
Introduction

The need for conserving biodiversity has become in-

creasingly imperative during the last decade as rates of

habitat and species destruction continue to rise (Noss and

Cooperrider 1994, Nagendra 2001). At the same time in-

ventorying biodiversity and monitoring efficacy of meas-

ures for its conservation have emerged as important sci-

entific challenges of recent years (Jørgensen 1997,

Nagendra and Gadgil 1999). According to Cousins and

Ihse (1998), biodiversity must be studied both on detailed

level (genes and species) and general level (biotopes and

landscapes), in order to fully understand the effects

caused by rapid changes. For the latter, monitoring biodi-

versity on a general level, homogeneous consistent land

cover information is primarily required as it is obtained

using remote sensing data (Townshend et al. 1991, Chu-

vievo 1999). According to Palmer (1995) and Wohlge-

muth (1998), it is almost impossible to have a complete

biodiversity survey at regional scale of 1-100 square kilo-

meters. Therefore, methods for extrapolation are needed

which provide information that is remotely similar to field

samples and which would allow to considerably reduce

extensive field surveys. New techniques and data sets

now enable remote sensing, in conjunction with ecologi-

cal models, to shed more light on some of the fundamental

questions regarding biodiversity (Cousins and Ihse 1998).

Furthermore, remote sensing also may help calculating
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six test sites was then calculated. This ecological modeling approach also reveals two main restrictions: 1) this method only indicates
the potential presence or absence of species, and 2) the models may only be useful for calculating species richness in neighboring
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Positioning System; LUU – Land Use Unit; MAE – Mean Absolute Error; NDVI – Normalized Difference Vegetation Index; NIR –
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biodiversity hotspots to facilitate biodiversity field sur-

veys, e.g., to focus the sampling of biological data on

these hotspots (Kerr and Ostrovsky 2003).

According to Turner et al. (2003), two general ap-

proaches of remote sensing of biodiversity can be distin-

guished. One is the direct remote sensing of individual or-

ganisms, species assemblages, or ecological communities

from airborne or space borne sensors. The other approach

is the indirect remote sensing of biodiversity through re-

liance on environmental parameters as proxies. A number

of studies have demonstrated that land cover maps de-

rived from remote sensing data can be used as powerful

indirect indicators of species number and distribution

(Harner and Harper 1976, Kitchener et al. 1982, Zon-

neveld 1989, Scott and Csuti 1997, Roy and Tomar 2000).

Furthermore, remote sensing data provide increased op-

portunities to develop quantitative models on the relation-

ship between species diversity and the diversity of land

cover elements (Noss 1990, Avery and Haines Young

1990, Nagendra and Gadgil 1998).

Providing consistent and reproducible information on

land cover at different scales proves to be the main advan-

tage of remote sensing as a tool for both ecological analy-

ses and biodiversity assessment studies. Particularly re-

gression analyses have been broadly applied in ecology

up to date (Guisan et al. 2002, Lehmann et al. 2002).

Guisan and Zimmermann (2000) and Scott et al. (2002)

point out that the use of modern regression approaches

has proven particularly useful for the modeling of the spa-

tial distribution of species and communities. Thus, in

combination with regression analyses remote sensing

data may considerably help to assess biodiversity of a re-

gion. Estimates of species richness of a region can then be

used to focus on targets in inventories so that appropriate

levels of sampling can be reached in these areas. Calcula-

tion of potential biodiversity hotspots might be helpful for

conservation efforts in a region, e.g., for an assessment of

the landscape itself and for future protection planning.

The present study is focused on an assessment of li-

chen species richness for six test sites in the Swiss Pre-

Alps following a gradient of land use intensity, combining

remote sensing techniques and regression analyses. This

study ties in with the European Union Project BioAssess

which aimed at quantifying patterns in biodiversity and

developing “Biodiversity Assessment Tools” that can be

used to rapidly assess biodiversity. For the BioAssess pro-

ject, seven biological indicators (soil macrofauna, collem-

bola, ground beetles, plants, butterflies, birds and lichens)

as well as remote sensing based indicators (non-biologi-

cal) for a biodiversity assessment were collected in the

test sites for eight participating countries (for more de-

tails, see the BioAssess Homepage http://www.nbu.

ac.uk/bioassess/).

