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A B S T R A C T   

Snow, glaciers and permafrost translate fluctuations of atmospheric conditions and highlight current environmental changes. Monitoring of these changes is one of 
the major objectives of the international climate observation strategy developed by the Global Climate Observing System (GCOS). Under ongoing climate change, the 
implication of altering meltwater released by snow, ice and permafrost will become increasingly relevant for the fragile mountain and lowland environments of 
Central Asia. These changes will affect the livelihood, particularly for mountain communities but also for the highly populated regions downstream. A degrading 
cryosphere may cause drastic ecological changes and endanger water, food and health security leading to pronounced political instabilities and changing socio- 
hydrological interactions. For successful mitigation, the adaptation capacity has to be enforced by first creating basic observational datasets on the state and 
changes of the cryosphere, and secondly, by providing well-calibrated models in connection with climate scenario output. This information is a pre-condition to 
reduce on mid- to long-term the vulnerability of the local population. 

So far, significant data gaps of in situ measurements in Central Asia, mainly from the mid-1990 s to around 2010 impeded sound interpretations of long-term trends 
in the cryosphere. However, the progress made on glacier observation and capacity building in recent years, promises a future perspective for monitoring including 
snow and permafrost. This paper summarizes the current knowledge on the state of three essential climate variables (ECV) of the Central Asian cryosphere: snow, 
glaciers and permafrost in a context of future water security. It highlights the challenges for cryosphere assessments in the region and discusses ongoing monitoring 
efforts, future directions and emerging approaches, which might address current shortcomings of today’s monitoring network.   

1. Relevance of the cryosphere for water availability 

The changing cryosphere has become an icon for climate warming 
[1]. Changes of snow, glaciers and permafrost translate the fluctuations 
of atmospheric conditions and highlight current environmental changes 
[2]. During the past decades such changes have strongly affected the 
major Central Asian mountain ranges Tien Shan and Pamir [3]. These 
form the north-western margin of High Mountain Asia (HMA, Fig. 1) 
hosting 25,000 + glaciers. Maximum snow cover can exceed 80% of the 
mountainous terrain and up to 32% of the lowlands [4]. Permafrost 
contains highly variable amounts of ice depending on the substrate (e.g. 
rock glacier, bedrock, fine material, etc). A rock glacier can contain ice 
contents between 10 and 90 vol% whereas massive bedrock has in 
general very low ice contents. The different landforms of permafrost are 
found in the Central Asian highlands but have so far not been quantified. 

Ice and snowmelt are principal water resources for the highly 
populated lowlands of Central Asia e.g. [5–7], and have a crucial role for 
mountain communities [8–10]. Especially where irrigation is a general 
practise, continuous socio-hydrological interactions establish [8]. Snow 

accumulation acts as a water reservoir mainly during winter months, 
controlling river runoff in spring and early summer. With increasing 
summer precipitation towards the East, summer snowfall is frequent 
[11,12]. Snow strongly influences the temperature regime in the 
ground, and therewith permafrost distribution [13–15]. Furthermore, 
fresh snow increases the albedo and hence provokes a significant 
reduction of glacier melt [16–18]. Glaciers and permafrost release most 
of their melt water during July to September. During dry and hot pe-
riods, glacier melt is a vital fresh water source [19,20]. So far, it is un-
known how much permafrost melt contributes to the total river runoff. 

Changes in the cryosphere have implications on the occurrence of 
natural hazards [21]. Hazards associated with glacier or permafrost 
degradation are expected to become more frequent and stronger in 
magnitude with the ongoing climate warming [22–24]. Associated 
processes could reach densely populated areas, might be transboundary 
and cause numerous victims (i.e. [25–27]). Increasing rates of glacier 
lake expansion from 0.8% yr− 1 [28] to>3% yr− 1 were observed for both 
the Tien Shan and Pamir [24,29]. However, no evidence of an increase 
in Glacier Lake Outburst Floods since 1970-ies could be observed [30], 
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but is expected for catchments with large high-altitude glaciers in the 
future [31–33]. The slow degradation of permafrost may lead to large 
rock falls. This creates the potential of strong cascading events, which 
include processes such as overtopping and lake dam breeches, provoking 
large debris flows [34,35]. 

Long-term monitoring of the cryosphere enables an improved un-
derstanding on the controlling processes driving its response to changing 
climate and on hazard potential [36–39]. In addition, it helps to better 
quantify the associated changes in meltwater release (e.g. [40]). Despite 
the significance and our current knowledge of the cryosphere at a global 
level, the heterogeneous response of snow, ice and permafrost in Central 
Asia remains poorly understood. Half a decade ago, the imminent need 
of improving the knowledge about spatio-temporal changes in the water 
cycle of Central Asian headwaters was highlighted [41–43]. In this 
study, we provide a review of recent research concerning the state, 
change and impact of the Central Asian cryosphere for the past decade. 

2. The Central Asian cryosphere under a changing climate 

The climate of Central Asia is formed at the boundary between 
temperate and subtropical climate zones and is characterised by an 
extreme continentality and strong topographical effects. Cold inflows of 
northerly and north-westerly direction and moist air masses from the 
Western Atlantic region are influencing the western and north-western 
flat plains of Central Asia. In the south and east, the mountain ranges 
of the Himalayan, Pamir, Hindukush and Tien Shan almost completely 
isolate Central Asia from moist air masses from the Indian Ocean [45]. 
Due to such barrier effects, arid and cold conditions dominate in the 
eastern part of both the Tien Shan [11] and Pamir [20,46,47] with 
precipitation maxima towards the summer [48]. A pronounced west to 
east gradient in seasonal precipitation distribution for the Tien Shan 
[11] and the Pamir[47] produces regionally variable snow cover, 
accumulation and ablation regimes, glacier mass balance gradients, and 
permafrost distribution. 

