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High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were mea-
sured that provided the time scale and a temperature proxy after correlation to NorthGRIP.

(1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr
BP, with a primary succession on a decadal to centennial time scale. The succession between ca
15,600 and 13,000 yr BP included:

(1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP)
(1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr,
(1.3.) A sequence of population increases ofHippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr

BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris
(ca. 13,830 yr BP).

(2) Biological processes: Plants responded to the rapid increase of summer temperatures on all
organisational levels:

(2.1) Individuals may have produced more pollen (e.g. Juniperus);
(2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and
(2.3) Populations changed their biogeographical range and may show migrational lags.
(2.4) Plant communities changed in their composition because the species pools changed through immigra-

tion and (local) extinction. Some plant communities may have been without modern analogue.
These mechanisms require increasing amounts of time.

(2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales.
Besides competition and facilitation, nitrogen fixation is discussed.

(3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O,
resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone,
GI-1d) and the Gerzensee Oscillation (GI-1b).

(4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic
diversity up to the time of the major Pinus expansion.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 
mmann).

-ND license. 
1. Introduction

The aim of this study is to understand better the potential
responses of flora and vegetation to rapidly rising temperatures. We
studied the transition from Oldest Dryas to Bølling in the sediments
of Gerzensee (Switzerland) at a high sampling resolution (for both
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stable isotopes and pollen) and with a tightly constrained timescale
(from NGRIP, see Rasmussen et al. (2006), applied to Gerzensee by
van Raden et al., 2013–this issue).

We ask the following questions:

(1) What were the dynamics of vegetation development under the
strong and rapid climatic warming just after 14,685 yr BP?

(2) How did climatic warming influence the vegetation responses
on the levels of productivity (e.g. of pollen), plant populations,
migrations, and interactions within ecosystems?

(3) Did any vegetation changes correspond to the minor climatic
oscillations recorded by oxygen isotopes within the Late-
Glacial Interstadial?

(4) How did palynological richness change under the processes of
primary succession?

Although the Late-Glacial vegetation history on the Swiss Plateau
is well known we can address these questions with the new data,
which are exceptional because of the high temporal resolution and
the chronological constraint, which allow us to compare the
decadal- to centennial-scale variability of the pollen record with inde-
pendent climatological evidence (i.e. the δ18O-record).

Even if the classical terms Oldest Dryas, Bølling, and Allerød are
sometimes considered “historical baggage”, we use them here as
biozones defined by Welten (1982). Provided that they are well
defined, they help in communication because they are also used
widely among geochemists and physicists working on ice cores or
marine cores (e.g. Clark et al., 2001; Seierstad et al., 2005; Stanford et
al., 2011). In addition, we use in places the Greenland terminology for
late-glacial climatic events as proposed by Björck et al. (1998) and
Lowe et al. (2008).
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Fig. 1. Generalized map of the natural potential vegetation of Switzerland showing the posi
late-glacial sequences are also situated in the colline (to sub-montane) belt of beech forests
Lobsigensee, Ro for Rotsee, S for Soppensee, and Sc for Schleinsee (Gaillard, 1984; Ammann,
Map based on Brzeziecki et al., 1993: Bright green: various types of beech forests. Blue: be
Black: above timberline. Gray: various forests. Light blue: water. Yellow: urban areas. Turq
Unfortunately, plant macroremains in the sediment could not be
studied because they were too scarce in the littoral lake marl exam-
ined, and for the present study we had only one core of 8 cm diame-
ter (labelled GEJK). Early late-glacial plant macroremains elsewhere
on the Swiss Plateau have been analysed either in profundal cores
e.g. (Weber, 1977, 1980a,b), in delta sediments (e.g. at Vidy by
Weber, 1979, 1980c) or, if on lake-marl terraces, then with very
large samples either taken from open pits e.g. at Lobsigensee
(Ammann and Tobolski, 1983), in 4–5 cm thick samples (e.g. at
Rotsee, Lotter, 1988), or in correlated parallel cores, at Gerzensee
around the Younger Dryas (Tobolski and Ammann, 2000). Such
large samples were then even usable for the analysis of Coleoptera
(Lemdahl, 2000). Fortunately, important features such as the shift
from Betula nana to tree birches at the transition from Oldest Dryas
to Bølling are very consistent in the macrofossil records of the Swiss
Plateau (see Fig. 1: at all sites mentioned plant macroremains were
studied for intervals before the Younger Dryas, except Gerzensee).

2. Materials and methods

The site: Gerzensee is a kettle-hole lake on the Swiss Plateau at
603 m asl (46° 49′ 56.95″ N, 7° 33′ 00.63″ E, Fig. 1). It is located on
an interfluve between the rivers Aare and Gürbe, on till of the Aare
glacier deposited during the Last Glaciation. The lake surface today
has an area of 25.16 ha, but it was probably double that size during
the Late-Glacial (Eicher, 1979). Its maximum water depth at present
is 10.7 m. It has no major inflow or outflow. The present climate is
temperate–humid, with mean July temperature of 17.5 °C, mean
January temperature of −1.0 °C, mean annual temperature of 8.2 °C,
and an annual precipitation of about 1028 mm (data from the meteo-
rological station of Bern–Liebefeld, 15 km from the lake). Today's
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tion of Gerzensee G in the belt of the beech forest. Five other sites with high-resolution
: Ra for Marais de Rances, M for Grand Marais, T for Le Tronchet, F for Faulensee, L for
1989; Lotter, 1988; Lotter et al., 1996; Lotter, 1999; Blockley et al., 2008; Müller, 1962).
ech-fir and spruce forests. Dark green: pine forests. Orange: Larch-stone-pine forests.
uoise: wetlands.
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Fig. 2. Pollen diagram in percentages for Gerzensee: from the Oldest Dryas to the Lateglacial interstadial (Bølling and Allerød) and to the beginning of the Younger Dryas, selected pollen types only, on the time-scale of GICC-05 in BP
(van Raden et al., this issue). Asterisks indicate minor peaks in non-arboreal pollen-types.
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vegetation is dominated by agricultural fields and meadows, and the
relict forests consist mainly of beech. The natural potential vegetation
would consist of various types of beech forest (Brzeziecki et al., 1993).