Lichens are mutualistic symbiotic organisms and con-

sist of two unrelated components, a fungus (the myco-

biont) and one or more algae or cyanobacteria (the photo-

bionts). Many species have evolved a requirement for

substrates that are themselves by-products of advanced

succession in more dominant ecosystems. Lichens are af-

fected by various forms of anthropogenetic disturbance

such as agricultural and forest management (Scheidegger

and Goward 2002), atmospheric pollution and climate

change (Nash 1996, Nimis et al. 2002). These distur-

bances can be detected using remote sensing data and eco-

logical modeling. Some studies show the combination of

lichens with remote sensing methods: e.g., in Nordberg

and Allard (2002) lichens have particularly been used as

an indicator of ecosystem disturbance or serve as indica-

tors of forest age (Rose 1976, Ask and Nilsson 2004). In

other studies, predictivity of ecological values was tested

using lichen relevés (Nimis and Martellos 2001) or lichen

diversity has been predicted using stand characteristics in

CIR aerial photographs (Ask and Nilsson 2004).

The objective of the present study is to correlate

ecologically meaningful variables derived from airborne

remote sensing data with field sampled lichen species

richness and to develop regression models to predict li-

chen diversity in the investigated test sites.

Material and methods

Study area

The study area is located in the northern Pre-Alps of

the central part of Switzerland in the region of Entlebuch

which has been accredited as an UNESCO Biosphere Re-

serve since September 2001 (Fig. 1). The region is char-

acterized by a complex topography with impenetrable

gorges, rocky slopes, karst areas and fluviatile deposits.

The result is a fragmented landscape. The region covers

an area of 395 square kilometres and ranges from the

montane (700 m) to alpine zone (2300 m). It is mainly

dominated by fragments of forest, rich and poor pastures

and natural grassland, mires as well as rocks and small

settlements. The study area consists of six landscape types

also called land use units (LUU) with an extent of 1 km ×
1 km along the BioAssess gradient of land use intensity.

LUU-1 contains more than 50% old-grown forest and rep-

resents extensive land use. LUU-6 on the other end of the

gradient contains more than 50% grassland and represents

intensive land use. The other LUUs are distributed ac-

cording to management intensity, which is defined after
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Figure 1. a. An overview of the study area located in the northern Pre-Alps of the central part of Switzerland. b. The loca-

tions of LUU-1 – LUU-6 each with an extent of 1 × 1 square kilometer and the 96 sampling plots that are illustrated as black

spots.

Table 1. Description of the six land use units (LUUs) with characterization of landscape and the land use criteria (columns

1-3). For each LUU, the five dominant lichen species are listed with number of frequency grids where the lichens were col-

lected (column 4). Column 5 lists the species richness (number of different species) of the three substrates (trees, rocks and

soil) collected in the field survey for each LUU.

a b
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the percentage of different land use classes inside the test

areas (Table 1 and Fig. 2).

Training and reference data sets

Field data - Lichen relevés. A training data set is required

to calibrate the models whereas reference data are re-

quired to validate the quality of the calibrated models. In

our case, we used training data of the lichen surveys.

A total of 96 sampling plots (6 × 16) were collected

which form a grid of 200 m mesh size (Fig. 1). All 96

lichen sampling plots were set up by differential GPS

measurements with an accuracy of ± 0.5 m. Lichen sur-

veys were carried out in 2001 and 2002 in the 96 sampling

plots (16 per LUU) on a circular area of 1 ha (with a radius

of 56.41 m). Within each sampling plot, 12 collecting

sites were selected randomly (Fig. 3).

At each of the 12 collecting sites, lichen relevés were

carried out on three different substrates, i.e., trees, rocks

and soil - representing all major lichen substrates which

could be affected by changes of the agricultural and for-

estry management. All lichens which occurred inside a 50

cm × 40 cm frequency grid (mesh size 10 cm) of the

relevés on soil or inside four frequency ladders (each 50

Figure 2. A view of the typical landscape of LUU1, LUU3 and LUU6 following a land use intensity gradient from low to

high intensively use and from closed canopy to open landscape.

