
MODELLING SNOW SLAB RELEASE USING A
TEMPERATURE-DEPENDENT VISCOELASTIC FINITE ELEMENT

MODEL WITH WEAK LAYERS

MARTIN STOFFEL1 and PERRY BARTELT2

1Swiss Federal Institute for Snow and Avalanche Research, Flüestrasse 11, CH-7260 Davos Dorf,
Switzerland

E-mail: stoffel@ibk.baug.ethz.ch
2Institute of Structural Engineering, ETH Zürich, CH-8093 Zürich, Switzerland

E-mail: perry.bartelt@wsl.ch

(Received 15 December 2002; Accepted 4 April 2003)

Abstract. A two-dimensional thermo-mechanical plane-strain finite element model for snow is
presented. Snow is modeled as a two component porous medium consisting of a solid ice matrix
and interstitial pore air. The ice and air phases are not always in thermal equilibrium. Therefore,
heat transport is governed by two non-stationary energy conservation equations which are coupled
by free convection heat exchanges at the interfacial ice-air boundary. The ice matrix deforms vis-
coelastically according to an experimentally-based temperature dependent constitutive law. Creep
deformation rates are governed by a power law with a density dependent exponent n. The highly
nonlinear character of the mechanical model is illustrated by simulating snowcovers with layers of
variable height and density. Weak layer interfaces – believed to be the location of initiation of snow
slab fracture – are modeled using special finite elements which transfer normal stresses but have
little or no shear resistance. Stress and strain-rate concentrations at the boundaries of weak zones are
calculated and compared with brittle fracture strain-rates.
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1. Introduction

The mechanics of snow slab release have been investigated by Bader et al. (1989)
and Bader and Salm (1990). In these works, two-dimensional model calculations
were performed to predict stress and strain-rate concentrations along super-weak
interfaces, assumed to be located between two homogeneous snow layers. The
snow layers were modelled as continua of constant mechanical properties. The
steady-state creep response of the snowcover under self-weight was predicted.
That is, creep velocities and strain-rates for snowcovers near fracture were determ-
ined. Transient effects, from temperature variations, or non-linear material effects,
arising from the densification of the snow layers, were not included in the ana-
lysis. In addition, the weak interfaces had known length, thickness and mechanical
properties.

The primary conclusion derived from the model calculations was that slab
avalanches cannot be formed without super-weak layers. The self-weight of the
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snowpack alone is not enough to generate the strain or deformation rates required to
fracture the homogeneous layers. They concluded that weak layers are a necessary
condition for avalanche release. The idea of “super-weak” zones has taken hold
in the popular avalanche literature (Munter, 1997). The result is also supported by
field observations of avalanche release areas where the basal sliding surface of the
slab is usually clearly defined.

The model calculations of Bader and Salm (1990), however, were based on
several questionable assumptions. They assumed that the snowcover consisted of
two high density snow layers, ρ > 400 kgm−3. The viscosity of the snow layers was
based on the triaxial tests of Salm (1971), η = 5 × 1010 Pas. Both the high values of
density and viscosity are particularly advantageous for avalanche release: the high
density increases the self-weight of the upper layer, and the high viscosity increases
the stiffness of the upper layer. Thus, the applied load causes little deformation and
transfers the stress directly to the weak layer. Zones of high strain-rate concentra-
tions ε̇ ≈ 10−3 s−1 at the ends of the layer are readily formed. New snow densities
and viscosities of the order ρ ≈ 100 kgm−3 and viscosities near η ≈ 1 × 109 Pas
would be more appropriate (Bartelt and von Moos, 2000).

The goal of this work is to advance the initial investigations of Bader and
Salm (1990). Although this earlier work was incomplete and based on unrealistic
assumptions, it was a first attempt to relate the constitutive properties of snow
to snowcover stability. It did propose a consistent theory taking into account the
viscoelastic properties of snow and the layered structure of the snowpack.