Coring: In the reed belt (Phragmites australis) of the littoral zone
near the eastern shore of the lake and near the sites of the cores stud-
ied by Eicher and Siegenthaler (1976), two adjacent cores GEJ and
GEK in metre-long segments were taken in September 2000 with a
Streif modification of a Livingstone corer of 8 cm diameter (Merkt
and Streif, 1970). The twin cores were horizontally less than 50 cm
apart and vertically shifted by 50 cm in their core sections (Wright,
1991). The linked core labelled GEJK consists of core GEK from the
LST (272 cm) down to 329 cm, and the core GEJ from 330 cm
down to 414 cm. The connection was checked by overlapping
oxygen-isotope measurements on both cores.

Sampling and preparation: Samples of 1 cm3 were taken at 0.5 cm
intervals for the period of afforestation (380–360 cm), at 1 cm inter-
vals before (390–380 cm) and after this (360–250 cm), and at 2 cm
from 414–390 cm. Preparation followed standard procedures;
Lycopodium tablets were added for the determination of pollen
concentrations (Stockmarr, 1971).

Pollen analysis: A Leitz microscope under 400× magnification was
used for analysis. Pollen-morphological references included the
Northwest European Pollen Flora (Punt, 1976; Punt and Clarke,
1980, 1981, 1984; Punt et al., 1988, 1995; Moore et al., 1991; and
Punt and Blackmore, 1991). About 200 pollen types were identified.
Between 414 cm and 270 cm, 153 pollen samples were analysed.
The average pollen sum is >1000 (with a mean of 1069).

At the marker horizon of the Laacher See Tephra (LST), an addi-
tional 28 samples reaching into the Younger Dryas were added from
the earlier study of Wick (2000), made on the core GEAB. The onset
of the Younger Dryas has an age of 12,877 yr BP in the isotope stratig-
raphy and of 12,804 yr BP in the pollen stratigraphy (i.e. a decrease of
Betula, increase of NAP; ages according to van Raden et al., 2013–this
issue, for both GEJK and GEAB; see Fig. 3).

The pollen diagram: Pollen results are presented as percentages of
the terrestrial pollen sum and as influx (grains mm−2 yr−1) with use
of TILIA and TILIA-Graph 2.b.0.4 and TGView 2.0.2 (Figs. 2 and 3). Loss
on ignition according to Heiri et al. (2001) is shown in Fig. 4.

Zonation: The pollen diagram was zoned by “optimal partitioning
based on partial least squares” (Birks and Gordon, 1985), as implemented
in the programme ZONE, developed by Steve Juggins, and partitionswere
compared with the broken stick model (Bennett, 1996; Birks, 1998) to
find statistically significant zones. The local pollen-assemblage zones
(PAZ) are labelled GRZ for Gerzensee, with a subscript for the type of
stratigraphy, i.e. GRZpol for local pollen zones and as GRZ ibulk for isotope
zones (van Raden et al., 2013–this issue). To avoid too many abbrevia-
tions we use “zone” for PAZ. We also use the regional biozones Oldest
Dryas, Bølling, Allerød, and Younger Dryas as defined by Welten (1982)
and the regional pollen assemblage zones (RPAZ) as defined by
Ammann and Lotter (1989), Ammann et al. (1994, 1996) and Lotter et
al. (1992b) (see Table 1).

The chronology is based on the correlation of the oxygen-isotope ra-
tios of bulk sediments with those of NGRIP (van Raden et al., 2013–this
issue). Ages are given according to the GICC-05 time scale but as years
BP (i.e. before AD 1950) in order to allow comparison with terrestrial
and marine radiocarbon dates, which are expressed as years before
1950 (Rasmussen et al., 2006).We donot label the ages “cal” BP because
they are not based on calibrated radiocarbon datings, and we cannot
claim that we can provide “calendar years” BP in the Late-Glacial. Also,
we do not round the ages, becausewe are primarily interested in age dif-
ferences (i.e. durations of pollen changes).

Numerical treatment: Principal component analysis (PCA) was
implemented with CANOCO (ter Braak, 1990). Percentage data were
transformed to square roots, and sample distances were based on a
covariance matrix between variables. PCA was determined indepen-
dently for the data sets 241–414 cm and 336–414 cm (Fig. 4).
Rates-of-change estimates were implemented with RATEPOL
(J.M. Line and H.J.B. Birks, unpublished software, 1994). The 100
most abundant pollen types were used, the maximum accepted in
RATEPOL. Artificial sub-samples with intervals of 35 yr were created
by weighted linear interpolation between adjacent pollen sub-
samples. The rate of change in time periods of 70 yr was estimated,
with starting times 17.5 yr apart. The results were smoothed with a
weighted running mean over 5 samples (Fig. 4). For reliable results,
the intervals between artificial sub-samples must be at least the max-
imum interval encountered among the pollen sub-samples (which is
ca. 33 yr, for samples 2 cm apart), and the time periods for
rate-of-change estimates must be at least twice that of the inter-
polated sub-samples.

As shown by Birks (2007) and Birks and Birks (2008) the amount
of compositional change in pollen-stratigraphical data (species
turn-over) can be estimated by detrended canonical correspondence
analysis (DCCA), with sample age as the only external constraint.
Percentages were transformed to square roots, rare taxa were not
downweighted, detrending was done by segments, and non-linear
scaling was applied. Some of the advantages of this approach are
that DCCA can handle percentages, that the only constraint is sample
age, and that the results are given in standard deviations, which is an
ecologically interpretable unit (see Fig. 4).