For the Tien Shan, a consistent air temperature increase of about 0.1 
to 0.2◦ C per decade with more pronounced warming in the winter 
months was recorded during 1960–2007 [49–51]. This was accompa-
nied by an increase of total annual precipitation, while the share of solid 
precipitation decreased due to warming [42,43,52]. These trends are 

still ongoing based on data from meteorological stations near Golubin 
glacier and near glacier No. 354, where significant May-September 
warming was observed until 2018. There are no significant trends in 
annual to seasonal precipitation changes. The changes are non-uniform 
across the region with a strong inter-annual variability [12,51,53]. 

For the Pamir, Pohl et al. [20] detected a temperature increase of 
0.07 to 0.11 ◦C yr− 1 and likewise no precipitation trend during the last 
decades. Knoche et al. [54] highlighted the heterogeneity in solid pre-
cipitation evolution and found declining summer temperatures along 
with increasing annual precipitation amounts for the Northern Pamir. 
Unger-Shayesteh et al. [42] emphasized a shift in the timing of the onset 
of the melt season towards the earlier spring due to warmer spring 
temperatures. Aizen et al. [55] reported a reduction of the maximum 
snow thickness and snow-cover duration by 0.1 m and 9 days over the 
Tien Shan from 1940 to 1991. However, certain regions in the Eastern 
Tien Shan and Pamir tended to have increased average snow cover 
duration due to altered snow fall patterns and precipitation amounts 
that counterbalance the effect of air temperature increase [41,56]. This 
has been confirmed through recent monitoring of the meteorological 
variables and glacier mass balances at Abramov glacier [38]. 

3. Snow 

Seasonal snow cover forms a major part of the annual water budget 
in Central Asia with estimates of snow water equivalent contribution of 
over 50% for the main basins [38]. Armstrong et al. [57] found seasonal 
snow contributions as high as 65–72% of mean annual runoff in the Amu 
Darya and Sry Darya basins using remote sensing and degree day melt 
modelling. This contrasts to 23% contribution of rainfall and 2–8% from 
glacier ice to the annual runoff [41,58]. Typically, annual glacier melt 
contribution is about 6% for Syr Daria and 20% for Amu Darya [35]. It is 
however much larger during the melting season and can reach up to 1.5 
to 3 times the mean annual input[41]. In an earlier study, Aizen et al. 
[58] also found snowmelt to be a dominant contributor to annual runoff 
throughout the Tien Shan based on long-term hydrological records of 
the former USSR, albeit lower at around 30%. 

Most studies on recent climate impacts on snow cover in Central Asia 
have focused on optical satellites to quantify snow cover extent (SCE). 
For example, Zhou et al. [59] used a combined AVHRR and MODIS 

Fig. 1. Main mountain ranges of Central Asia: Tien Shan and Pamir divided in common subregions [44]. In red, the glaciers that have been selected for long-term 
monitoring. Apart for No. 354, 599 and Zulmart, sporadic or continuous glaciological observations are available for all sites since mid-20th century. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dataset of SCE to assess changes in snow cover days and found signifi-
cant decreases in number of snow on ground days for Central Asia from 
1986 to 2008. However, results from a study covering the period 
1986–2008 using passive microwave data Mankin et al. [60] showed 
reduced snow cover duration and maximum snow depths in Western and 
Eastern parts of the Tien Shan, whereas increased snow depth in Central 
Tien Shan, which was attributed to an increase in winter precipitation. 
Mankin et al. [60] investigated the sensitivity of global river basins to 
changes in snow supply under climate change projections. They found a 
high risk that snowmelt will no longer meet summer demand by mid- 
century in Central Asian basins. Increasing glacial runoff will possibly 
buffer decreasing snowpacks until mid-century when peak water is ex-
pected in many areas of Central Asia [40,61]. The second half of the 
century will then likely see decreasing runoff as both snow and glacial 
components will diminish. 

The ability of black carbon (BC) and other aerosols to change the 
surface energy balance of snowpacks is of growing interest in the light of 
anthropogenic climate change. With many growing industrial centres 

close to the Tien Shan and Pamir, BC is increasingly being deposited in 
seasonal snowpacks [62]. Deposited BC reduces the surface albedo and 
therefore increase radiative forcing and can increase melt rates signifi-
cantly [62,63]. The impacts of climate change on snow cover is driven 
by the interplay of accumulation (precipitation and its rain/snow par-
titioning) and ablation (air temperature, radiation). High elevation re-
gions that are less sensitive to temperature increases and shifts in rain/ 
snow partitioning will possibly see increased snowpacks (e.g.[64]), as 
for example has been attributed to the so called (and arguably misnamed 
cf.[65]) Karakoram anomaly, particularly over northern regions of 
Central Asia and north-eastern Tibetan Plateau, where precipitation 
increases are projected under CMIP5 simulations (e.g.[66,67]). How-
ever, projected temperature increases will likely change the seasonality 
of snowmelt and reduce lower elevation snow cover[67]. 