Several recent developments make advances possible. First, the temperature
dependent viscoelastic properties of snow have now been quantified over a wide
range of densities (von Moos et al., 2003). The newly formulated viscosity laws
(Scapozza and Bartelt, 2003a) vary significantly from the constant viscosity as-
sumed by Bader and Salm (1990), but are only valid for fine grained snow of
rounded grains. Secondly, numerical methods are now available to treat layer dis-
continuities. Although the constitutive laws for weak layers are presently unknown,
layers of little or no shear strength can be assumed. This approach differs from the
earlier investigations, which treated the weak layers as a thin isotropic continuum
layer. Finally, the temperature dependence of snow (Scapozza and Bartelt, 2003b),
in the form of an apparent activation energy, Q, has been determined. The influence
of temperature variations on the deformation rates can be predicted.

The paper proceeds as follows. In the next section, the viscoelastic properties
of snow are reviewed. Then, the thermal non-equilibrium treatment of snow is
discussed. Non-equilibrium refers to the fact that the temperature in the pore space
and ice lattice may differ. Heat transfer is governed by the thermal conductivities
of each phase and natural convection between the air and ice. Two non-steady
energy conservation equations are required. Afterwards the fully implicit thermo-
mechanical finite element model with weak interfaces and periodic boundary
conditions is formulated. Deformation rates of snowpacks on slopes of constant
angle, different weak layer length and variable temperature are then calculated.
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The present work attempts to resolve the question whether weak layers (or
other perturbations) are a sufficient condition to achieve brittle fracture deform-
ation rates. This does not mean that weak layers are the unique condition for an
avalanche to occur. The concomitant breakage of a set of intergranular bonds, for
example, can also be a proper mechanism for an avalanche release.

2. The Mechanical Deformation of Snow

It has been shown that, under applied axial loading, snow will deform viscoelast-
ically (Voytkovskiy, 1977). The total axial strain ε is the sum of the elastic and
viscous parts:

ε = εe + εv. (1)

In general, the elastic strains are small in comparison to the total viscous strains,
εe � εv, especially over the course of several days, or weeks. The total volumetric
strains of new snow can be over 200% within a few days, depending on tem-
perature. Almost all the strain is viscous and irreversible. However, instantaneous
irreversible strains, for example from an external loading like a skier, are not taken
into account by this model.

Triaxial tests on snow (von Moos et al., 2003) reveal that the elastic strain can be
further divided into two parts, an initial elastic and time-dependent and reversible
strain (inelastic strain):

εe = ε0 + εa. (2)

Young’s modulus E relates the state of stress to strain ε0; values for E are provided
in Figure 1 as a function of density. It has been found that E is for the most part
strain-rate and temperature independent. Lower density snow, however, exhibits
significant inelastic straining in comparison with higher density snow (Scapozza
and Bartelt, 2003a).

For the plane-strain problems studied in the following the elasticity matrix, E is
given by:

E = E(1 − ν)

(1 + ν)(1 − 2ν)




1
ν

1 − ν
0

ν

1 − ν
1 0

0 0
1 − 2ν

2(1 − ν)


 (3)

where ν is Poisson’s number. As usual, the elasticity matrix relates the plane-strain
components ε = (εx, εy, γxy)

T to the stress components σ = (σx, σy, τxy)
T . Pois-

son’s number is set to zero since triaxial tests show that for snow the deformation
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Figure 1. Young’s modulus for snow based on the experiments of von Moos et al. (2003). Values are
in good agreement with E values found in Mellor (1974) or Voytkovskiy (1977).

directions are independent of each other until a critical strain is reached (Scapozza
and Bartelt, 2003b).

Viscous straining in the granular ice matrix is due to different deformation
mechanisms occurring in the ice crystals or ice crystal boundaries (Scapozza and
Bartelt, 2003a). For the natural strain-rates and stress levels considered (no skier
or other artificial loadings), when extensive bond breakage does not occur, the
two rate controlling creep mechanisms are evidently dislocation creep and grain
boundary sliding (Petrenko and Whitworth, 1999). Hence, as for polycrystalline
ice, the viscous deformation of snow can be modelled with a power law relation:

ε̇v = A0e
− Q

RT σ n
y = Aσn

y (4)

where ε̇v is the viscous strain-rate in s−1, A0 is a density dependent material para-
meter (in kPa−ns−1), Q is the apparent activation energy (in kJmol−1), R is the gas
constant (kJmol−1K−1), T is the temperature of ice (K), σy is the yield stress (in
Pa) and n is a dimensionless exponent. This relationship is found from extensive
triaxial testing for different densities, strain-rates and temperatures (Scapozza and
Bartelt, 2003b).

