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Abstract. Quantitative risk assessments of debris flows and
other hydrogeological hazards require the analyst to predict
damage potentials. A common way to do so is by use of pro-
portional loss functions. In this paper, we analyze a uniquely
rich dataset of 132 buildings that were damaged in one of
five large debris flow events in Switzerland. Using the double
generalized linear model, we estimate proportional loss func-
tions that may be used for various prediction purposes includ-
ing hazard mapping, landscape planning, and insurance pric-
ing. Unlike earlier analyses, we control for confounding ef-
fects of building characteristics, site specifics, and process in-
tensities as well as for overdispersion in the data. Our results
suggest that process intensity parameters are the most mean-
ingful predictors of proportional loss sizes. Cross-validation
tests suggest that the mean absolute prediction errors of our
models are in the range of 11 %, underpinning the accurate-
ness of the approach.

1 Introduction

Landslides are a major hydrogeological hazard in mountain
ranges all over the globe. Debris flows are a particularly de-
structive form of fast-moving landslides. Over the past 25 yr,
debris flows have killed more than 200 people and caused
more than C5 billion in economic damages throughout the
European Alps (rough estimate based on Guzzetti et al.,
2005; Fuchs, 2009; Hilker et al., 2009). In Switzerland alone,
debris flows have caused direct economic damages of C340
million, which equals about 5 % of the total amount of losses
from hydrological hazards during this period (Hilker et al.,
2009).

It is therefore not surprising that considerable effort has
been made to understand the physical processes of debris

flows (Iverson, 1997; Major and Pierson, 1992; Rickenmann,
1999; Sosio and Crosta, 2009). Less emphasis has been given
to damages caused by debris flows. The quantification of po-
tential losses is, however, a building block of any quantitative
risk assessment (Bonachea et al., 2009; Bründl et al., 2009),
and serves as the foundation for the planning of mitigation
measures (Dai et al., 2002; Romang et al., 2003; Margreth
and Romang, 2010).

As the size and force of a debris flow is a priori un-
known, quantitative risk assessments are based on predic-
tions of damages that could occur under different hazard sce-
narios. The term physical vulnerability is commonly used to
refer to the proportional loss (also known as relative damage)
that an element at risk faces as result of a specific hazard im-
pact (Fuchs, 2009; Uzielli et al., 2008; Hollenstein, 2005).
This impact is determined by two factors. One is the inten-
sity of the hazard, which may be defined as “a set of spatially
distributed parameters describing the destructiveness” of the
hazard process (Hungr, 1997). The other is the susceptibility
of the element at risk, which describes the propensity of a
building or other infrastructure to suffer damage from a spe-
cific hazard impact (Uzielli et al., 2008).

Empirical analyses that relate damages from debris flows
and other landslide processes to intensity and susceptibility
factors are still rare; see Totschnig and Fuchs (2013) for a re-
cent review of the literature. Most existing studies use either
descriptive methods (e.g., Bell and Glade, 2004) or ordinary
least-square (OLS) regression (e.g., Fuchs et al., 2007) to ex-
plain the proportional loss y = d/v, defined as the ratio of
observed damage d to total value v.

While of practical value, there are some drawbacks with
these conventional approaches. The descriptive approach
does not make full use of the available information and al-
lows only for qualitative damage predictions. OLS regression
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can incorporate intensity and susceptibility factors, but its ap-
plicability is limited by the fact that regression estimates are
unconstrained, allowing for loss estimates to take on implau-
sibly large or small values.

Since the proportional loss is by construction a relative
measure, valid models must provide estimates of y restricted
to the [0, 1] interval. One can constrain OLS to this range, but
the resulting censored linear model bears some unattractive
features (Kieschnick and McCullough, 2003; Fox, 2008). It
is inherently unstable because it critically depends on the
values at which minimal and maximal loss is predicted, it
is inexpedient as soon as more than one predictor variable
is included, the abrupt truncation of the linear slope of y

is unrealistic as one would expect a smooth rather than a
kinked relationship between the proportional loss and the
predictor variables, and its error variance is most likely not
constant (i.e., heteroscedastic) because regressions involving
data from the unit interval typically display more variation
around the mean than at the limits of the [0, 1] interval.