Our knowledge of snow cover magnitudes, dynamics and climate 
norms in the region is still very limited due to remote terrain, few in situ 
observations and often poor performance of models. During the Soviet 
Era field measurements of snow depth and density were routinely made 

Fig. 2. Historical mean end-March snow depths from monthly Soviet era snow surveys 1960–1990 in main Tajik river basins. A linear fit line is added for visual 
interpretation only. Snow accumulations can be non-linear with significant snowpacks existing over 2000 m. Less coherent trends are likely due to microclimatic or 
topographical differences such as exposure to solar radiation or wind (Datasource NSIDC https://nsidc.org/data/g01092). 
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(Fig. 2) however, most recent studies have tended to focus on the 
parameter snow cover extent, which can be robustly observed by optical 
satellite sensors over large regions (e.g. [68]). However, this only tells 
half the story. The other key parameters are snow water equivalent 
(SWE) and temporal behaviour of accumulation and melt. Estimating 
SWE remains one of the great challenges in snow hydrology [69], largely 
due to the challenge of quantifying (solid) precipitation, particularly at 
high altitude (cf.[70]). In general, high altitude precipitation regimes of 
Central Asia remain significantly unconstrained [71]. In situ observa-
tions are scarce (and often highly uncertain due to undercatch), 
particularly at high elevations which produces high uncertainties in 
observation-based datasets (e.g. CRU, GPCC etc). Combined remote 
sensing methods (e.g. TRMM, CHIRPS etc.) strongly underestimate solid 
precipitation and coarse grid scales lead to uncertainties in complex 
terrain. Pure modelling approaches such as ERA5 reanalysis from the 
European Centre Medium-Range Weather Forecasts (in which precipi-
tation is prognostic and not assimilated) have also been shown to have 
large biases over HMA [72]. The uncertainties inherent in these different 
products are highlighted by the spatially and temporally heterogeneous 
trends [73]. Future directions and emerging approaches which may 
address these challenges are further discussed in Section 7. 

4. Glaciers 

The Tien Shan hosts almost 15,000 glaciers, covering a surface area 
of around 12,300 km2 [74]. The Pamir contains over 13,000 glaciers 
that cover an area of approximately 12,000 km2 [75]. For the Pamir, 
median glacier elevation follows a gradient from West (~3800 m a.s.l) 
to East (>5000 m a.s.l). For the Tien Shan, median glacier elevations 
range from 3700 to 4200 m a.s.l. and are highest in the central part [74]. 
Most glaciers in both mountain ranges in Central Asia are so called 
polythermal glaciers. Polythermal glaciers contain cold ice but include 
also large volumes that are temperate (at the melting point). Most 
commonly, in dry and cold climates, small and non-dynamic glaciers 
have cold ice in the ablation area or at least in a surface layer with tens of 
meters of thickness at lower altitudes. In contrary, cold firn and ice in 
accumulation areas are only found at higher elevations (around > 5000 
m a.s.l. [185,186]). These areas are going to play an important role in 
the near future, because the additional energy input from atmospheric 
warming is not transformed directly into increased and accelerated 
melting but rather into a rise in the firn and ice temperatures by the 
release of latent heat through refreezing. In general, the observations of 
firn and ice temperatures are very reliable climate indicators and the 
impacts of a change from cold to temperate firn/ice in the accumulation 
zones is directly reflected in an increase of mass loss for larger high- 
altitude glaciers [46]. Past and recent measurements on selected sites 
in Central Asia highlight the occurrence of both cold ice in the ablation 
and accumulation zones. Recent ice temperature measurements at the 
tongue of Batysh Sook glacier (a very small glacier < 2 km2) showed 
temperatures below zero degrees (approx. ranging from − 5◦ to − 7◦ C at 
10 to 16 m depth). From a 90 m deep borehole at the accumulation area 
of Gregoriev glacier, Thompson et al. [76] measured very low accu-
mulation rates of around 0.3 m w.e. a-1 during the period of 1961–1990 
and negative temperatures throughout the whole borehole profile. The 
authors reported a minimum temperature of close to − 4◦ C at the bottom 
of the borehole. At the same site, Kronenberg et al. [77] confirmed 
similar accumulation rates for the period 1986–2017. However, the 
englacial temperature measurements in a depth of 15 m, corresponding 
to the zero annual amplitude (ZAA), had considerably increased from 
− 3◦C [76] to − 1.5 ◦C [77] from 1990 to 2018. However, Kronenberg 
et al. [78], found that for Abramov glacier at an altitude of around 4400 
m a.s.l. in the Pamir-Alay, the accumulation sites were found to be 
temperate. They showed that the firn stratigraphy has however not 
changed importantly. 

Farinotti et al. [79] calculated a total glacier ice volume of 3.27 ±
0.85 × 103 km3 for Central Asia. The study showed that HMA, the area 

with one of the largest ice volumes outside the Polar Regions, hosts 
about 27% less glacier ice than previously suggested. Only a few mea-
surements of individual glacier thicknesses are available for Central 
Asia, (e.g. [80–83]). However, data on glacier thickness distribution, 
internal ice and firn structure and their change remain sparse. In Central 
Asia, data on glacier covered area are still incomplete and heteroge-
neous[75]. More accurate glacier inventories appeared in the last years 
(e.g.[75,84]). Comparison with previous datasets is however not 
straightforward. Several studies using consistent data reported on het-
erogeneous area change (e.g. [85–89]). In four catchments in the Pamir- 
Alay, area reduction rates decreased from 0.46% yr− 1 in 1957–1980 to 
0.27% yr− 1 in 1980–2001[90]. For the Tien Shan, Narama et al. [91] 
reported an increase of area loss rates from 0.4% yr− 1 to 0.57% yr− 1 for 
At-Bashy (Central Tien Shan) and from 0.63% yr− 1 to 0.71% yr− 1 for 
Pskem (Western Tien Shan) but a decrease from 0.33% yr− 1 to 0% yr− 1 

for the Fergana range from 1970 to 2000 to 2000–2007. For the Ak- 
Shyrak massif (Central Tien Shan), area loss rates increased from 
0.12% yr− 1 for 1943–1977 to 0.33% yr− 1 for 1977–2003 [92] and to 
0.59 ± 0.34% yr− 1 for 2003–2013 [93]. These rates further accelerated 
up to 0.93 ± 0.61% yr− 1 from 2013 to 2018 with a significant negative 
correlation with glacier size. 