Unlike ice, however, the model parameters Q and n vary with snow den-
sity (Figure 2). At densities of ρ ≈ 400 kgm−3 parameters similar to those for
polycrystalline ice can be used in the material model, say n = 3.0 and A =
10−25(Pa−ns−1).
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Figure 2. Left: Temperature and density dependence of the exponent n for strain-rates ranging
between ε̇ = 1.1 × 10−6 s−1 and ε̇ = 4.4 × 10−5 s−1. From Scapozza and Bartelt (2003b). Right:
Temperature and density dependence of the apparent activation energy Q for different strain-rates.

For the numerical finite element implementation, the viscosity η must be
defined:

σ = ηε̇v. (5)

Thus, for the power law formulation, the viscosity of snow is:

η = 1

Aσn−1
I I

, (6)

where σ
II

is the second stress invariant defined as
√

1
2(σ

2
x + σ 2

y ) + τ 2
xy .

Since the parameters n and A are density, temperature and strain-rate dependent,
the viscosity is highly nonlinear, requiring a numerical solution for the problems
of interest. Finally, the viscosity matrix V is given by:

V =




η

(
1 + 1

1 + m

)
η

m − 2
0

η

m − 2
η

(
1 + 1

1 + m

)
0

0 0
η

2




. (7)

This matrix relates viscous strain-rate components ε̇v = (ε̇vx, ε̇vy, γ̇vxy)
T to the

stress components σ = (σx, σy, τxy)
T . The parameter m is the viscous analogue

to Poisson’s number, which we set to a large number, uncoupling the x and y

directions. This relation was also used by Bader and Salm (1990) with m values of
5.



422 M. STOFFEL AND P. BARTELT

3. Non-equilibrium Heat Transfer

The temperature state in the two-dimensional snowcover (coordinates x and y) is
governed by two non-stationary heat energy conservation equations:

θaρaca

(
∂Ta

∂t
+ ua · �Ta

)
− θaka �2 Ta = ha(Ti − Ta) (8)

θiρici

∂Ti

∂t
− ki �2 Ti = ha(Ta − Ti) + Lṁa→i . (9)

The first equation governs the heat transfer in the interstitial air space (temperature
Ta , volumetric content θa). It includes an advective term, where ua is the vector
of interstitial air velocities, which is assumed to be in the creeping flow regime,
Re < 10. The second equation governs the heat transfer in the ice matrix (tem-
perature Ti , volumetric content θi). The thermal conductivities in the air and ice
phases are given by ka and ki , respectively. For ka the conductivity of air is used,
ka = 0.026 Wm−1 K−1. For ki the microstructural conductivity model of Adams
and Sato (1993) is employed, which relates grain and bond size to conductivity.
The specific heats of the air and ice phases are ca = 1000 J kg−1 K−1 and ci =
2100 J kg−1 K−1. Note that the thermal diffusivities of air and ice differ (αa = 2.6
× 10−5 m2 s−1 and αi = 1.1 × 10−6 m2 s−1) by a factor of 20. Thus, an important
mode of heat transfer is the natural convection occurring at the interfacial air-ice
boundary, which is a function of the temperature difference between the two phases
and the convective heat transfer coefficient, ha (Kaviany, 1995). Sublimation and
deposition of water vapour, (mass rate, ṁa→i) from or to the ice lattice can also be
accounted for; however, the influence of these effects is not included in the present
analysis.

Boundary conditions at the lower (y=0) and upper surfaces of the snowpack
(y=h) are specified:

Ti(x, 0, t) = Ta(x, 0, t) = T0(t) (10)

and

Ti(x, h, t) = Ta(x, h, t) = Th(t). (11)

It is also possible to prescribe only the air temperature Ta and let the convective
heat exchange between the ice and air determine the ice temperature Ti .
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4. Finite Element Model

A two-dimensional finite element method is employed to solve the two non-
stationary heat transfer equations. A fully implicit time-integration scheme is
employed; simple four node quadrilateral elements are used for the spatial discret-
ization. This is a standard technique; for more information see Reddy and Garling
(1994). This procedure provides the ice and air temperature for all times and points
of interest, Ti(x, y, t) and Ta(x, y, t), within the model domain. Note that the
thermal conductivities are a function of the volumetric ice and air contents and
thus are changing with mechanical deformation. Changes in snow microstructure,
which would also influence the thermal conductivity, are not considered since the
calculation times are on the order of 24 to 48 hours (not weeks or months).