Generalized linear models (GLMs) provide a natural
framework for the estimation of proportional data (De Jong
and Heller, 2008). Geoscientists have previously made use
of this property to predict the occurrence probability of de-
bris flow events (Ohlmacher and Davis, 2003; Sepulveda and
Padilla, 2008; Griffiths et al., 2004). Yet apart from recent
studies by Totschnig et al. (2011) and Totschnig and Fuchs
(2013), GLMs have to the best of our knowledge not been
used to analyze proportional loss data of debris flow events.

Moreover, there is a caveat to the application of standard
GLMs such as logistic or probit regression to proportional
loss data. GLMs typically assume that the error variance is
constant across observations. This assumption is likely to be
violated whenever damages are spatially or temporally cor-
related. Ignoring the non-constant nature of the error vari-
ances may result in a misrepresentation of the true dispersion
and erroneous inferences about the parameters of interest (De
Jong and Heller, 2008).

In this paper we use the double generalized linear model
(DGLM) introduced by Smyth (1989) to explore a unique
dataset comprising insurance values of 132 buildings. These
buildings were damaged by five debris flow events, which oc-
curred in Switzerland during the late 1980s and early 2000s.
While the DGLM provides the same flexibility as standard
GLMs, it adjusts for the overdispersion typically observed in
proportional losses, and hence lends itself for the statistical
analysis of our dataset.

The remainder of the paper is structured as follows. Sec-
tion 2 describes our empirical strategy, our dataset, and the
statistical approach in more detail. Section 3 presents re-
gression results and sensitivity tests that assess the predic-
tion accuracy of the estimated proportional loss functions.
In Sect. 4, we sum up with some remarks on the usefulness
of our approach for the practical management of debris flow
hazards.

2 Data and methods

2.1 Conceptual framework

The conceptual framework of our empirical analysis of phys-
ical vulnerability toward debris flow events is illustrated in
Fig. 1. Based on Dai et al. (2002), we identified three building
blocks for the statistical analysis of debris flow risk: (1) the
runout area, (2) the process intensity, and (3) the elements at
risk. In the empirical analysis, we seek to explain observed
proportional losses by predictor variables characterizing the
three building blocks.

In the empirical analysis, we define the runout area by its
roughness and its slope steepness. We characterize the pro-
cess intensity by the impact angle between the tangent to
the flow path of the debris flow at the point of impact and
the plane tangent to the struck surface at the point of im-
pact, the flow depth and velocity, and their interaction, which
is widely accepted as an intensity indicator (Kreibich et al.,
2009). Flow depth and velocity are used not only as crite-
ria for distinguishing intensity zones for hazard mapping of
debris flows (Loat and Petrascheck, 1997) but also in risk
analyses in Switzerland (Bründl et al., 2009), which was the
main argument for preferring them to other metrics such as,
e.g., the velocity head used only for comparison reasons in
this paper (see Sect. 2.2). Elements at risk are described by
their type (concrete, lightweight, or mixed construction), pur-
pose (agricultural, industrial, or residential use), and the pres-
ence or absence of object-specific protection measures such
as reinforced walls or sheet pilings. Below, the data collec-
tion process is described in more detail.

2.2 Data

We focused on five major debris flow events that had oc-
curred in the Swiss Alps during the late 1980s and early
2000s. According to the size classification by Jakob (2005)
these events all belonged to class 4 debris flows with to-
tal volumes ranging from 10 000 to 75 000 m3. They caused
damages with a total amount of C25 million on 455 build-
ings corresponding to average damages of roughly C50 000
per affected building. Of these 455 buildings, 132 were even-
tually selected for analysis. Data selection was based on
the availability of sufficiently accurate documentation of the
runout area, the process intensity, and the elements at risk (in-
cluding their total values and the observed damages). Dam-
age observations were split approximately evenly across haz-
ard sites. Figure 2 details out the geographical distribution of
the debris flow events and the analyzed damages.

In recent years debris flows in Switzerland have been reg-
istered in a central database (Hilker et al., 2009). However,
the event descriptions in this database are insufficient for
object-specific statistical analyses. Therefore, we had to im-
prove the data quality (see Romang, 2004; Kimmerle, 2002).
We assessed type and purpose of each of the buildings based
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Fig. 1. Conceptual framework for the empirical analysis of proportional loss data.