During USSR most glacier mass balance monitoring sites were 
established in mid-1950′s [94,95]. The majority of the observation 
programmes stopped during the early 1990 s. Today, only one contin-
uous series exist: Tuyuksu Glacier, Kazakhstan. For Tuyuksu, a mass 
balance of − 0.4 m w.e. yr− 1 was reported from 1957 to 2018 [39]. 
Urumqi Glacier in the East Tien Shan has a relatively complete record 
since 1980 s with a reconstructed period back to the late 1950 s. A 
similar mass loss of − 0.4 m w.e. yr− 1 was reported from 1957 to 2017 
[39]. Efforts to re-establish in situ glacier observations have started since 
2010 [38]. Such datasets, however, are limited to a few selected, well 
accessible glaciers but are of great importance to validate modelling 
studies and regional assessments. Current results, directions and moni-
toring strategies are further discussed in Section 7. 

Zemp et al. [96] and Wouters et al. [97] suggested a mass loss of 
− 0.15 ± 0.12 m w.e. yr− 1 from 2006 to 2016 and of − 0.06 ± 0.09 m w.e. 
yr− 1 from 2002 to 2016 for Central Asia, respectively. Most other studies 
distinguish between Pamir and Tien Shan. Published mass change as-
sessments for the Pamir are inconsistent (Fig. 3a); unfortunately, 
increasing the uncertainty of the understanding on the ongoing glacier 
changes in the region [98–103] . Similar discrepancies prevail also on 
more localized, catchment scale. For Muztagh Ata, Holzer et al. [104] 
provided almost balanced conditions of − 0.01 ± 0.30 m w.e. yr− 1 for 
1973 to 2013. Barandun et al. [44] found substantial mass loss of − 0.68 
± 0.32 m w.e. yr− 1 from 2000 to 2018, while uncertainties connected to 
both methods are high. For the Central Pamir, Barandun et al. [44] 
modelled stable conditions of + 0.04 ± 0.32 m w.e. yr− 1 from 2000 to 
2018 that agree well with the mass balance of − 0.06 ± 0.68 m w.e. yr− 1 

for the Karakul catchment from 2000 to 2010 found by Holzer et al. 
[105]. Zhou et al. [106] found a balanced mass change for Fedchenko 
glacier of − 0.03 ± 0.24 m w.e. yr− 1 from 1974 to 1999, whereas Lam-
brecht et al. [107] highlighted a strong imbalance for the same glacier in 
recent years with an increase of mass loss from − 0.27 ± 0.05 m w.e. yr− 1 

to − 0.51 ± 0.04 m w.e. yr− 1 for 2000–2011 and 2011 to 2018, 
respectively. An assimilation of historical, modern and reconstructed 
data for Abramov revealed a mass loss of approximately − 0.4 m w.e. 
yr− 1 from 1968 to 2018 [108,109] and a geodetic survey based on 
historical aerial photography provided similar results of approximately 
− 0.4 m w.e. yr− 1 from 1975 to 2015 [110]. 

For the Tien Shan better agreement between region-wide (e.g. 
[44,99,100]) and on subregion/catchment scale with Farinotti et al. 
[103] and Bolch [83] was found (Fig. 3b). Gardner et al. [101] published 
a somewhat more negative regional mass loss from 2000 to 2009 as well 
as Pieczonka and Bolch [111] and Goerlich et al. [112] on catchment 
scale for the second half of the 20th century. A combination of modern 
glaciological observations, reconstruction and reanalysis of legacy data 
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for Golubin, located in the Northern/Western Tien Shan indicated an 
increase of mass loss from − 0.1 m w.e. yr− 1 for 1927–1972 to − 0.3 m w. 
e. yr− 1 for 1972–2016 [113]. 

The aforementioned differences in literature might relate to (i) 
important methodological differences, (ii) different study periods and 
(iii) inconsistent region division. Inherent differences of the methodol-
ogy individual studies relate to the uncertainty of each technique and 
were believed not to exceed the error bars provided by the individual 
studies. Inconsistent time periods make straightforward comparison 
difficult. Typically, studies including the early years of the 21st century 
revealed often less negative values [98–100] than studies focusing on 
periods after 2004 [101–103]. Using the annual time series, Barandun 
et al. [44] identified clearly less negative mass balances at the beginning 
of the study period (prior 2005). This might explain part of the tendency 
to provide more negative results when focusing on the period 2003 to 
2009 (i.e. ICESat based). Inconsistent perimeter of the study regions can 
explain an additional fraction of the encountered differences in the re-
sults due to heterogeneous glacier responses within the individual sub-
regions. Validation datasets from complete cryosphere-monitoring 
remain strongly under-represented in Central Asia. It is now a priority to 
develop and install monitoring schemes to characterise region-wide, 
past and present cryosphere changes coupled to high alpine meteoro-
logical observations at high temporal and spatial resolution for Central 
Asia. 

Despite the differences in the published decadal mass losses, most of 
the studies highlight a complex and heterogeneous response through 
Central Asia (e.g. [44,99–101,103,114]). Brun et al. [115] showed that 
morphological variables explain only a limited fraction of the mass 
balance variability (8% for the Pamir, 20% for the Pamir-Alay and 36% 
for the Tien Shan). Many glaciers of the study area are heavily debris- 
covered in their ablation areas and debris thickness varies consider-
ably [116]. The interaction with mass balance remains however poorly 
understood [115]. Furthermore, both the Tien Shan and Pamir are 
known to host numerous surge-type glaciers [117–119] biasing the 
glacier response to climate. Despite, Dehecq et al. [120] showed that the 
flow velocities of glaciers in Central Asia correlate well with the decadal 
glacier mass change for the period 2000–2016. 