The viscoelastic solution requires more attention. The governing differential
equation for the mechanical deformation is:

� · σ (Ti, ui) − f = 0 (12)

where f are the applied body forces; in our case, this is the self-weight of the
snowpack. The vector ui represents the deformation of the ice-matrix. The finite
element discretization of this equation leads to a system of algebraic equations,
expressed in incremental form as:

Kt�u = �fg + �fv (13)

where Kt is the tangent stiffness matrix, �u is the increment in displacement, �fg

is the increment in body forces (self weight) and �fv is the increment of creep
“forces” from time t0 to t1. The nodal vector �fv is found by evaluating the element
integral:

�fv
e =

∫
A

BEε̇v�tdA (14)

for all elements. (B is the finite element matrix relating nodal displacements to
strains and A is the element area.) The viscous creep strains are found from Equa-
tion (4) at each time t . Note that since the temperature and density change over
time, the vector �fv must be recalculated at each time step.

An initial static solution is calculated to start the time integration scheme which
is a simple explicit Euler scheme. The time step, however, is adaptive using a
maximum strain- change criterion in deciding the time step. The same finite ele-
ment discretization is used for the mechanical solution as for the heat transfer
calculation.

At the beginning of the finite element solution, the temperature distribution in
the snowcover is known. It is further assumed that the air and ice phases are in
thermal equilibrium,

Ta(x, y, 0) = Ti(x, y, 0) = T0(x, y). (15)
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The initial stress state σ (x, y, 0) is determined by finding the elastic solution.
After the initialization phase, the time integration scheme is started. At every

time t the temperature distribution in the snowcover is found, for both the ice and
air phases. Once the temperature in the ice phase is known, the creep displace-
ments are calculated. This procedure is repeated until the desired calculation time
is reached.

5. Weak Interface

Based on the work of Beer (1985) and Day and Potts (1994), the standard isopara-
metric element formulation was modified to model a zero thickness weak interface.
The forces orthogonal to the weak layer interface in the local n-direction are trans-
ported directly to the surrounding layers. The transfer of shear forces in the local
s-direction is governed by different laws such that relative shear motions can occur
between the adjacent elements. In Figure 3 a weak interface element is shown. The
pseudo elasticity matrix Eweak for a weak element is given by:

Eweak =
[

Es 0
0 En

]
(16)

where Es is set to 0, such that no resistance in the x-direction is present
(us−top �=us−bot tom). En is set to a large value, so that no relative displacement in
n-direction can exist (i.e., vn−top−vn−top=0), this guarantees, that the element’s
height remains zero. Since the weak interface element has no volume, there are no
volumetric effects (dilatancy) in the Eweak matrix. Although non-zero values for
Es are theoretically possible, there is little experimental data available to justify a
particular value; for this reason Es = 0 was chosen.

6. Examples

In the first example, the influence of weak layer length a on the increase of
maximum second strain-rate invariants is investigated. The snow density ρ1 and
temperature T1 of the snow layer above the weak layer was also varied. Figure 4
depicts the model domain, a two layer snow pack on a φ = 35◦ slope. The periodic
boundary conditions were introduced to model an infinitely long slope. The total
length of the snowcover was chosen to be 50 m, much longer than the maximum
weak layer length of a = 20 m.

In the first simulation the density of the top layer varied between ρ1 = 180 to
300 kgm−3 in steps of 20 kgm−3. The weak layer length was chosen to be a=12m.
The maximum second strain-rate invariants as a function of density are presented
in Table I.
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Figure 3. Definition of the ”weak layer“ element showing the deformation directions.

Figure 4. The influence of a temperature rise is investigated on snowcover depicted above. Constant
slope at φ = 35◦ with a length of 50 m, d0 = d1 = 1 m, ρ0 = 350 kgm−3 and T0 = 0 ◦C.
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TABLE I

Second strain-rate ε̇I I invariant for top layer densities of ρ1 =
180 kgm−3 to 300 kgm−3 at T1 = −6 ◦C with a weak layer length
of a = 12 m.