Fig. 2. Summary of the analyzed hazard sites including information about the location, date, total debris volume, and number of affected and
of analyzed buildings. ©Federal Office of Topography swisstopo.

on field observations and interviews with affected property
owners and other witnesses of the debris flow events. Abso-
lute and relative damages were ascertained based on insur-
ance reports of actuarial building values and the costs of re-
pair or replacement. The process intensity of the analyzed de-
bris flow events was reconstructed from back modeling with
FLO-2D (O’Brien et al., 1993) and back calculations of the
flow velocity, flow depth, and impact pressures (Hungr et al.,
1984). Information about the runout topography, roughness,
and inclination was collected directly in the field. Table 1
gives a descriptive summary of the compiled dataset.

Data quality is accurate for all parameters that could be di-
rectly observed or measured. The intensity parameters could,
however, not be measured directly and their quantification is

therefore fraught with some uncertainty. We reduced this un-
certainty by combining back calculations, engineering rules
of thumb, and eyewitness reports (Romang, 2004). In par-
ticular, we could reconstruct in many cases the maximum
deposition height (HmaxD) based on marks left on exterior
walls. According to the Bernoulli principle, HmaxD equals
the velocity head V 2/(2 · g) (with g = 9.81 ms−2). By solv-
ing the equation for V =

√
2 · g · HmaxD we obtained an es-

timate of the flow velocity, which we then compared to the
flow velocity estimated based on the procedure described in
Egli (2005). If the discrepancy between both estimates was
larger than 1 ms−1, we reassessed the flow velocity.

The outlined data validation process significantly im-
proved the data quality. Yet we emphasize that in the
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Table 1. Descriptive statistics of the compiled dataset (N = 132).

Variables Mean/ Min Max
Frequency

[SD]

Hazard site
Saxetbach [–] 0.25 0 1
Zälgbach [–] 0.36 0 1
Sachseln creeks[-] 0.11 0 1
Chummerbach [–] 0.10 0 1
Val Valdun [–] 0.18 0 1

Runout roughness
Open land [–] 0.38 0 1
Built-over land [–] 0.25 0 1
Forest land [–] 0.05 0 1
Road [–] 0.32 0 1

Runout slope
< 2 % inclination [–] 0.10 0 1
2–5 % inclination [–] 0.31 0 1
5–10 % inclination [–] 0.36 0 1
More than 10 % inclination [–] 0.23 0 1

Construction type
Lightweight construction [–] 0.21 0 1
Mixed construction [–] 0.60 0 1
Concrete construction [–] 0.19 0 1

Usage type
Residential building [–] 0.65 0 1
Industrial building [–] 0.24 0 1
Agricultural building [–] 0.11 0 1

Building properties
Total value [kC] 617 [1517] 2.67 16 645
Damage [kC] 41 [92] 0.19 906
Proportional loss ratio [–] 0.15 [0.24] 7 × 10−4 1
Local protection measures [–] 0.21 0 1
Impact angle [ ◦ ] 62 [35] 0 90

Process intensity
Flow depth [cm] 64 [56] 10 250
Flow velocity [cms−1] 239 [80] 100 500

SD is the standard deviation.

aftermath of an event a clear distinction between debris flows
and hyper-concentrated flows is not always possible because
different hazard processes may coincide. For example, the
runout area might first be hit by a debris flow surge and
subsequently flooded and eroded again (Pierson, 2005). We
are unable to differentiate between such transitional forms of
flowing and flooding processes. For the purpose of our anal-
ysis, this limitation seems acceptable. Totschnig and Fuchs
(2013) provide further support for this assumption.

2.3 Statistical approach

The statistical modeling of proportional loss functions in the
standard GLM framework is based upon three components
(Fox, 2008): (1) the loss function, ηi = Xi × β, where Xi is
a linear combination of predictor variables for object i, and
β is the corresponding vector of coefficients; (2) a proba-
bility distribution of proportional loss from the exponential

family; and (3) an invertible link function g that maps the
expected proportional loss E[yi] = µi onto the predictors so
that g(µi) = ηi .

Specific link functions have emerged for the analysis of
proportional loss data (De Jong and Heller, 2008). The
canonical link is the logit

ηi = log(di/(vi,−di)) = log(yi/(1 − yi)) ,

where vi and di denote the total value of and the damage to
object i both measured in units of kC. Since the log odds
ratio approaches negative infinity as yi approaches 0, and
moves toward positive infinity as yi approaches 1, loss pre-
dictions are restricted to the [0, 1] interval.