Pollen richness as a proxy for plant diversity was estimated in
two ways (Fig. 4): (1) based on a fixed pollen sum (here, 515), being
the number of all pollen types that would have been encountered
with this sum (implemented with RAREPOLL based on Birks and Line
(1992), and (2) based on accumulation rates, being the number of pol-
len types deposited each year on a fixed surface (here 10 mm²) (van
der Knaap, 2009). Consecutive sub-samples were added together in
a few cases in order to obtain the required surface. The results were
smoothed with a weighted running mean over 5 samples.

To assess population growth, for selected taxa (Pinus and
Juniperus) we scaled the influx values Ns(ti) of taxon s at the time
points ti with their maxima and smoothed them with a temporal-
distance-weighted interpolation with smoothing factor

β:Ns tið Þ ¼
Xiþ3

j¼i−3

Ns tj
� �

β tj−ti
��� ���þ 1

=
Xiþ3

j¼i−3

1

β tj−ti
��� ���þ 1

:

The population change of taxon s can generally be described
by the exponential growth: dNs tð Þ

dt ¼ αs tð Þ⋅Ns tð Þ;α tð Þ ¼ r0;s⋅f s Na tð Þ;ð
Env tð ÞÞ. The intrinsic growth rate αs(t) describes the activity of the
population dynamics. It comprises a fixed net reproductive rate r0
and a function that depends on the environment Env(t) and the
same and other populations Na(t). Assuming α to be constant, it can
be estimated from subsequent influx values by

Ns tiþ1
� � ¼ Ns tið Þ⋅eα tiþ1−tið Þ⇒α ¼ ln

Ns tiþ1
� �

Ns tið Þ
� �

= tiþ1−ti
� �

:

Changes in the resulting α values indicate changes either in the envi-
ronmental drivers or in the interactions with the same or other species,
such as competition or facilitation. Constant positive α indicates expo-
nential growth, 0 = no change, and negative values a decrease of the
population. Increasing positive α indicates hyperexponential growth.
3. Results

3.1. Lithology

The coring site lies on the former littoral terrace, where during the
Late-Glacial with a higher lake level the sediment was largely lake



Fig. 3. Pollen diagram for Gerzensee as percentages (curves) and pollen accumulation rates (PAR, “influx”, as histograms), selected taxa, combined with the oxygen isotopes, on the
time scale of GICC-05 in BP (van Raden et al., this issue). The scales for the pollen are chosen in such a way that the numbers are valid for both percentages and influx (as pollen
grains per square millimetre and per year). Oxygen isotopes according to van Raden et al., this issue.
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marl (not laminated); this is underlain by silt. The lithostratigraphy is as
follows:

270–ca 370 cm lake marl, beige; a dark band at 272 cm is Laacher
See Tephra (LST)

ca 370–415 cm lake marl with some silt, beige
415–510 cm silt with some clay, blue-grey; coarse sand with stones

near the bottom (i.e. the surface of the till)

The results of loss-on-ignition (LOI) are shown in Fig. 4.

3.2. Temporal resolution

Sampling resolution during the afforestation period is about
8–9 yr, and before and after afforestation about 16–17 yr.
3.3. Pollen stratigraphy and vegetation history

The major vegetational changes are the transition from shrub-
tundra to birch forest and then the immigration of pine, summarized
as the following local pollen assemblage zones (Figs. 2 and 3, Table 1).

3.3.1. Local Zone GRZpol-1: Shrub-tundra
This pollen zone is equivalent to the last part of the Greenland

event GS-2a or Oldest Dryas. Depth limits in the core GEJK are
414–373.25 cm, ages ca 15,676–14,665 yr BP, duration possibly
1000 yr or more.

Non-arboreal pollen (NAP) dominates, especially Poaceae, Artemisia,
Helianthemum, Thalictrum, Chenopodiaceae, and Gypsophila repens-type.

image of Fig.�3


Fig. 4. Quantitative estimates of palynological change from the late Oldest Dryas to the onset of the Younger Dryas. Changes in the pollen record are summarized in four and compared to changes in the oxygen-isotopes. From left to
right: Oxygen isotopes, diamonds before 12,970 BP for stacked values, dots after 12,970 BP for measured values (see van Raden et al., this issue). Palynological changes as (1 tes of change (smoothed); as (2) scores on the first axis of a PCA
(calculated separately for the whole period and for the older period of the afforestation, about 15,300 to 14,000 BP); as (3) the estimate of pollen diversity presented in ways, i.e. as percentages and as PAR (or influx) (based on rar-
efaction analysis, according to Birks and Line, 1992); and finally (4) as compositional turnover estimated by DCCA and expressed in units of standard deviation. Interpre ns are given in the text (Section 4).
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Table 1
Chronology of the late-glacial local and regional pollen assemblage zones PAZ at Gerzensee as inferred from the correlation between the oxygen-isotope records of Gerzensee and
NGRIP (van Raden et al., this issue), given on the timescale of GICC-05 in years before AD 1950 (Rasmussen et al., 2006). Asterisks at the level of the Older Dryas/Aegelsee oscillation
indicate that this oscillation is more pronounced at higher altitudes.
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Ephedra distachya-type is nearly continuous, and Ephedra fragilis-type is
frequent after about 14,815 yr BP. The pollen richness estimated on a
fixed sum is highest in this zone and decreases in the next zone with af-
forestation, whereas the accumulation-based pollen richness remains
about constant. Among woody taxa, Betula, Salix, Hippophaë, and
increasing values of Juniperus are most probably local, whereas Pinus
and single grains of Abies and Quercus may have come by distant
transport from south of the Alps. Reworking from interglacial
deposits may not be the source, because reworked pollen is usually
accompanied with reworked Tertiary types, which are absent here, but
which are especially important at other sites near the base of the
Oldest Dryas (Ammann and Tobolski, 1983; Gaillard, 1984a). This
zone corresponds to the third (shrub-tundra) phase of the tripartite
Oldest Dryas on the Swiss Plateau ((Ammann and Tobolski, 1983;
Gaillard, 1984a; Ammann et al., 2007; Vescovi et al., 2007). In pollen
records longer than Gerzensee the first phase (just above the till)
contains many reworked pollen grains in the blue-grey silt, and the
second phase shows many herb taxa but no shrubs (between 415 cm
and 560 cm).