Pronounced variations of the meteorological settings throughout the 
region might principally be responsible for high local variability and 
distinct spatial pattern of glacier responses[20,47]. The variable climate 
conditions in Central Asia [121,122] are reflected in the heterogeneous 
accumulation and ablation regimes, mass balance gradients [11,47] and 
mass balance sensitivities [123]. Sakai and Fujita [124] showed that 
climatic settings represented by the three factors: summer temperature, 
temperature range, and summer precipitation ratio explain up to 60% of 
the spatially contrasting glacier response in High Mountain Asia. Despite 
the strong local differences in glacier response detailed assessments with 
a focus on Central Asia remain so far limited. The scarcity of reliable and 
appropriate glaciological datasets, as well as the heterogeneity of both 

their spatial and temporal extent for the Tien Shan and Pamir, hamper 
sound synthesis to a regional picture on annual to seasonal time scales 
[3,42,43]. Remote sensing has become very popular to shed light into 
unobserved, passed glacier changes. It is a powerful tool to study inac-
cessible glaciers from space, however mass change assessments are yet 
limited to intervals of 5 to 10 years. Geodetic surveys thus do not allow 
assessing glacier specific annual mass balance variability and detailed 
runoff contribution changes for the past decades. Furthermore, geodetic 
height-change measurements over accumulation areas relates to strong 
uncertainties due to the snow density assumptions needed to calculate 
mass change. 

Thus, region-wide assessments cannot rely solely on geodetic surveys 
but also need to be combined with other techniques to investigate 
glacier mass changes at annual to seasonal scale. 

Currently the potential to identify climatic and non-climatic drivers 
and the complex process chains and feedbacks interacting with the 
glacier mass change of the different subregions is limited. Observational 
datasets on climatic variables remain significantly unconstrained in 
Central Asia due to the scarcity of meteorological stations and their 
uneven distribution [72,125,126]. Gridded climate datasets based either 
on observations, reanalysis, or remote sensing show severe differences, 
and, due to the lack of validation data remain largely unconstrained in 
terms of precipitation intensities and seasonality [73,125–128]. 

Particularly important for future impact studies in Central Asia are 
subregional and local catchment-based estimates of water availability 
including sound assessments of glacier mass changes and their corre-
sponding uncertainties by combining in situ observations with remote 
sensing and numerical models. This demands a solid base of observa-
tional, long-term data that is currently incomplete for Central Asia. 

5. Permafrost 

The Central Asian region encompasses the largest area of mountain 
permafrost in the world. It covers 3.5x106 km2, amounting to 15% of the 
total areal extent of permafrost in the Northern Hemisphere. The 
regional pattern of permafrost distribution primarily depends on 
elevation, slope and aspect, which have a major influence on the energy 
balance at the ground surface. The mountain permafrost distribution 
depends on various additional parameters such as vegetation, debris and 
snow-cover, ground surface texture, winter air temperature inversion, 
surface- and groundwater presence as well as terrain movement (e.g. 
[129,130]). 

Permafrost can be categorized into three zones: continuous, discon-
tinuous and sporadic (Table 1) [131]. The altitudinal distribution of 
permafrost is controlled primarily by latitude, with approximately 140 
m elevation increase of its lower limit per 1

◦

south [131]. Because of the 
differences in surface energy balance (mainly higher insolation), the 
lower limit of permafrost on south-facing slopes is about 400–800 m 
higher than on north-oriented slopes [131,132]. 

Fig. 3. Comparison of different mass balance assessments for (A) the Pamir/Pamir-Alay and (B) the Tien Shan. For the Pamir/Pamir-Alay, estimates are given for 
either the Pamir or both (Pamir and Pamir Alay). Only region-wide estimates and no subregion/catchment-wide studies were included in the comparison. 
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Permafrost temperature in the Tien Shan varied from − 0.38 ◦C to 
− 0.68 ◦C at depths of 14–25 m during 1974–1977, and has experienced 
a continuous warming since the 1950 s until present [133]. In accor-
dance with interpolation of borehole temperature data, the active-layer 
thickness showed an increase from 3.2 to 3.4 m in the 1970 s to a 
maximum of 5.2 m in 1992 and 5.0 m in 2001 and 2004. The average 
active layer thickness for all measured sites increased by 23% in com-
parison to the early 1970 s [133]. Monitoring of permafrost tempera-
tures in a network of boreholes at the Zhosalykezen pass in the Ili Alatau 
Range since 1974 suggested a warming rate of about 0.01 ◦C yr− 1 at the 
depth of zero annual amplitude (ZAA = 13–17 m), while mean annual 
air temperature (MAAT) at the Tuyuksu meteorological station 
increased by 0.02 ◦C yr− 1 [134]. 