The logit link gives rise to the standard logistic regression
model

yi = (1 + exp(−ηi))
−1 ,

which can be evaluated by maximum likelihood methods.
Applied to polytomous data, the model assumes that the
proportional loss yi observed at object i is binomially dis-
tributed: yi ∼ B(vi,di)∀i ∈ N , where N is the set of all ob-
servations. This implies that each object at risk can be di-
vided into ni = vi /kC equal units, which the model treats
as if they were independent Bernoulli trials with probability
pi = di/vi .

This distributional assumption becomes unrealistic when
the damage potential is spatially or temporally correlated. A
simple example is a debris flow hitting a residential building
of total value vi , but only the ground floor is affected. Now,
assume that the first floor bears less (or more) valuables than
the ground floor. In this case, the dispersion across the ob-
served units of proportional loss is larger than warranted by
the constant error variance assumption of the logistic regres-
sion model: Var[yi] = φyi(1 − yi), where φ is a dispersion
parameter common to all observations.

The DGLM generalizes the above error variance by in-
clusion of an observation-specific dispersion parameter φi ,
which is contingent on some predictor variables to account
for systematic variations in the error variance (Smyth, 1989).
The observation-specific dispersion parameter can be ex-
pressed as h(φi) = Zi ×λ, where Zi is a vector of predictors
and λ is the corresponding coefficient vector. (Note that Zi

can be a perfect subset of Xi . Identification is warranted as
long as λ comprises a freely estimable intercept.)

The joint estimation of the dispersion submodel h(φi) and
the loss submodel g(µi) increases the precision in the coef-
ficient estimates of interest because observations with larger
variation are penalized (i.e., they are down-weighted in the
likelihood maximization). Standard errors for the predictors
of both the loss and the dispersion submodels are calculated
from the inverse Fisher-information matrix and Wald tests
can be used to infer the significance level of a specific pre-
dictor (Smyth, 1989). The interpretation of the coefficient es-
timates from the DGLM with logit link is therefore identical
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to the interpretation of those obtained from a standard logis-
tic regression model.

A virtue of this class of models is the ease with which co-
efficient estimates can be converted to and interpreted as risk
ratios (De Jong and Heller, 2008). Risk ratios are particularly
insightful to compare the vulnerability of different types of
buildings. In general terms, the risk ratio is defined as

RR[x′
]=

E
[
y|x′

= 1,X̄′
]

E
[
y|x′ = 0,X̄′

] =
1 + exp

(
−X̄′β

)
1 + exp

(
−

(
X̄′β + βx′

)) , (1)

where β ′
x is the coefficient on the characteristic of interest x′.

E
[
y|X̄′,x′

= 1
]

and E
[
y|X̄′,x′

= 0
]

denote the expected
proportional loss for buildings that do (x′

= 1) and do not
have (x′

= 0) this characteristic, keeping all other predictors
X̄′ fixed at sample means.

A common assumption is that the log-transformed
risk ratio is normally distributed: log

(
RR[x′

]
)
∼ N

(
µ,σ 2

)
.

The mean is equal to the log of the expected risk ra-
tio: µ = log

(
E

[
y|x′

= 1,X̄′
]
/E

[
y|x′

= 0,X̄′
])

. Using the
delta method (Fox, 2008), the variance can be approximated
by

σ 2
≈

Var
[
y|x′

= 1,X̄′
]

E
[
y|x′ = 1,X̄′

]2
+

Var
[
y|x′

= 0,X̄′
]

E
[
y|x′ = 0,X̄′

]2

− 2 ·
Cov

[
y|x′

= 1,X̄′
;y|x′

= 0,X̄′
]

E
[
y|x′ = 1,X̄′

]
E

[
y|x′ = 0,X̄′

] , (2)

where Var[.] and Cov[.] denote the sample variance and
covariance. (A detailed derivation of Eq. 2 is given in
Appendix A1.) Based on this, the 95 % confidence inter-
val (95 % CI) around the risk ratio is calculated as CI =

exp[µ ± 1.96 · σ ].

3 Results

3.1 Regression models

We present coefficient estimates for three specifications of
the DGLM with logit link function. These specifications dif-
fer with respect to the predictor variables included in the loss
and dispersion functions.