Figure 3. An example of the BioAssess sampling design for LUU-6 with the 16 sampling plots (a circle with 56.41 m) where

the three different lichen relevés were carried out at 1-12 randomly selected collecting sites (within each sampling plot). All

model variables were calculated within these circles around each sampling plot.

LUU-1 with natural forest LUU-3 with pastures and forests LUU-6 with fragmened landscape
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cm × 10 cm, mesh size 10 cm) of the relevés on trees and

on rocks were considered, except if they were smaller

than 5 mm. Thus, the area investigated in each relevé al-

ways remained the same, that is 0.2 m
2

(Scheidegger et al.

2002). For relevés on trees, the nearest tree within the bor-

der of the sampling plot was selected (starting from the

center of a collecting site). For relevés on rocks, the near-

est saxicolous object within the border of the sampling

plot with a size larger than 50 cm × 50 cm was selected

(starting from the center of a collecting site). For relevés

on soil in the center of each collecting site a frequency

grid of 50 cm × 40 cm (mesh size 10 cm) was placed on

the ground.

Lichenicolous fungi and non-lichenised fungi which

are often treated by lichenologists (e.g., Arthophyrenia)

were not studied. For each lichen species the number of

unit areas (10 cm × 10 cm) where the species occurred was

counted (a value ranging from 1 to 20 for both the fre-

quency grid and the four frequency ladders). Since de-

limitation of individuals is often difficult or even impos-

sible in lichens, we used the number of occupied unit

areas as abundance measure. The lichen data are stored in

a relational data base at the Federal Research Institute

WSL at Birmensdorf in Switzerland. Table 1 gives an

overview of dominant lichen species and species richness

for each LUU.

As the calibration data set, every second sampling plot

was chosen. The remaining 48 sampling plots served as

reference data set (see Fig. 3).

Calibration data. In order to calibrate our model of pre-

diction of species richness, we tried to find meaningful

biological/ecological features as explanatory variables.

For this purpose, we used original, derived, and a combi-

nation of spectral and spatial information of airborne re-

mote sensing data. Six digital CIR orthoimages from the

years 1999 and 2001 served as the basis for this study.

Each orthoimage covers an area of approx. 2 square kilo-

meters. The scale of 1:10,000 provides a ground resolu-

tion of 0.3 m. Each image offers three color bands of nu-

merical information with 256 intensity levels: visible

green (500-600 nm), visible red (600-700 nm) and near

infrared (750-1000 nm). Additionally to the original spec-

tral and spatial information, several derivatives of the CIR

orthoimages were calculated. For our approach, we de-

cided to extract derivatives both using standard methods

and additional expert knowledge.

Furthermore, we used a digital terrain model with a

spatial resolution of 25 m (DHM25 © 2003 Bundesamt

für Landestopographie, DV 455.2) and digital surface

models (DSM). All data sets are based on the coordinate

system of the Swiss Federal Office of Topography and the

spatial resolution chosen for all data sets used in this study

was 0.5 m.

To assess and categorize the contribution of ecologi-

cally meaningful variables to the model, we decided to

distinguish between two levels of detail. 1
st

level vari-

ables provide information of spatial heterogeneity, spec-

tral reflection, absorption and transmission, chlorophyll

Table 2. Overview of all 29 calculated variables divided into 1
st

and 2
nd

level of detail and their linked environmental / eco-

logical features. The third column gives additional information on each variable.
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content and above-ground phytomass of vegetation cover.

This implies simple image processing methods (standard

methods) of the CIR orthoimages, and can be performed

without additional expert knowledge, e.g., of biologists.

In addition to the three original channels (red, green,

NIR), several new variables were generated using both

spatial and spectral information within a moving window

of different sizes. The wider the window, the more these

new variables tend to reflect features of the landscape. Ta-

ble 2 lists all variables applied in this study and their

linked environmental/ecological features.