Juniperus pollen (percentages and influx) suggests a tripartition of
the zone, with a tail before ca. 15,200 yr BP, an increase between
15,200 and 14,900 yr BP, and a shoulder between 14,900 and
14,685 yr BP. The first juniper stomata were found in the second
half of this shoulder at 376 cm around 14,733 yr BP. This is therefore
the minimum age for local presence, distinctly before the dramatic
rise in pollen percentages and influx around 14,665 yr BP. Already
Gaillard and Weber (1978) and Gaillard (1984a) showed that on
the western Swiss Plateau juniper pollen percentages were high
(8–37%) during the phase of shrub-tundra, with a few stomata find-
ings and high values of B. nana pollen. By analysis of plant
macroremains Gaillard (1984a) could show that besides numerous
fruits of B. nana a few tree birches (B. alba-type, i.e. B. pubescens and
B. pendula) were present during the last part of the Oldest Dryas.
Her sites of Grand Marais and Le Tronchet are at altitudes comparable
to Gerzensee (587 m asl and 715 m asl, respectively).

The regular occurrence of spores of the coprophilous fungi
Sporormiella and Cercophora-type may be a hint that large mammals
used Gerzensee as a water-hole. Potential candidates are the mammals
recovered from Late Palaeolithic sites on the Swiss Plateau, including
horse, reindeer, wisent, deer, red deer, elk, boar, and others (Nielsen,
2013–this issue). This decrease of coprophilous spores synchronous to
the shift from a herb dominated to a tree dominated vegetation resem-
bles thefindings of Jeffers et al. (2011) in south-east England around the
transition from the Late-Glacial to the Holocene.

3.3.2. Local Zone GRZpol-2: The juniper–birch forest of the Early Bølling
This pollen zone is approximately equivalent to the isotopic tran-

sition GRZibulk2 plus the first third of the Greenland event GI-1e, or
the Early Bølling (sensu Welten, 1982). Depth limits in the core
GEJK are 373.25–362.25 cm and ages ca 14,665–14,443 yr BP, dura-
tion about 220 yr.

The transition from Stadial GS-2 (Oldest Dryas) to Interstadial GI-1
(Bølling–Allerød) is marked by the rapid shift in oxygen isotopes
(3.5‰) within about 112 yr (from about 14,672 to 14,560 yr BP) coin-
cidingwith the ecologically important process of afforestation (the “juni-
per jump” of Denton et al., 2006). All herb pollen types decline rapidly as
percentages, but some do not as influx. Not only do the “classical” taxa of
the steppe-tundra of the Oldest Dryas decrease, such as Artemisia,
Helianthemum, Ephedra, Gramineae, Cyperaceae, and Chenopodiaceae,
but also other heliophilous taxa, e.g. Thalictrum, Plantago alpina-type,
Cichorioideae, Rubiaceae, Rumex acetosa-type, Saxifraga oppositifolia-
type, Cruciferae, and several types of Apiaceae.

Unlabelled image


Fig. 5. Steps and levels of the Pinus dynamics in relation to the record of oxygen-isotopes and to the rate-of-change in the pollen record. As in Fig. 3 the scale for Pinus pollen stands
for both percentages and influx (per square millimetre and year).
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During this transition period Juniperus pollen increases extremely
rapidly in both percentages and influx with an intrinsic growth rate
of α=0.012/year (see Fig. 6). Hippophaë develops after Juniperus
with a lag of about 50 yr (onset of Juniperus rise at ca. 14,665 yr BP,
onset of Hippophaë rise ca. 14,615 yr BP). The first traces of Populus
are found towards the end of the zone. Earlier studies based on pollen
percentages only suggested that the herbaceous plant cover declined
rapidly during this phase due to shading-out by the forest that be-
came rapidly denser (Iversen, 1954; Welten, 1982). But already
Gaillard (1984a) and Ammann and Tobolski (1983), as well as our
present data, show that influx of herb pollen did not decrease, mean-
ing that the decline in herb percentage might be an artefact of closed
data. Neither percentages nor influx can record patches free of any
vegetation – and those most probably became much rarer (see de-
crease of minerogenic input estimated from LOI at 950 °C in Fig. 4).
Moreover, the accumulation-based pollen richness indicates that
the number of pollen taxa did not decrease (Fig. 4). It is therefore
likely that the increasing shrubs did not form closed stands, so that
sufficient light remained for the herbs. The shrubs may even have
provided additional shelter against wind and excessive insolation
(i.e. protection against desiccation), and also the shrub litter (and
initial soil formation) may have favoured herbs, which could grow
much taller when shrubs arrived. For a possible facilitation of
nitrogen-fixers by Juniperus see Section 4.5.5.1.

Just as with herbs, the seeming depression of Betula is a percentage
effect not found in influx (Fig. 3). Plant macrofossils were not analysed
here, but they were studied at eight other sites on the Swiss Plateau
and also just north of Lake Constance. All these sites indicate a shift
from predominant dwarf birch to predominant tree birches for this
same transition (Lang, 1952a,b; Weber, 1977, 1980a,b,c; Ammann and
Tobolski, 1983; Gaillard, 1983; Lotter, 1988). Just as with Betula, Salix
percentages decrease but influx increases.