Warming of mountain slopes and permafrost has several important 
implications, which may affect communities many kilometers down-
stream [135,136]. Creep rates of rock glaciers are likely to increase 
[137,138], and increased thermally induced slope instabilities are ex-
pected, potentially leading to various types of mass movements such as 
debris flows, rock avalanches or in the case of ice-cored moraine dams, 
glacial lake outburst floods (e.g. [31,129,139,140]). Furthermore, 
permafrost ground ice in the Central Asian mountains could also 
significantly contribute to the hydrological cycle of the region [40]. 
Rock glaciers, as a clearly visible permafrost landform, have been esti-
mated to be especially valuable in terms of ground ice volumes and 
hydrological importance. They are currently the focus of research (e.g. 
[41,138,141–144]). With a relatively high ratio of rock glacier to surface 
ice in Central Asia [143,145], their role as a water reservoir may be of 
great importance. It has to be noted that current estimates for permafrost 
ground ice volumes only consider rock glaciers while ground ice within 
other permafrost terrain is neglected. This may lead to an underesti-
mation of the real values [145,146]. Furthermore, permafrost responds 
more slowly to climate change due to the insulating effect of the over-
lying active layer together with ventilation effects, which facilitate 
cooling of the ground [147,148]. Permafrost based water resources are 
therefore likely to be available on a longer time scale and may buffer 
water resource losses from surface ice [143,149]. However, it has to be 
stressed that permafrost distribution in Central Asia [15,129], and even 
more so, ground ice volumes contained in permafrost terrain are 
currently very uncertain. Thus, the estimates available today could 
change substantially once more data becomes available [144,146]. 
Moreover, assessing the contribution of permafrost ground ice to the 
hydrological cycle of a region remains challenging. Permafrost can in-
fluence the runoff regime in different ways. It may act as a water barrier 
during spring/summer snow melt and speed up the runoff process by 
providing surface and near surface flow paths above frozen and 
(partially-)impermeable frozen layers. Further, annually variable 
amounts of seasonally frozen water from the thawing active layer is 
released in summer. Finally, a largely unknown amount of water can be 
released by degradation of permafrost ground ice, especially in ice rich 
permafrost forms such as rock glaciers. Rogger et al. [150] suggest that 
during degradation of permafrost in an alpine catchment, downstream 
runoff may be increased by up to 19%. However, the importance of rock 
glaciers to the total runoff is still object of discussion in the literature 
[141,146,151]. A better understanding of permafrost degradation pro-
cesses has yet to be established and quantified at different spatial and 

temporal scales [150]. In CA in particular, baseline data and in-situ 
observations on permafrost is extremely scarce, and thus, very little 
progress has been made on quantifying changes of permafrost under 
climate change[3]. It is, however, crucial to improve our knowledge on 
permafrost distribution, thermal regime and its temporal evolution, as 
well as ground ice contents in order to improve model estimates for 
decision-making and implementation of disaster risk reduction and 
water resource management measures in Central Asia. 

6. Implications of changes in the cryosphere on water security 

As highlighted above, the Central Asian cryosphere is undergoing 
substantial changes, driven by atmospheric warming. This may have 
profound consequences on water availability for the region in near 
future, particularly under higher emission scenarios (Fig. 4). The dry 
summer months in Central Asia correspond to peak vegetation season 
and hence water demand. Snow and ice melt provide release of water 
resources during this time [143,145,149,152]. Particularly glacier melt 
becomes a vital buffer for fresh water during droughts [19,20,55,153]. 
Unlike seasonal snow cover that fluctuates annually, glaciers delay the 
passage of water through the hydrological system. Pritchard [153] 
showed that glaciers in Aral and Chu/Issyk-Kul basins produce melt-
water net 7.5 ± 1.7 km3 on an average year which is equivalent to ten 
months of municipal and industrial demand for Afghanistan, Tajikistan, 
Turkmenistan, Uzbekistan and Kyrgyzstan, or the absolute-scarcity 
needs of 45 ± 10 million people—over half of the population—for 
four months. 

A reduction of solid precipitation in future will influence mainly 
spring and early summer runoff. Changes in the seasonality of the 
snowpack, e.g. earlier melt-out, can have severe impacts on runoff re-
gimes, particularly in unregulated watersheds [154]. Atmospheric 
warming will lead to higher glacier melt rates and will increase runoff 
until the so-called peak water is reached [155]. Beyond this point, melt 
water runoff will decrease as glacier mass diminishes beyond a certain 
threshold (Fig. 4). Glacier melt water contribution in Central Asia will 
reach its peak in the next few decades [156,157]. Huss and Hock [40] 
showed that changes in glacier melt contribution to total river runoff 
affects the major Central Asian river basins severely with an expected 
decrease of over 25% in the next century. Besides the reduced fresh-
water availability, the seasonality of river discharge will change 
[51,82,158–160]. Expected changes in the magnitude and seasonality 
can provoke water shortage and unexpectedly high meltwater releases 
leading to flooding (Fig. 4). However, to understand the full picture of 
the regional river runoff changes full hydrological modelling that in-
cludes processes related to i.e. ground water, precipitation, evaporation 
and permafrost is crucial. Such modelling, however, needs to rely on 
spatially and temporally high resolved monitoring of the main water 
storage bodies and meteorological variables in high alpine environments 
of Central Asia and hence is therefore often not straightforward. 

The uncertainty of water availability in the context of a changing 
climate creates a major potential for political tensions and builds a 
complex set of future threats, affecting different domains such as water 
management, energy production and irrigation [161–164]. Currently, 
Central Asian countries are among the highest per capita users of water 
in the world and>90% of the region’s water is used for irrigation 
[164,165], while agricultural share of gross domestic product (GDP) in 
Central Asia has almost halved since the disintegration of the Soviet 
Union [166]. Changes in water supply in combination with rapidly 
growing and industrialising economies lead to an increased risk of water 
scarcity in the region. In addition, the complex geopolitical setting of 
transboundary water systems and energy flows provide increased po-
tential for conflicts driven by reduced resources [167–169]. Complex 
allocation trade-offs exist in the region [168]. The energy-poor, yet 
water-rich upstream countries (Kyrgyzstan and Tajikistan), use water for 
hydropower production in the winter [162]. Conversely, the down-
stream states (Uzbekistan, Turkmenistan and Kazakhstan) have a high 

Table 1 
The altitudinal zonality of permafrost in Tien Shan (after [131]).  