3.1.1 Model I

The first model specification explains observed proportional
losses solely through intensity predictors. The dispersion
function includes a global constant and site-specific con-
stants that control for differences in dispersion across de-
bris flow sites. The loss function includes the impact angle
(A), flow depth (D), flow velocity (V ), and their interaction
(D · V ), which we take as an intensity indicator. We use log
transformations to reduce skew in the distribution of these
predictors. Note that logD · logV is a non-linear transforma-
tion of logD ·V 2, which others have proposed as a surrogate

measure of impact force (Jakob et al., 2012; Kreibich et al.,
2009).

Regression results reported in Table 2 indicate that the
expected loss is significantly determined by the four in-
tensity predictors. The coefficient on the logged impact
angle is positive, but the effect of a larger impact an-
gle on the loss function is negligibly small. To see this,
consider two impact angles A1 and A2 = 2 · A1. Since
the predictor is log-transformed, the effect of doubling
the impact angle while keeping everything else constant
is 0.224 · (logA2 − logA1) = 0.224 · logA2/A1 ≈ 0.155. In
other words, the loss function increases by only 0.155 units
for every doubling of the impact angle.

Coefficients on the flow depth and velocity are both neg-
ative, but the coefficient on the interaction term is posi-
tive. This implies that proportional losses grow with in-
creasing flow depth (∂y/∂D > 0) and velocity (∂y/∂V > 0),
but the growth rate is marginally decreasing (∂2y/∂D2 < 0,
∂2y/∂V 2 < 0). In Fig. 3, we visualize this relationship by
plotting the proportional losses predicted from Model I for
debris flow depths and velocities typically assumed in the
design of local protection strategies (Egli, 2005). The reader
is warranted that D and V are positively correlated (Pear-
son’s rho = 0.26, P < 0.01), so that combinations with low
(high) velocities and large (small) depths are unlikely to be
observed in reality. Therefore, the interpretation of model
predictions for such out-of-bounds combinations is meaning-
less.

The significant intercept of the dispersion function un-
derlines that there is overdispersion in our data. Moreover,
the dispersion varies across hazard sites and is significantly
lower for the Chummerbach event, suggesting more homoge-
nous damages at this hazard site.

3.1.2 Model II

The second model specification adds site-specific and object-
specific attributes to the loss function. A likelihood-ratio test
confirms that the model fit is significantly improved by the
inclusion of the additional predictors (χ2

9df: 15.8, P < 0.05).
No differences are observed across the five hazard sites. With
the exception of the insignificant coefficient on the impact
angle, coefficient estimates on the intensity predictors are
similar to those obtained with Model I. This suggests site-
specific factors in Model II do not have a strong confound-
ing relationship with the process intensity but help to explain
variability in the data.

Coefficient estimates on object-specific characteristics im-
ply that proportional losses at industrial buildings are signif-
icantly larger than those observed for residential buildings,
while proportional losses at agricultural buildings are statis-
tically not different from those observed for residential build-
ings. Concrete buildings are significantly less vulnerable to
debris flow damages, as are buildings that had local protec-
tion measures installed.

www.nat-hazards-earth-syst-sci.net/13/2147/2013/ Nat. Hazards Earth Syst. Sci., 13, 2147–2156, 2013
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Table 2. Regression results of different DGLM specifications; standard errors are reported in brackets.

Model Ia Model IIa Model IIIa
L

os
s

fu
nc

tio
n

Intercept 8.001 (7.99) 10.784 (8.89) 15.021 (9.53)
Hazard site (default: Saxetbach)

Zälgbach – –0.096 (0.30) –0.467∗∗ (0.24)
Sachseln – –0.111 (0.36) –0.126 (0.38)
Chummerbach – –0.046 (0.44) 0.194 (0.32)
Val Valdun – 0.412 (0.38) –0.446 (0.38)

Runout roughness (default: open land)
Built-over land – – 0.351 (0.29)
Forest land – – 0.239 (0.65)
Road – – –0.187 (0.23)

Runout slope (default: less than 2 % inclination)
2–5 % inclination – – 1.322∗∗∗ (0.41)
5–10 % inclination – – 1.452∗∗∗ (0.43)
More than 10 % inclination – 1.181∗∗ (0.46)

Usage type (default: residential building)
Agricultural building – 0.407 (0.51) 1.214∗∗∗ (0.43)
Industrial building – 0.395∗ (0.24) 0.380∗ (0.22)

Construction type (default: mixed construction)
Lightweight construction – –0.070 (0.34) –0.204 (0.36)
Concrete construction – –0.669∗∗ (0.31) –0.639∗∗∗ (0.24)