On the 2
nd

level, new variables based on 1
st

level vari-

ables were built using expert knowledge and field experi-

ences (Scheidegger et al. 2002). To meet these require-

ments, new image processing techniques were applied to

produce homogeneous objects and well-defined object

edges (Baatz and Schäpe 1999, 2000). For the extraction

of 2
nd

level variables, two land cover classifications were

performed: 1) a simple classification only distinguishing

between forest, non-forest and non-vegetation and 2) a

more detailed classification distinguishing nine land

cover classes, representing the three lichen substrates of

the field survey: 1. forest, 2. grassland light, 3. grassland

dark, 4. rock & gravel & bare soil, 5. sealed surface, 6.

single trees & hedges, 7. shadows, 8. wetlands and 9.

water bodies. The class “Grassland” was divided into

grassland_light consisting mostly of mown and inten-

sively used grassland which appears as light areas in the

CIR orthoimages and grassland_dark representing un-

mown and not intensively used grassland which appears

as dark areas. For this classification, an object-oriented

approach was applied. Table 2 gives an overview of both

first and second level variables. To summarize, we pro-

duced a total of 29 explanatory variables for the model.

17 of them were allocated to 1
st

level variables, mainly

based on simple reflection values of the three channels of

the CIR orthoimages as well as on spatial information.

The remaining 12 were allocated to the 2
nd

level vari-

ables.

Finally, in accordance with the lichen relevés that are

representative for a circle of 56 m radius, for each variable

the sum of values was calculated within a circle of 56 m

radius for each of the 96 sampling plots. This was per-

formed using a moving window approach – in our case a

moving circle (see Fig. 4).

Model development

The choice of the “right” model should be carefully

made considering possible advantages and disadvantages.

According to Austin and Gaywood (1994), a model used

for biodiversity assessment should not only be precise but

also ecologically sensible, meaningful and interpretable.

An important statistical development of the last 30

years has been the advance in regression analysis pro-

vided by various linear models (Yee and Mackenzie

2002). A linear model specifies the relationship between

a dependent (or response) variable Y, and a set of explana-

tory variables Xi, so that

Y ~ b0 + b1X1 + b2X2 + ... + bkXk [1]

where b0 is the regression coefficient for the intercept and

the bi values are the regression coefficients for the ex-

planatory variables 1 through k, computed from calibra-

tion data. Linear models can also include quadratic or

higher order terms.

Linear least-squares regression can be generalized by

transforming the dependent variable (McCullagh and

Nelder 1989). Generalized linear models (GLM) com-

prise a number of model families e.g., binomial, Poisson,

etc. (Hastie and Tibshirani 1990, Green and Silverman

1994, Guisan and Zimmermann 2000 and Dobson 2002).

However, assuming a specific theoretical distribution

for the data used in this study seems to be difficult. A first

test using a Poisson distribution produced poor results and

was not chosen because of the sampling design applied in

this study (see section on Field data – Lichen relevés).

Differing collecting procedures (i.e., different ways to the

Figure 4. Illustration of the moving window approach

within the circle of 56 m radius as applied to all 1-29 ex-

planatory variables. The four models were applied to calcu-

late lichen diversity hotspots in the entire area of the LUUs.
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next tree and rock patch) rules out the model of the data

as a Poisson process. Therefore, we used the simplest

“first aid” transformation (square root transformation)

that allows coping with count data (van Tongeren, 2002).

For each of the four field datasets (total species richness,

species richness for lichens on trees, on rocks and on soil)

we performed a stepwise dropping of our 29 explanatory

variables – allowing both backward and forward selection

to build the models. We assumed that the relatively high

number of explanatory variables, often intercorrelated,

would be handled adequately by this stepwise methodol-

ogy. Among the variables remaining in the final models,

1
st

level variables are used as single and as quadratic

terms, whereas 2
nd

level variables were square-root trans-

formed. The analysis was done using S-PLUS (Math Soft

1999). The complete final models and their explanatory

variables are listed below:

• Richness_total ~ variance_nir + variance_nir
2

+

ratio2 + ratio2
2

+ sqrt(forest) + sqrt(grass_light)

• Richness_trees ~ variance_nir + variance_nir
2

• Richness_rocks ~ variance_nir + variance_nir
2

+

skewness + skewness
2

+ sqrt(grass_light)

• Richness_soil ~ ratio1 + ratio1
2

+ skewness +

skewness
2

+ sqrt(rock&gravel&soil) [2]

The 96 sampling plots are divided into a calibration data

set of 48 randomly sampled relevés and a reference data

set consisting of the remaining 48. With this calibration

data set, the model was calculated and prediction values

were calculated for the 48 sampling plots of the reference

data. This was carried out 100 times. The means of the

100 runs are shown in Table 3.