The higher sampling resolution applied in this study provides better
insights into the sequence of events during this transition (starting
about 50 yr before the zone limit covering about 45 yr between 14,710
and 14,665 yr BP). We can summarize the four steps of the sequence:

1. Sharp declines of Artemisia and Chenopodiaceae in both percent-
ages and influx suggest population declines in these typical steppe
taxa. Gramineae, Cyperaceae, Thalictrum, and Helianthemum per-
centages also decline, but their influx remains more or less con-
stant, suggesting minor declines or stable conditions. Several



Table 2
Relationships between the isotopic zones GRZibulk-1 to GRZibulk-7 and the population dynamics of the six major woody taxa during the early Late-Glacial at Gerzensee: Juniperus,
Hippophaë, Salix, Betula (tree taxa), Populus, and Pinus. Relationship between isotopic zones GRZibulk and populations of woody taxa during the millennium of the first forests of
Bølling & Allerød.
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other taxa (e.g. P. alpina-type) show a rapid decline in percentages
but then a short period of stable influx after 20–30 yr, followed by
decline, suggesting slightly lagged declines. Aquatic taxa such as
Pediastrum boryanum var. longicorne also decline.

2. Sharp rises of the oxygen-isotope ratio and Juniperus pollen
(percentages and influx), along with a slight rise of Betula pollen
influx but decline in percentages.

3. A rise of Hippophaë (both percentages and influx) and Salix (only
influx).
4. A rise of Betula and decline of Juniperus (both percentages and
influx).
3.3.3. Zone GRZpol-3: The birch forests of the Late Bølling
This pollen zone is approximately equivalent to the Greenland

events GI-1e2 and GI-1e3 plus GI-1d, or Late Bølling plus Older
Dryas (sensu Welten, 1982). Depth limits are 362.25–333.5 cm, ages
ca 14,443–13,835 yr BP, a duration of about 600 yr.

Unlabelled image


Table 3
Migrational lags of terrestrial plant taxa estimated from their arrival time compared to the waterplant Myriophyllum spicatum that has similar temperature requirements. The as-
terisk in Hippophaë indicates that during the ca 300 yr between 398 cm and 386 cm the pollen was regularly found (see Fig. 2), but then the record is briefly interrupted (empirical
limits, just as absolute limits depend on the pollen sums counted per level). For continentality the value of 3 means suboceanic to subcontinental, and 4 means subcontinental. The
various ways to estimate the temperature requirements show, that for the woody taxa the conditions would have been warm enough already with the first occurrence of
Myriophyllum spicatum. Data from Oberdorfer (1990) and Brändli (1998).
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Pollen data suggest that Juniperus declined (both percentages
and influx) throughout this PAZ and that tree birches became
dominant. Hippophaë decreased, whereas Salix increased. Populus
pollen is regularly found after about 14,300 yr BP and remains im-
portant also through the next zone until about 13,700 yr BP,
suggesting local presence around Gerzensee. A comparison of
Populus occurrence with earlier pollen analyses on the Swiss
Plateau, however, is difficult, as this pollen type was often
overlooked or not preserved. Wick (2000) found it at Gerzensee
sporadically during the Allerød and regularly during the Preboreal.
On the western Swiss Plateau, Gaillard (1984a) found it already
sporadically during the Bølling, Allerød, and Younger Dryas and
then very consistently during the Preboreal (sites shown in
Fig. 1). Gaillard and Lemdahl (1994) also found in the Bølling bee-
tle remains characteristic for poplar. In contrast to the pollen, the
plant macrofossils (bud-scales and catkin-scales) can be identified
to species level. The most probable Populus species in this study is
P. tremula, because its macroremains were found in Lobsigensee
during the birch-dominated Bølling just before the expansion of
pine (thus about coeval with the present record) and in the earlier
Gerzensee core GEAB during the Allerød and Preboreal (Tobolski,
1985; Tobolski and Ammann, 2000).

In the second half of the zone, some herb pollen types show several
minor peaks either only in percentages or also in influx (Figs. 2 and 3)
suggesting minor transient re-expansion of herbs and steppic environ-
ments. Most prominent are three peaks of Gramineae and two peaks of
Artemisia, marked with asterisks on Figs. 2 and 3. The second peaks
(14,058–13,953 yr BP) coincide with the minimum in the oxygen-
isotope ratios correlated with the cool Aegelsee Oscillation or Older
Dryas (14,044–13,908 yr BP). The Aegelsee Oscillation was defined by
Lotter et al. (1992b) at Aegelsee, situated 20 km south of Gerzensee at
995 m asl. Because of the very minor pollen changes in lowland sites,
Welten (1982) and Lotter et al. (1992b) suggested that such a cool
phase could often only be recorded at higher, more sensitive altitudes.
Fig. 5 suggests that the initial population expansion of pine in the
Gerzensee areawas probably between 14,000 and 13,950 yr BP. The in-
flux of pine follows largely its percentages, with increases at the zone
boundaries and less variability within the zones, i.e. within the four
levels mentioned in Fig. 5. Betula either decreases with increasing
Pinus both in percentages and influx, or its peaks coincide with
Pinus-plateaux (levels a–d in Fig. 5). The early small peak of Pinus to-
wards the end of the Aegelsee Oscillation supports the hypothesis of
Welten (1982) and Lotter et al. (1992b) that pine actually immigrated
into the Swiss Plateau during a relatively cool phase. This level is
130 yr before the first occurrence of pine-stomata just before the
upper zone boundary, around 13,844 yr BP. This is therefore the mini-
mum age for the local presence of Pinus at Gerzensee. As summarized
in Fig. 5, already during this zone GRZpol-3 pine shows a structure la-
belled as “thin tail, first step, and level a” in both percentages and influx.
Our findings of stomata (as a proxy for needles) may fail to document
the earliest population expansions around a site, though they are reli-
able as evidence of local presence. It is interesting to note that Gaillard
and Lemdahl (1994) found in the core of Grand Marais a beetle
characteristic for coniferous trees before the first seeds and needles of
pine.