Building properties
Local protection measures – –0.608∗ (0.33) –0.742∗∗∗ (0.25)
Log of impact angle 0.224∗∗ (0.09) 0.018 (0.09) 0.099 (0.07)

Process intensity
Log of flow depth [cm] –3.579∗ (1.93) –4.342∗∗ (2.12) –5.131∗∗ (2.20)
Log of flow velocity [cms−1] –2.871∗∗ (1.47) –3.091∗ (1.61) –4.257∗∗ (1.74)
Log of flow velocity × log of flow depth [cm2 s−1] 0.853∗ (0.35) 0.960∗∗ (0.38) 1.124∗∗∗ (0.41)

D
is

pe
rs

io
n

fu
nc

tio
n

Intercept 3.980∗∗∗ (0.25) 3.840∗∗∗ (0.25) 57.769∗∗∗ (10.51)
Hazard site (default: Saxetbach)

Zälgbach –0.272 (0.32) –0.125 (0.32) –0.064 (0.33)
Sachseln –0.667 (0.45) –1.068∗∗ (0.45) 0.127 (0.45)
Chummerbach –1.236∗∗∗ (0.46) –0.953∗∗ (0.46) –0.987∗∗ (0.50)
Val Valdun 0.049 (0.38) –0.060 (0.38) 0.154 (0.41)

Process intensity
Log of flow depth [cm] –13.010∗∗∗ (2.48)
Log of flow velocity [cms−1] –10.463∗∗∗ (1.94)
Log of flow velocity × log of flow depth [cm2 s−1] 2.500∗∗∗ (0.46)

M
od

el
pr

op
er

tie
s Log likelihood at convergence –593.3 –585.4 –557.4

McFadden’s pseudo-R2 0.08 0.10 0.14

Mean absolute prediction errorb 0.109 0.109 0.110

a Significance coding for Wald tests on coefficient estimates: ∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1; b see the description in Sect. 3.2.

With Eq. (1) we can study how much the construction type,
the usage purpose, or the implementation of local protec-
tion measures reduces or increases the expected proportional
loss. As an illustrative example, consider two buildings of
the same type and value but one is protected by sheet pilings,
while the other is not. The risk ratio is RR

[
x′

= protection
]
=

0.62(CI : 0.42,0.89), meaning that we expect a ∼ 38 %
smaller loss at the protected building. Similar risk ratios for
other predictors of interest are reported in Table 3.

3.1.3 Model III

This specification includes all available information in the
loss function. Additionally, we amend the dispersion func-
tion with predictors of the flow height, flow velocity, and
their interaction. In terms of statistical fit, the improve-
ment over Model II is significant (χ2

10df: 55.9, P < 0.001).
This improvement is largely due to the improved capture of
heterogeneity in the dispersion function. Inclusion of the in-
tensity predictors into the dispersion function accounts for
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Fig. 3. Proportional loss predictions by Model I for commonly ob-
served debris flow depths and velocities. To construct this plot, the
impact angle was fixed at the sample means of 64◦.

variation in dispersion at the building level rather than the
hazard site level.

The site-specific constants indicate that losses observed
at the Zälgbach site are significantly smaller than those ob-
served at the other hazard sites. Once we control for event-
specific factors, the other sites are statistically not different
from each other. Information about the runout cover is not
predictive. However, proportional losses increase with runout
steepness.

Results of Model III support the finding that industrial
buildings are more vulnerable to debris flow damages than
residential buildings. Controlling for additional dispersion in
the data, we now also find a significant effect on agricultural
buildings. Concrete buildings and buildings where local pro-
tection measures were installed are significantly less vulner-
able to debris flows than mixed or light constructions (Ta-
ble 3). Coefficient estimates on the intensity predictors are
again similar to those obtained with Models I and II, con-
firming that they are the most important loss predictors.

3.2 Prediction accuracy

We use leave-one-out cross validation (LOOCV) to assess
the out-of-sample prediction accuracy of our models (Wilks,
2006). This resampling procedure repeatedly fits the DGLM
using N −1 observations as training set to make a prediction
for the left-out observation. Then, the predicted loss for this
observation is compared to the observed loss and prediction
accuracy is measured in terms of the mean absolute predic-
tion error across every observation.