Validation

Several statistical measures were applied to evaluate

the predicted species richness against the measured spe-

cies richness of the sampling plots. Correlation of the fit-

ted values with the calibration data values was chosen as

Table 3. The means of the 100 runs for validation of the four calibrated linear regression models of the species richness for

lichens total, on trees, on rocks and on soil. Only explanatory variables as used for the final models are listed.
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a measure for the model quality (r model in Table 3). The

predictive power of the model is estimated by the correla-

tion of predicted data values with the reference data val-

ues (r reference in Table 3).

The accuracy of the model can be estimated by ana-

lyzing the absolute differences between each fitted value

and its corresponding real value (i.e., the residual errors)

of the calibration data. The accuracy of the prediction is

measured by the differences between each predicted value

and its corresponding real value of reference data set.

In the present study, the 95% quantile of the absolute

errors, the bias (difference between the mean values and

the mean fitted values), median and mean of absolute er-

rors MAE (predicted species richness compared to refer-

ence species richness) and the G-value are applied as ac-

curacy measures. The G-value (G) is a measure of

accuracy in the case of a quantitative response and gives

an indication of how effective a prediction might be, rela-

tive to that which could have been derived from using the

sample mean alone. It is common in ecological modeling

(Agterberg 1984, Gotway et al. 1996). G is given by the

equation 3:

, [3]

where Z(Xi) is the measured value at a sampling plot i, Z(xi)

is the estimated value, and Z is the overall mean of the

measured sampling plots. A value of 1 indicates a perfect

prediction, while a value of 0 describes no significant

agreement, and negative values indicate that the predic-

tions are less reliable than if one had used the sample

mean instead (Schloeder et al. 2001).

Application of the model

In order to extrapolate the predicted species richness

of the sampling plots to the entire area of the six LUUs,

the model had to be applied accordingly. Lichen species

richness for each pixel of the six test sites was calculated

implementing the explanatory variables for the final mod-

els in a moving window approach (in our case a moving

circle). The sum of values within a circle of 56 m radius

was calculated for each pixel of the selected explanatory

variable (see Fig. 4) using Geographic Information Sys-

tem (GIS) operations. Then, pixel-wise calculation of spe-

cies richness for all lichens, lichens on trees, on rocks and

on soil was performed using the four corresponding

model equations (with their coefficients) as given in the

section Model development. The results are maps of pre-

dicted number of lichen species for each pixel in the full

set of six LUUs.

Results

The best results of the models and the combination of

explanatory variables retained in each model are given in

Table 3. The quality of the models (r model) ranges be-

tween 0.59 for lichens on soil and 0.79 for lichens on

trees. Highest predictive power, with a correlation coeffi-

cient (r reference) ranging between 0.48 and 0.79 and G

ranging between 0.63 and 0.37, are obtained using both

1
st

and 2
nd

level explanatory variables, with the exception

of the species richness for lichens on trees. In general, spe-

cies richness is slightly underestimated for sampling plots

with high species richness and overestimated for sam-

pling plots with low species richness. The bias for all four

models ranges from +0.45 to +3.26. A total of 29 vari-

ables correlated with the number of lichen species but

only seven were used for the final models. Best results for

the model for all lichens are obtained using the explana-

tory variables variance_nir (variance of NIR channel),

ratio2 (ratio Channel red /Channel (green + NIR)), forest

(fraction of forest) and grass_light (fraction of unmown

grassland), both resulting from the detailed land cover

classification. The model produces an r model of 0.675,

an r reference of 0.578 and a G of 0.524.

Concerning the model for lichens on trees, the best re-

sults are obtained by the single use of explanatory vari-

ables variance_nir; r model equals 0.786 and r reference

reaches 0.789. The associated G equals 0.63.