In addition the modelling results show a major increase in pine
populations during “level a” of our Fig. 5, as visualized by Lischke et al.
(2013–this issue) in their Fig. 8. These authors also discuss potential
mechanisms for the increase of pine during a cool phase and its stepwise
population growth resulting from competition and climatic oscillations.

3.3.4. Zone GRZpol-4: The birch–pine forests of the Early Allerød
This pollen zone is approximately equivalent to the Greenland

event GI-1c3 or the Early Allerød (sensu Welten, 1982). Depth limits
are 333.5–314.5 cm, ages are ca. 13,835–13,677 yr BP, duration
about 160 yr.

Among the steps of increasing pine populations as summarized in
Fig. 5., step 1 occurred between 14,070 and 13,985 yr BP, step 2 be-
tween 13,880 and 13,780 yr BP, step 3 between 13,752 an 13,738 yr
BP, and step 4 between 13,704 and 13,870 yr BP (again we emphasize
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that these are not absolute or calendar ages, but because age differ-
ences are important, we do not round the numbers). Thus step 1,
level a and step 2 last between ca. 87 and 105 yr, and the younger
steps and levels between 14 and 34 yr. Provided that out timescale
is correct we may compare these durations of 85–105 yr with the
slow population increase modelled by Lischke et al. (2013–this
issue) and the shorter durations of 14–34 yr with the age at first
flowering of pine (15–30 yr for free-standing individuals and
30–50 yr in a stand). But these suppositions need more detailed
work linking palynology with ecological modelling.

The numerically determined but statistically not significant
boundary between subzones GRZpol-4a and 4b depends mainly on
the change in dominance from Betula to Pinus pollen, thus probably
from birch–pine forest to pine–birch forest (Fig. 2).

The upper third of subzones GRZpol-4a and all of GRZpol-4b
(i.e. 330–310 cm) coincide with the core section that has very high
sediment-accumulation rates (see Figs. 3 and 4). As shown in Table 2 by
van Raden et al. (2013–this issue) the corresponding isotope zone GRZi-
bulk-7 (in Greenland GI-1c3)measures 17 cm in core GEM, but 30.5 cm in
core GEJK. There Fig. 7, which compares four neighbouring cores, shows
that to a lesser degree a higher sedimentation rate for the same period
was also found in core GE-III (Eicher, 1987) for the same period. Variabil-
ity in lacustrine sedimentation seems to be high on a subaquatic terrace
formed by lake marl (see also Section 4.3).

3.3.5. Zone GRZpol-5: The pine forests
This pollen zone is equivalent to the Greenland events GI-1c2 to

GI-1a or Late Allerød (sensu Welten, 1982). Depth limits 314.5–270 cm,
ages ca 13,677–13,000 yr BP, duration of at least 677 yr.

Betula pollen remains below 25% and Pinus pollen dominates with
60–80%, suggesting the presence of rather dense pine forests with
stands of tree birch.
The Laacher See Tephra (LST) layer at 272 cm is positioned
towards the end of the Gerzensee Oscillation, around 13,035 yr BP.
At this level we link our new data with those of Wick (2000), who in-
ferred from pollen of Gerzensee the vegetation during the Gerzensee
Oscillation and the isotopically warmer phase of GI-1a as well as
during the Younger Dryas (GS-1).

4. Discussion

The palynostratigraphy described above is similar to that found
in numerous studies on the Swiss Plateau, which can be taken as an
area typical for southern Central Europe (Welten, 1982; Ammann
and Tobolski, 1983; Gaillard, 1984a; Ammann, 1989; Lotter, 1999).
New in the present study are the high sampling resolution, the high
taxonomic resolution (200 pollen types), and especially the close
relationship with stable-isotopes (in samples at identical levels)
that allowed a chronological precision that would currently not be
possible with radiocarbon dating.

In the following we first consider different methods of quantifying
vegetational change (Fig. 4) and then address the four questions
asked in the introduction.

4.1. Rates of change

Rates-of-change estimates the amount of change in the pollen
assemblages per unit of time. They are therefore sensitive to the pre-
cision of the timescale (Lotter et al., 1992a). Here we assume that the
timescale GICC-05 developed by Rasmussen et al. (2006) and
applied to Gerzensee by van Raden et al. (2013–this issue), is valid
for our core (see Fig. 4). Rates-of-change is also sensitive to the pro-
portions (percentages) of the different pollen types in the assem-
blages (Jacobson et al., 1987; Bennett and Humphry, 1995).
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Analogous to fixed-sum estimates of pollen richness, estimates of
rate-of-change are influenced by the evenness of the pollen assem-
blage, depending mainly on the pollen types that are dominant in
the assemblage, and very little on the rare ones. Despite the clear gen-
eral link between pollen and plants or vegetation, the dominance rela-
tionships (evenness) of plant taxa in the vegetation differ to some
extent from that of their pollen types in the assemblages because of dif-
ferential pollen productivities, dispersal, and preservation. As a result,
rates of change in the pollen sequence may differ from rates of change
in the vegetation reflected by the pollen. Not surprisingly, but corrob-
orating the relation, the rates of change are generally high at or near
pollen-zone boundaries derived by a different technique (optimal
partitioning by least squares according to Birks and Gordon, 1985).

