is an in-
sufficient formulation of the discrimination between rain and
snow in the hydrological model. In the version of PREVAH
used for this study, the formulation follows a threshold-based
method in combination with a linear range as described in
Zappa et al. (2003). This linear transition range is set between
the threshold values −1.5 and +1.5 ◦C as determined by the
hydrological calibration. The threshold itself and the corre-
sponding linear range highly depend on the hydroclimatic
characteristics and thus can strongly vary in space (Liu et al.,
2018). It has been shown that more sophisticated approaches
using logistic regression for characterizing this range can
provide better results (Frei, 2016). In principle such an ap-
proach could be included in the hydrological model, but such
an implementation is out of the scope of this analysis. Alter-
natively, it has been shown that such errors of the hydrolog-
ical model can be corrected by additionally post-processing

the hydrological output using neuronal networks or logistic
regressions (e.g. Bogner et al., 2016; Sharma et al., 2018).

6 Conclusion and outlook

Recent advances in subseasonal meteorological ensemble
models makes it feasible to develop hydrometeorological
prediction systems driven by such NWP forecasts. We devel-
oped an end-to-end hydrometeorological prediction system
driven with reforecasts from the subseasonal prediction sys-
tem from the ECMWF. A pre-processing procedure based on
QM is used to bias correct and downscale the meteorologi-
cal predictions prior to the hydrological model. The perfor-
mance of the resulting streamflow forecasts is assessed for
three small- to medium-sized alpine catchments using vari-
ous verification metrics to assess different attributes of the
reforecasts. Our study demonstrates the potential of ensem-
ble streamflow predictions in small mountainous catchments.
Moreover, the benefits of combining NWPs and hydrological
models has been shown. The analysis indicates the need for
pre-processing of the driving meteorological prediction espe-
cially in small snow-dominated catchments in alpine regions.

Decent skill of traditional ESPs compared to climatologi-
cal reference can extend up to the entire 32 days. The NWP
approach outperforms the ESPs in all catchments and most
seasons in particular at short lead times up to about day 5.
In snow-dominated catchments, an additional pre-processing
step of both temperature and precipitation is crucial to further
enhance the skill and the reliability of the forecasts. While
pre-processing precipitation-only is not sufficient to enhance
the forecast performance, it is crucial in the combination with
temperature preprocessing to improve the forecast reliability.
Again, it is noted here that the verification is done against
the reference simulation as replacement of real observations.
Hence, the performance cannot directly be interpreted as the
prediction performance in an absolute sense, because in our
approach the deficits of the hydrological model are not fully
taken into account. However, the relative benefits of using
NWP output as forcing for the hydrological simulations and
the improvements after pre-processing is expected to hold
true as well with real observations.

The benefits of the NWP approach and the pre-processing
step is most pronounced in winter and spring when snowmelt
processes dominate. This demonstrates the importance of
snow for the predictability of streamflows at the subseasonal
timescale. Hence the deficits in the hydrological model with
respect to snow-related processes (in particular the distinc-
tion between solid and liquid precipitation) should receive
further attention to enhance the forecast performance. Alter-
natively, post-processing techniques applied to the stream-
flow forecasts can be applied to correct such hydrological
model deficits. This would allow assessment of the skill of
the forecasts with respect to real observations and can po-
tentially further increase the performance of the forecasts.
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Hence, if post-processing techniques are able to account
for the deficits of the reference simulation, the combina-
tion of both pre- and post-processing could provide skilful
lead streamflow predictions in snow- and glacial-dominated
catchments in mountainous terrain at the subseasonal fore-
cast horizon.

Furthermore, technical improvements of the NWP mod-
els related to the ensemble size, frequency of issuing re-
forecasts, and improvements in the representation of phys-
ical processes can be expected to have a positive effect on
the resulting streamflow performance. In our set-up we use
a rather simple statistical bias correction technique to pre-
process the hydrometeorological prediction. More sophisti-
cated pre-processing techniques could be applied to anal-
yse their capability to enhance the streamflow performance.
Since ensemble hydrometeorological predictions are of in-
terest for specific applications the forecasts should further
be analysed according to their economic value, for exam-
ple, to optimize the revenues of existing hydropower plants
in alpine regions or for early better preparedness of hydro-
logical droughts.
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