ρ1 (kgm−3) ε̇I I (s−1)

180 0.00055465

200 3.72822e-05

220 4.14770e-06

240 7.36637e-07

260 1.99843e-07

280 7.84886e-08

300 4.19101e-08

The results show that the calculated second strain-rate invariants approach the
brittle fracture strain-rate ε̇b > 10−4 s−1 as the density decreases.

In the next series of simulations, the weak layer length varied between a =
0 m to 20 m. The density of the top layer remained constant ρ1 = 180 kgm−3

at a temperature of T1 = −6 ◦C. The maximum second strain-rate invariants ε̇I I

along the weak layer are depicted in Figure 5. The results show once more that the
calculated strain-rates are greater than brittle fracture strain-rates for weak layer
lengths a > 10 m.

In the last series of simulations for this example the temperature of the upper
layer varied from T1 = −12 ◦C to −2 ◦C. For each temperature a time varying creep
calculation was performed. The results of the different simulations are presented
in Figure 6. Note that the strain-rates outside the weak layer differ, and the highest
strain-rate occurs for T ≈ −5 ◦C. Thus, contrary to expectation, the strain-rate
did not continously increase with increasing temperature. In general the results
are in agreement with the conclusions of Bader and Salm (1990); however, a
more realistic snow cover, with experimentally based viscosities, was used in these
simulations.

In order to investigate this phenomenon still further, in the next example prob-
lem, the influence of a varying temperature rise on the creep strain-rates was
investigated. A temperature rise of �T = 10 is applied to a 2 m high snowpack
on a φ = 35◦ slope (to both the air and ice phases). The snowpack consists of two
1 m high homogeneous layers of ρ1 = 350 kgm−3 and ρ2 > 180 kgm−3. A a = 10 m
long weak layer exists between the two layers (see Figure 4). The temperature rise
is applied over different time intervals, �t = 2h, 6h and 10h, starting after 6 hours
with a constant temperature T1 = −12 ◦C.

Figure 7 shows the second strain-rate invariants at the upper end of the weak
layer. The larger the temporal gradient in temperature, Ṫi , the higher the maximum
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Figure 5. Second strain-rate invariant ε̇I I for different weak layer lengths from a = 0 to 20 m with a
constant upper layer density of ρ1 = 180 kgm−3 at T1 = −6 ◦C.

strain-rate. Defining the brittle fracture strain-rates to be of the order ε̇b > 104 s−1,
the snow is approaching a brittle fracture regime.

7. Conclusions

Based on the simulation results, we draw the following conclusions concerning
snow avalanche formation:

– The initial results of Bader et al. (1988) and Bader and Salm (1990) could be
substantiated, however, with realistic snowcovers and mechanical properties.
Without perturbations (weak layers, discontinuities, bumps) it is impossible to
obtain brittle strain-rate concentrations of ε̇b > 104 s−1. The larger the weak
layer length the higher the deformation rates at the upper and lower ends of
the weak layer are. Weak layers of a > 8 m are required for all investigated
snow densities and snow temperatures in order the achieve the necessary brittle
fracture rates.

– The magnitude of the strain-rate concentrations is strongly influenced by tem-
perature and temperature development. For a given temperature rise, slower
changes in temperature allow the snowcover to relax and deform, reducing the
stress-level and, subsequently, the strain-rates. The highest strain-rates are not
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Figure 6. Second strain-rate invariant ε̇I I for different temperatures with a constant upper layer
density of ρ1 = 180 kgm−3 and a weak layer length of a = 12 m.

obtained for the highest temperature, but rather for a temperature around T ≈
−5 ◦C.

– The brittle tensile strain-rates are concentrated in a small zone at the upper end
of the weak layer. The compressive strain-rates at the lower end are spread over
a larger region. Thus, the simulation results show that the initial rupture most
likely occurs in the tensile zone, as expected.

In future the thermo-mechanical finite element model presented in this work
will be applied to investigate snow avalanche formation in greater detail. For ex-
ample the conditions for snow fracture as well as snow glide at the ground interface
will be introduced into the model.
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Figure 7. Second strain rate invariant ε̇I I at the upper end of the weak layer. The shorter the time
during which the 10 ◦C temperature change happens, the higher the peak strain-rates are.
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