4.2. PCA

The scores on the axes of PCA are sensitive to the gradient length, or
“overall change”. We therefore calculated PCA axis 1 separately for two
data sets, one including the entire period (15,676–12,500 yr BP), the
other including the older section only (15,676–13,826 yr BP) (Fig. 4).
Both curves have a very sharp increase with the rapid warming
(14,685–14,540 yr BP). The trend of PCA axis 1 of the older section re-
sembles strongly the juniper pollen curve (Fig. 3). The two curves are
also similar for the period just before the rapid increase of juniper,
where a locally present but still small juniper population is inferred
from the pollen and stomata records (ca 15,200–14,685 yr BP).

4.3. DCCA as an estimate of compositional change (turnover)

Pollen DCCA Axis 1, constrained on sample age presented on Fig. 4,
is a relative measure of species (floristic) turnover in the landscape
(Birks, 2007; Birks and Birks, 2008). With turnover is meant the ap-
pearance of new taxa and disappearance of existing taxa. Constant
values on Axis 1 indicate that no floristic change took place, and shifts
in values indicate turnover. The axis scores given in standard devia-
tions (SD) show a uni-directional and gradual trend from the base
up to the beginning of the Younger Dryas. Values are slightly chang-
ing in zone GRZpol-1, somewhat more changing in zones GRZpol-2, 3,
and 4, and again slightly changing in zone GRZpol-5 and up to the
start of the Younger Dryas. The gradual character of the changes indi-
cates that none of the major, often abrupt shifts in dominant plant
species had a notable impact on the species turnover in the landscape.
This implies that dominants did not matter much for presence/
absence of species (see also Section 4.5.4.)

4.4. Dynamics of vegetation during afforestation between 14,700 and
14,400 yr BP

The transition from shrub-tundra to a juniper–birch woodland
(from zone GRZpol-1 to 2; Figs. 2, 3, 4) was surprisingly fast. Most like-
ly this rapid change was due to (1) the rapid rise of annual tempera-
tures (as recorded in the oxygen-isotopes: a rise of 3.6‰ in only ca
112 yr) and (2) the presence of Juniperus and tree birch already
before the rise in temperatures, so that no migrational lag occurred
for these woody taxa within this period of rapidly rising annual tem-
peratures. Pollen productivity of juniper was discussed by Iversen
(1954), Birks (1973) and Gaillard (1984a). Productivity of the pros-
trate J. communis ssp. nana seems to be much lower than of the tall
J. communis ssp. communis. Because neither pollen nor stomata can
be identified to the level of subspecies, we cannot separate them,
unless we also had analyses of macroremains. On the western
Swiss Plateau near Lake Geneva, Weber (1980b) found needles
of J. communis ssp. nana in the sediment from the Oldest Dryas
(i.e. before 14,685 yr BP) at an altitude comparable to Gerzensee.

The sequence of dominant or sub-dominant woody taxa (Juniperus
– Hippophaë – Betula – Salix) is illustrated in Figs. 2 and 3 and Tables 2
and 3. This sequence forms a pattern already described by e.g. Gaillard
(1984a, b), Lotter (1985, 1988, 1999), and Ammann (1989). Salix
is ecologically difficult to interpret because many species may
contribute to this pollen type. For the Late-Glacial Lang (1952a)
could identify about 9 different species on the basis of macrorests in
SW-Germany, and Weber (1977, 1980c) described 10 species on the
western Swiss Plateau. However, all Salix species prefer open condi-
tions and do usually not occur under a dense forest canopy. At
Gerzensee the high temporal resolution shows that the increase of
Hippophaë (in both percentages and influx) started about 50 yr later
than that of Juniperus (Table 2), and peaks and declines of the two
shrubs are not exactly synchronous: Juniperus started to decline
with the very first increase of Betula (about at 14,520 yr BP), whereas
high Hippophaë-values continued into the later rapid rise of Betula
(about 14,495 yr BP). Gaillard and Weber (1978) and Gaillard
(1984a) discussed the possibility that juniper became shaded out
by tree-birches. Here we estimate that about 25 yr lapsed between
the end of the Juniperus peak (about 14,520 yr BP) and the marked
increase of Betula (about 14,495 yr BP; see Table 2).

At Gerzensee, Larix was not found during the Late Glacial Intersta-
dial, but only later, during the Younger Dryas (as pollen and macro-
fossils; see Wick, 2000; Tobolski and Ammann, 2000). The timing of
this shift from shrub-tundra to woodland at the onset of Bølling is
characteristic for southern Central Europe but contrasts with other
European sites. It was earlier in the foothills of the southern Alps
and in Italy (Tinner et al., 1999; Vescovi et al., 2007) and later farther
north in central Germany (e.g. Eifel region, (Litt and Stebich, 1999) or
in The Netherlands (Hoek, 2001).

The intrinsic growth rates during afforestation are of special inter-
est: The influx data of Juniperus, as the most prominent example for
the dynamics of several taxa during afforestation, show a smooth in-
crease over 100–200 yr (Fig. 6a), apparently starting at the onset of
the Bølling. However, the intrinsic growth rate already fluctuated
around zero for one or two centuries. After 14,680 BP it remained
positive and increased steadily for about 100 yr, indicating that popu-
lation growth accelerated hyperexponentially during that period. The
subsequent decrease inα of Juniperus was due to intra-specific and in-
creasingly also inter-specific competition. Values of α ranged between
−0.02/year and +0.04/year. Pinus' α also shows phases with steady
increases, although frequently interrupted.

4.5. How did the rapid climatic warming at 14.67 ka BP influence the five
levels of major biological processes?

Table 2 demonstrates that no simple relationship exists between
temperature change (as recorded in oxygen isotopes) and vegetation
development. But increasing temperatures obviously favoured all five
(interlinked) levels of biological response:

(1) Individual reactions (reproduction, including pollen and seed
production but also growth as shown in tree rings).

(2) Building up or decline of plant populations.
(3) Migrations (biogeographical changes or range shifts, partly

controlled by climate or by other environmental variables,
such as soils, and partly by life-history traits).