Similar correlation coefficients for both model and

reference are obtained for the models lichens on rocks and

on soil. Best results are obtained for the model lichens on

rocks using the explanatory variables ratio2, skewness

and grass_light. This model generates an r model of 0.602

whereas r reference is 0.541 and G reaches 0.372.

Finally, for the model for lichens on soil best results

are obtained using the variables ratio1 (ratio Channel

green/Channel (red + NIR)), skewness and rock&gravel&

soil (fraction of rock, soil and gravel), the latter resulting

from the detailed land cover classification. This model

produces an r model of 0.582, while r reference reaches

0.482. The associated G equals 0.401.

As an overview, Fig. 5 illustrates means of the 100

runs of the predicted species richness versus measured

species richness for all lichens and lichens on the sub-

strates trees, rocks and soil. Fig. 6 shows the maps of the

predicted number of species for all lichens in LUU-1,

LUU-3 and LUU-6 following a land use gradient. Areas
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with low numbers of species are mapped black whereas

areas with high numbers of species are white.

Discussion

With this study, we can confirm that the application

of homogeneous and reproducible land cover information

derived from remotely sensed data as basis for the model

is adequate and therefore is in accordance with other stud-

ies in this field (e.g., Scott and Csuti 1997, Roy and Tomar

2000). Ask and Nilsson (2004) concluded that interpreta-

tion of CIR aerial photographs could be a useful method

to find certain groups of lichens. The accuracies (r refer-

ence) obtained for both model lichens on trees (0.79) and

for all lichens (0.58) can be regarded as good for the ap-

plication purposes by lichenologists. These accuracies are

in accordance with similar experience of other studies

(e.g., Iverson and Prasad 1998, Wohlgemuth 1998). Also,

G values of 0.63 for the model lichen on trees and 0.52 for

all lichens indicate a good prediction (Gotway et al.

1996). On the other hand, models for lichens on rocks (r

reference 0.54) and for lichens on soil (0.48) produced

partly satisfactory results and should be improved (see be-

low). Both underestimation and overestimation occurs in

all four models. The crucial question is how can we im-

prove our models for lichen species richness? In this

study, we were confronted with several problems con-

cerning ecological modeling. According to Leathwick et

al. (1996), a model used for biodiversity assessment

should also be general, which means applicability to other

regions or different times. Furthermore, according to

Fielding and Bell (1997) the lack of validation and uncer-

tainty assessment of models remains a serious issue in

ecological modeling. Finally, according to Austin and

Gaywood (1994) a model used for biodiversity assess-

ment should not only be precise but also ecologically sen-

sible, meaningful and interpretable.

Figure 5. Predicted number of species versus measured number of species for all lichens and lichens on the substrates trees,

rocks and soil. The predictive power of the models (means of the 100 runs) is given by the correlation coefficient r refer-

ence.
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Meeting all the suggested requirements turns out to be

nearly impossible in our case. e.g., the particular model

developed here has been applied only for six test sites.

Thus, the resulting variables of the presented linear mod-

els may be used for calculating species richness in neigh-

boring regions of the Entlebuch with similar vegetation

cover and landscape structures. Applying the model to

other regions is a well-known problem (Iverson and

Prasad 1998). The model would first need to be adapted

and validated, before applying elsewhere in the Swiss

Figure 6. Maps of predicted species richness for all lichens for LUU-1 – LUU-6 with their corresponding CIR orthoimages

and the 1 ha circles of sampling plots the models were calibrated with. On the right side light values indicate highest species

richness (= hotspots) whereas dark values represent low species richness.
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Pre-Alps, but our basic approach could be the same. For

a further improvement of model accuracies, especially for

the models lichens on soil and all lichens we recommend:

1) further analyses of the distribution of the lichen data

and the sampling design, 2) further testing of other model

versions, 3) implementing additional sampling plots in all

LUUs (the number of 96 sampling plots for this study

could be regarded as relatively poor) and 4) extraction of

further calibration data. Points 1 and 2 are related to a cru-

cial problem this study had to deal with: the choice of the

“right” model because the sampling design does not sug-

gest a Poisson distribution. Different collecting proce-

dures (i.e., different ways to the next tree and rock patch)

rules out the model of the data as a Poisson process. After

various test runs, a simple square root transformation was

chosen and turned out to be adequate for our modelling

purposes. The square root transformation of both the de-

pendent and the explanatory variables lets certain charac-

teristics of the data express themselves more or less

strongly.