Part of the Tien Shan 
mountains 

Continuous m 
a.s.l. 

Discontinuous m 
a.s.l. 

Sporadic m a. 
s.l. 

Western (41◦30′N) > 3800 3800–3600 3600–3000 
Northern and Eastern 

(42–43◦N) 
> 3500 3500–3200 3200–2700 

Inner (40◦30′–42◦N) >3600 3600–3300 3300–2800 
Permafrost Area (km2) 41,000 49,000 69,000  
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water demand in the summer irrigation season [154,170,171]. In 
response to energy needs (and perceived future water shortages), up-
stream countries have been investing heavily in hydropower schemes 
(HPP) which generate power and balance water availability. 

Reservoir construction will undoubtedly form a large part of regional 
climate change mitigation strategies [172] in order to address changes 
in future water availability. However, these projects need to be imple-
mented in a coordinated fashion in order to avoid increased regional 
tensions [163]. On the other hand, the economic return on water is 
lower in Central Asia than anywhere else on the planet, therefore, it is 
evident that primary focus of the Central Asia countries should be on 
curbing excessive water demand and expanding other sectors of econ-
omy [164]. 

Detailed scientific knowledge on past and present changes, particu-
larly at high temporal and spatial resolution, is vital to implement 
comprehensive adaptation and mitigation measures for sustainable 
water management. Currently, most of the water availability, fore-
casting schemes in Central Asia are based on extremely sparse datasets 
and do often not account for climate change. In the Soviet era, a 
threshold equal to runoff for the average dry year (e.g. 80% of the 
average annual runoff) for the water demand for irrigation was deter-
mined [173]. This scheme is still being enforced today. Poor water ac-
counting and decay of infrastructure the system becomes even more 
inefficient. This is further exacerbated by changing runoff due to 
degrading cryosphere, especially after the peak water will be passed. 
Yet, they are used as a basis for national and international allocation 
discussions (e.g. Interstate Commission for Water Coordination of Cen-
tral Asia Interstate Commission for Water Coordination of Central Asia: 
http://www.icwc-aral.uz/icwc_bulletins.htm). Scarcity of reliable and 
appropriate meteorological and glaciological datasets hampers a sound 
synthesis of a regional picture [42]. Remote sensing techniques are 
suitable to study remote and unmeasured areas on a cost-effective basis, 
and can partly bridge the aforementioned deficit in data availability (e. 
g.,[102,114,115,174]). However, the discrepancy and disagreement 
between region-wide surveys (e.g., [98,102,103]) as well as the coarse 
temporal resolution accentuate the indispensable need for (i) improved 
and extended ground measurements including deeper boreholes in 
permafrost areas, (ii) enhanced methods to observe glacier mass changes 
at regional scales on high spatio-temporal resolution and (iii) for more 
process-based research. 

7. Future directions and initiatives to improve cryosphere 
monitoring in Central Asia 

A new glacier monitoring network has been (re-)established since 
2010 (Fig. 5) and helped to rebuild a scientific community focusing on 
cryosphere sciences as part of the international climate observation 
strategy developed by GCOS. Long-term mass balance time series for 
four glaciers in Kyrgyzstan were (re-)analysed and reconstructed as far 
back as to the last century (Fig. 5, [108,113,175,176]). Recent in situ 
data suggest a mean mass loss of − 0.3 m w.e. yr− 1 for Abramov from 
2012 to 2018 and for Golubin from 2011 to 2018 (data averaged for 
hydrological year; [39]). These values are of the same order of magni-
tude as reconstructed mass balance time series for the past decades of 
− 0.26 m w.e. yr− 1 for Abramov (1998–2016) and − 0.4 m w.e. yr− 1 

Golubin (2000–2016) [109]. Despite a sharp increase of mass loss for 
Golubin since the onset of the 20th century, the above summarised re-
sults show neither signs of an accelerating mass loss during the second 
half of the 20th century, nor clear positive trends in recent years for both 
Golubin and Abramov. 

Additional long-term glacier monitoring programmes in the Tien 
Shan were (re)initiated for e.g. Barkrak Middle, Batysh Sook, No. 354 
(Fig. 1). The modern glaciological measurements revealed mass losses 
ranging from − 0.3 to − 0.6 ± 0.2 m w.e. yr− 1 (2011–2018, data for 
hydrological year, [39] and for Barkrak Middle from 2017). Recon-
structed mass balance time series for these glaciers confirmed the 
negative signal of − 0.3 to − 0.4 ± 0.3 m w.e. yr− 1 for the last decades 
[175,176]. For the Eastern and Western Pamir, barely any in-situ ob-
servations are available so far [38] and a first long-term monitoring 
programme for the Western Pamir was only just initiated at Zulmart and 
Yakarcha Glacier in 2018 and 2019, respectively [3]. Despite the suc-
cessful re-establishment of glacier monitoring at selected sites (Figs. 1 
and 5), complete cryosphere-monitoring, especially for snow and 
permafrost remains strongly under-represented in Central Asia. 