The mean absolute prediction errors for Models I–III are
0.108, 0.109, and 0.110, respectively (Table 2). This suggests
that loss predictions based on the three models are on average

Fig. 4. Kernel density plot (Gaussian kernel, bandwidth: 1) of ob-
served versus predicted proportional losses for the 132 damaged
buildings.

within a range of ±11 % around the observed loss size and
that none of the models outperforms the others in terms of
prediction quality. This is, however, not to be confused with
the statistical fit, which measures the explanatory power of
the included predictors.

To see whether there are ranges within the [0, 1] interval
where the predictions are particularly inaccurate, we used
Models I–III to predict the proportional losses on the full
dataset, and compared predicted losses with observed losses.
Figure 4 illustrates that all three models do a decent job of
predicting small to medium losses. However, the models do
not predict large losses or even total losses. We conclude that
while our approach is useful to predict damages of common
sizes, it is less suited to predict extreme damages. By defini-
tion, these are rare events and we miss sufficient observations
in the extreme range of damages that would allow for us to
better calibrate the model.

4 Conclusions

The assessment of potential damages is a key ingredient
of any risk assessment study. As risk-based decisions play
an ever more important role in natural hazard management
(Bründl et al., 2009), there has been growing interest in the
development of predictive loss functions that could be used
to quantify damage potentials for various natural hazards.

In this paper, we have outlined a framework to esti-
mate proportional loss functions for debris flow events. The
framework lends itself to the analysis of other hydrological
hazards. Unlike standard regression models, the presented
DGLM can deal with problems of overdispersion, and is
therefore a valuable tool for empirical analyses of natural
hazard damages.

We have used the DGLM to analyze what is maybe the
richest dataset on debris flow damages to date in Switzerland.
We find that flow depth, flow velocity, and their interaction
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Table 3. Risk ratios for factors characterizing the elements at risk; 95 % confidence intervals are reported in brackets.

Model II Model III

Usage type (default: residential building)
Agricultural building 1.364 (CI: 1.042, 1.787) 2.383 (CI: 1.122, 5.059)
Industrial building 1.349 (CI: 1.045, 1.742) 1.315 (CI: 0.997, 1.734)

Construction type (default: mixed construction)
Lightweight construction 0.947 (CI: 0.903, 0.994) 0.862 (CI: 0.742, 1.002)
Concrete construction 0.584 (CI: 0.397, 0.859) 0.610 (CI: 0.418, 0.890)

Local protection measures 0.615 (CI: 0.424, 0.894) 0.563 (CI: 0.362, 0.875)

CI is the confidence interval.

are the most meaningful predictors of relative damage. Indus-
trial and agricultural buildings tend to be more vulnerable to
debris flows than residential buildings. This is most likely
due to different value concentrations of the ground floor.
Many agricultural and industrial buildings are single-story
buildings, which by nature have an increased damage poten-
tial within the reach of debris flow surges. Residential build-
ings, in contrast, often have their values distributed over sev-
eral stories so that the damage potential in the ground floor is
relatively small compared to the total damage potential. This
underlines the importance of controlling for overdispersion
at the building level.

We find some insightful results with regard to building
characteristics. These are of particular interest because prop-
erty owners can alter them through self-protection efforts.
Using the risk ratios reported in Table 3, the damage to
a building without local protection measures such as sheet
pilings or concrete enforcements is predicted to be 1.6–1.8
times as high as the damage to an otherwise identical non-
protected building. Similarly, the damage predicted to a con-
crete building is only about 60 % of the damage expected
to an otherwise identical non-concrete building, suggesting
that structural adaptation to the local environment is an ef-
fective means to reduce debris flow damages (Margreth and
Romang, 2010).

How accurate are the results? As a LOOCV analysis has
confirmed, proportional loss predictions generated with the
DGLM approach are quite precise, with mean absolute pre-
diction errors in the range of 11 %. From a practical point
of view, this prediction quality is more than sufficient as the
uncertainty introduced by the loss predictions is far smaller
than that of other parameters entering the risk assessment for
debris flow (Schaub and Bründl, 2010).

How do the results compare to the proportional loss func-
tions found in recent studies by Totschnig et al. (2011) and
Totschnig and Fuchs (2013)? We did some rough calcula-
tions comparing the proportional loss function obtained from
our Model I with the best-fitting loss functions reported in
Eq. (7) of Totschnig et al. (2011) and Eq. (3) of Totschnig
and Fuchs (2013), respectively. If we keep flow velocity and
impact angle fixed at sample means, we obtain loss predic-
tions that are about 50 % lower than those of Totschnig et al.
(2011); if we assume a flow velocity of 7 ms−1 (the upper

range of the values Egli (2005) proposed for debris flows in
flat terrain), loss predictions obtained from both models are
within a range of 10 % (see Appendix A2 for a visualization).
We conclude that, under reasonable assumptions, our loss
predictions are in close agreement with those of Totschnig
et al. (2011) and Totschnig and Fuchs (2013).