Our approach in distinguishing between 1
st

and 2
nd

level explanatory variables allowed us to assess their con-

tribution to the corresponding model. This was an impor-

tant step for the development of the final models and

helped us to drop the variables that contribute less to the

model. All 29 variables are linked to a specific meaning-

ful biological/ecological feature as shown in Table 2.

Best results were obtained using variables that are

based on simple spectral and textural information of the

CIR orthoimages. These variables are linked to spectral

reflection and spatial heterogeneity of the vegetation

cover. The implementation of additional 2
nd

level ex-

planatory variables improved model accuracy again –

with the exception for lichens on trees. For this model,

best accuracy (r model of 0.79 and G 0.63) was produced

with the single use of variance_nir and its quadratic term

whereas the implementation of additional explanatory

variables slightly deteriorated the model’s accuracy. In

this case, the number of species is directly related to a high

heterogeneous vegetation cover such as forest borders and

forest itself.

For the other models, the implementation of root-

squared transformation of these 2
nd

level variables helped

to improve model accuracies again significantly. The

three 2
nd

level explanatory variables grass_light, forest

and rock&gravel&soil turned out to be the most contribu-

tive variables for all three models; especially the occur-

rence of grass_light was positively correlated with the

species richness. The omission of grass_light for the

model with all lichens and for lichens on rocks lowered

accuracies at a factor of 20% and 15%, respectively. This

indicates that the influence of unmown grassland on li-

chen diversity should not be underestimated. Further-

more, habitats for lichens on rocks are located in rather

heterogeneous landscapes. A reason for this may be that

habitats for lichens on rocks are located in highly frag-

mented landscapes (spatial heterogeneity of vegetation

cover), where fragments of unmown area are a dominat-

ing land cover type. Interestingly, no other 2
nd

level ex-

planatory variable was significant in our analysis. One

would have expected the explanatory variable

sealed_surfaces (streets, buildings) to have a certain in-

fluence on the model for species richness.

The nine land cover types extracted for this study are

based on what was supposed to be detectable in CIR or-

thoimages, and what was regarded to be of importance for

the lichen diversity. The main advantage of the applica-

tion of an object-oriented image classification method is

that it allowed us to define land cover types according to

the needs of lichen experts. Additionally, a forest stand

height and forest types classifications were implemented

using digital surface models derived from the CIR or-

thoimages and a digital terrain model. Thus, the land

cover classification applied in this study in combination

with image segmentation methods was an important step

in the development of the models. The main disadvantage

was the relatively high complexity and required amount

of time of object-oriented image classification methods.

Conclusions

In this study, we examined four different models for

an assessment of lichen species richness on three different

substrates: trees, rocks and soil. Species richness was

modeled as a function of 29 explanatory variables.

There are four points to remember: First, linear re-

gression models can be used to predict lichen diversity,

but strongly depend on the sampling design of the lichen

relevés. Thus, the distribution of the lichen data should be

analysed further. Second, possible hotspots were calcu-

lated and may help in reducing field surveys and could be

useful for possible conservation efforts. The resulting ex-

planatory variables of the presented linear models may be

used for calculating species richness in neighboring re-

gions with similar landscape structures. Third, we can

confirm that the application of homogeneous and repro-

ducible land cover information derived from high resolu-

tion remote sensing data as basis for the model is very

adequate. This means that not so well-known areas can

still serve as a basis for building the methods. Fourth, ex-

planatory variables can be rapidly derived from high reso-

lution remote sensing data and distinguishing between 1
st
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and 2
nd

level of detail proved to be a good method for the

development of the models.

This method cannot replace lichen surveys altogether,

but it can be used to target focused lichen forays in the

future. Finally, it should be noted that this method cannot

produce any information on lichen species abundance,

dynamics, or viabilities; it only indicates the potential

presence or absence of species.
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