Within the projects CAWa [177] and CATCOS/CICADA [38], mete-
orological variables and ground temperatures were measured at two 
high altitude automatic weather stations (AWS) in Kyrgyzstan since 
2011/2013 [127] – both are located nearby a glacier (Abramov and 
Golubin) and part of the worldwide long-term monitoring network GTN- 
G (Global Terrestrial Network on Glaciers, [38]). At the Abramov sta-
tion, the ground temperatures closely follow the air temperatures, even 

Fig. 4. Schematic view of expected runoff changes under ongoing climate change: (a) affecting total glacier melt water contribution and (b) seasonality in water 
availability. Credits: Zoï Environment Network, Geneva. 
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during the winter months (Fig. 6). This indicates absent or thin snow 
cover at the sensor location, most likely due to strong winds. Precipi-
tation is recorded mainly during spring and summer. Due to missing 
corrections of undercatch, measured values are substantially lower than 
annual precipitation sums in historical data recorded at a nearby loca-
tion [178]. The observed ground temperature trend at 0.1 m depth 
correlates well with the air temperature trend of around 0.12 ◦C yr− 1 for 
2011–2019. This is much higher than that estimated by Marchenko et al. 
[133], and may either be a result of the relatively short measuring 
period or an indication for stronger warming in recent years. For a sound 
comparison of different datasets and periods, long-term measurements 
are indispensable. The meteorological and ground measurements pre-
sented here, show a first step to such long-term time series that need to 

be connected to legacy measurements of the past. 
The re-established monitoring networks in Central Asia provide a 

base for a first comparison and shows the importance of their continu-
ation. We found an annual thermal offset between air temperature and 
ground temperature at 0.1 m depth ranges between 2.5 ◦C and 4.5 ◦C 
(not shown). These values are similar to observations made in the Swiss 
Alps [179]. The ground freezing (GFI) and thawing index (THI) (i.e. the 
sum of all daily negative, respectively positive, temperatures measured 
during one hydrological year) showed relatively low annual variabilities 
(Fig. 7). Compared to most of the sites included in PERMOS, the indices 
calculated for the Abramov site are considerably lower [179]. The 
permafrost thickness under current conditions using a simple approach 
according to Williams and Smith [130] is estimated to be 70–100 m. 

Fig. 5. Measured and reconstructed mass balance time series for Central Asia. Data source: measured data series from WGMS [39]; reconstructed data series from 
[108,113,175,176]. 

Fig. 6. (a) The daily ground temperatures measured in different depths down to 1 m and the monthly measured precipitation (blue bars) from August 2011 to 
November 2019 at the AWS at Abramov. (b) Daily and monthly air temperature for the same period and location. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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However, permafrost temperatures most likely are not in equilibrium 
with the present-day climate and therefore, the actual permafrost 
thickness might be underestimated. However, to-date the time series are 
still short and other in-situ observations on permafrost are scarce. The 
continuation and expansion of these measurements are of high priority 
for the local communities that are potentially affected by the effects of 
permafrost degradation. 

Uncertainties in quantifying snow based water resources may be 
addressed by emerging next generation methods that combine physi-
cally based models and data assimilation schemes to constrain prog-
nostic variables such as SWE [180–182], which will likely help us to 
narrow down recent climate change impacts and therefore also debias 
climate models for improved climate impact projections (Fig. 8). Recent 
advances from the European Space Agency Sentinel missions have 
allowed the retrieval of snow depth at reasonably high resolution of 1 
km in Mountains (Fig. 9, [183]). Airborne photogrammetric methods (e. 
g. [184]) can provide cm scale snow depth maps over large remote areas 
at reasonably cost and therefore likely an appropriate technology for 
mountains of Central Asia, particularly set within a data assimilation 

framework. In combination with improved earth-observation and 
modelling approaches, increased in situ observational networks are 
critical, particularly in poorly sampled high elevation regions where the 
bulk of snowpack mass balance is stored. Programmes such as the World 
Meteorological Organisation’s Global Cryosphere Watch aim to promote 
this effort particularly in harnessing science led observation and moni-
toring networks. 

8. Conclusion 

A new glacier monitoring network has been (re-)established since 
2010. Strong efforts focused on the generation of new human capacities 
related to the corresponding research areas. Despite the successful re- 
establishment of glacier monitoring, complete cryosphere-monitoring 
remains strongly under-represented in Central Asia. Particularly, there 
is still a lack of in situ data of the other two cryospheric variables: snow 
and permafrost. Yet, conclusions on observed changes and their impacts 
on water availability remain subject of large uncertainties. It is now a 
priority to develop and install monitoring schemes to characterise 

Fig. 7. Ground freezing index (GFI) and ground thawing index (THI) of thermistor HM6 (0,1 m depth) and mean annual ground temperatures (MAGT) of all 
thermistors at Abramov during the measurement period (hydrological years 2011/12 to 2018/19). 

Fig. 8. New snow reanalysis combine snow models with remote sensing data through a data assimilation scheme to improve our understanding of snow water 
content in remote areas. MODIS fractional snow cover (obs) is assimilated (A) for improved SWE estimates at basin level (B) with lower uncertainty (posterior) 
compared to deterministic simulations (open-loop) that are plagued by biases in the forcing. It is constrained by observed melt patterns which are highly correlated 
with absolute snowpack mass [181]. Such methods use global datasets and can be applied over large areas as in the example here in the headwaters of the Anzob 
catchment, Tajikistan, 2013–2014. Full methods description is presented in[181]. 
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region-wide, past and present cryosphere processes and associated 
runoff changes at high temporal and spatial resolution for Central Asia, 
which can be used for improved water management. However, this 
demands a universal strategy by combining in situ observations, nu-
merical modelling and remote sensing to reduce the currently existing 
uncertainties. These actions should have highest priority and should be 
combined with strong efforts in convincing the corresponding stake-
holders to support these monitoring systems by strengthening the cur-
rent fragile equilibrium between cooperation partners. Finally, this will 
allow generating long-term and sustainable cryospheric networks. 
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