What is the practical value of the results? We may think of
several ways to make use of proportional loss predictions by
our approach. Here are but two examples. First, modern GIS
techniques allow for combining proportional loss functions
with hazard maps and databases of insurance contracts to cre-
ate proper risk maps. Such risk maps could help hazard man-
agers to identify at risk areas and to prioritize among mitiga-
tion needs based on the actual damage potential. Second, pri-
vate property insurers could use the loss predictions to offer
individualized contracts that better reflect each homeowner’s
risk. This would lead to a reduction in the overall volume of
premiums paid by insurance holders because fair pricing re-
duces “moral hazard” – the tendency of the most-exposed in-
surance holders not to take self-protection measures, as there
are no incentives to do so (Raschky and Weck-Hannemann,
2007). State building insurers (in 19 cantons of Switzerland)
could use our results to get an overview as to where house
owners should consider building local protection measures.

In conclusion, we believe that the presented approach
bears great potential for the prediction of natural hazard dam-
ages. Needless to say that, with more data, we will be able
to better calibrate the proportional loss functions and to im-
prove their prediction accuracy. It is therefore of great im-
portance to build up and maintain central damage databases
– a very good example is the HOWAS 21 database for
flood losses (Thieken et al., 2009) – that allow for storing
of event-specific information. Our analysis emphasizes that
flow depths and heights, observed damages, and total values
of damaged buildings are of particular interest.

Appendix A

A1 Derivation of Eq. (2) by the delta method

The variance of the log-transformed risk ratio is a non-linear
function, and hence has to be approximated. A common
method to do so is the delta method; see, e.g., Fox (2008).
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Before we derive the variance of log
(
RR[x′

]
)
, we introduce

a more compact notation. Define

ȳj ≡ E
[
y|x′

= j,X̄′
]

with j = {0,1},

yij ≡ yi |x
′
= j,X̄′

∀ i ∈ N and j = {0,1},

and

f ≡ log ȳ1/ȳ0 = log ȳ1 − log ȳ0.

By the delta method, the variance of the non-linear function
f can be approximated as

Var
[
logRR(x′)

]
= ∇f 6 ∇f T ,

where ∇f denotes the gradient vector

∇f =

[
∂f

∂ȳ1

∂f

∂ȳ0

]
=

[
1

ȳ1

1

ȳ0

]
,

and 6 denotes the variance–covariance matrix

6 = N−1[∑N
i=1 (yi1−ȳ1)

2
−

∑N
i=1 (yi0−ȳ0)(yi1−ȳ1)

−
∑N

i=1 (yi1−ȳ1)(yi0−ȳ0)
∑N

i=1 (yi0−ȳ0)
2

]
.

By inserting, we have

∇f 6 ∇f T
=

[
1

ȳ1

1

ȳ0

]
· N−1

[∑N
i=1 (yi1−ȳ1)

2
−

∑N
i=1 (yi0−ȳ0)(yi1−ȳ1)

−
∑N

i=1 (yi1−ȳ1)(yi0−ȳ0)
∑N

i=1 (yi0−ȳ0)
2

]
[

1
ȳ1
1
ȳ0

]
= N−1

[∑N
i=1 (yi1 − ȳ1)

2

ȳ2
1

+

∑N
i=1 (yi0 − ȳ0)

2

ȳ2
0

−2

∑N
i=1 (yi1 − ȳ1)(yi0 − ȳ0)

ȳ1ȳ0

]
=

Var[yi1]

ȳ2
1

+
Var[yi0]

ȳ2
0

−2
Cov[yi1,yi0]

ȳ1ȳ0
,

which is equivalent to Eq. (2) in the main text.

A2 Visual comparison with other proportional loss
functions

Fig. A1. Comparison of the proportional loss (PL) function of
Model I (evaluated at V = 7 ms−1) with the best-fitting PL func-
tions of Totschnig et al. (2011: Eq. 7) and Totschnig and Fuchs
(2013, Eq. 3). PL is the proportional loss.
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