(4) Plant communities depend i.a. on species pools and therefore
on the three levels mentioned above.

(5) Processes at the ecosystem level, including species interactions
such as competition or facilitation, pedogenesis, nutrient
cycling.

4.5.1. Level of the individual: Reproduction and pollen productivity
Changed reproduction, resulting in changed pollen production, is the

fastest response to climatic change, for it may occurwithin a year or two
(van der Knaap et al., 2010). The speed may be comparable to that of
other responses on the level of the individual, such as changes in growth
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expressed by tree-ring width (Friedrich et al., 2001). On the basis of nu-
merous sites in The Netherlands Hoek (1997a,b, 2001) considered the
rapid increase of Betula pollen around14.7 cal ka BP primarily as a result
of increased flowering, for a more-or-less closed birch forest developed
only about 700 yr later. For Gerzensee, we hypothesize that every
increase in pollen influx larger than an exponential population increase
would be caused by the improving environmental conditions, which
affected individual reproduction by more intense flowering. This
could be due to faster growth, which increased also numbers of flowers
and reduced time to first flowering, leading to higher reproduction
(as demonstrated by increasing α-values e.g. for Juniperus. All these
individual reproduction processes also result in a larger yearly pollen
production. We infer that the contribution of increasing reproduction
was especially large during the very rapid increase of juniper at the
transition from Oldest Dryas to Bølling (zone GRZpol-1 to 2).

For our understanding of the temporal processes involved we
need to remember that changes in pollen productivity cannot be
longer than the life-span of a species and are not likely to last over
more than a few years.

4.5.2. Level of population: Increases or decreases of populations
Individual reproduction is an indispensable element of population

dynamics, besides mortality and interactions within and between
populations. Bennett (1983, 1986) showed how population dynamics
can be derived from changes in pollen influx for major tree taxa. Later
Birks (1989) compiled the Holocene immigration histories of several
tree and shrub species over the entire British Isles by tracing the pop-
ulation increases. Here we study only a single site, but we can exploit
the high temporal resolution for a better understanding of the pro-
cesses. Lischke et al. (2013–this issue), then combine the pollen
data with ecological modelling of the population dynamics.

As shown in Figs. 2 and 3 and in Tables 2 and 3, pollen data calcu-
lated both as percentages and as influx, as well as the intrinsic growth
rates, help to visualize periods of near-exponential population
growth in Juniperus, Hippophaë, Salix, Betula, Populus, and Pinus. The
first fluctuations of intrinsic growth rates long before the rise of the
pollen peaks could be due to long-distance transport or to unsuccess-
ful establishment attempts. These attempts could have been hindered
by adverse climate (Juniperus) but also by improved conditions for
competitors (Pinus). The special case of arrival and population in-
crease of Pinus is discussed in Section 4.5.3.

The two most heliophilous species (Juniperus communis and
Hippophaë rhamnoides) exhibit not quite symmetrical curves. The in-
crease is comparably rapid and rather short in both species (ca 75 yr),
but the decreases differed to about 100 yr in Juniperus and 23 yr in
Hippophaë. The simulations in Lischke et al. (2013–this issue) indicate
that the decrease of the peaks is controlled by the appearance times of
the competing taxa, as determined by species-specific temperature
thresholds or immigration. The other woody taxa (Salix, Betula, Populus,
and Pinus) did not decline so drastically after a first peak, but they
remained important in the vegetation, as also shown in the simulations.

4.5.3. Level of biogeography: Migrations, local arrivals and extinctions
In the earlier study at Gerzensee and three other Swiss sites that

focussed on the rapid warming at the Younger Dryas/Holocene tran-
sition, Ammann et al. (2000) could exclude migrational lags because
all the major taxa of the very early Holocene were already present
during the Allerød and did not become extinct during the Younger
Dryas. If any migrational lag occurred at the end of the Younger
Dryas, it was only an altitudinal rather than a horizontal or latitudinal
one: at a higher site (Leysin; 1520 m asl), trees (birch, pine, larch, and
poplar) present during the Allerød had retreated during the Younger
Dryas to lower altitudes and re-immigrated back a short distance in
the same valley during the earliest Holocene. The immigration of
thermophilous taxa such as Corylus or Quercus were not studied.
Lischke et al. (2002) compared pollen data to forest model
simulations for the same period at the nearby site of Soppensee and
found that cold temperatures were not sufficient to explain the ab-
sence of some tree species, such as Abies and Fagus.

Similarly, Lischke et al. (2013–this issue), found that the absence of
most taxa in the present study can only be explained if very low temper-
atures are assumedbefore the onset of the Bølling. For the late appearance
of pine, other causes, such as delayed immigration, had to be assumed.

We can expect such migrational lags in the present study because
plants had to immigrate after the retreat of the ice. We can thus ex-
pand the population aspects: besides increases and decreases of
populations one may consider the “far ends” of both, namely the
onset of a local population, i.e. the immigration, and the end of a
local population, i.e. the local extinction.

To estimate migrational lags, we have to (1) distinguish presence
from absence of a taxon, which can be problematic especially when
long-distance transport of pollen is important, such as for Pinus, and
(2) estimate the past temperatures (based on independent proxies) to
assess whether a taxon's temperature requirements were fulfilled.

The most secure way to determine presence/absence of a plant
taxon is the use of plantmacrofossils (Birks and Birks, 2000) or stoma-
ta (Juniperus and Pinus; Trautmann, 1953; Ammann and Wick, 1993;
MacDonald, 2001). However, macrofossils and stomata can only pro-
vide positive evidence, and they may be delayed in tracing a first
local presence of a taxon because of their lower production and
shorter dispersal compared to pollen (i.e. no negative evidence, see
Hicks, 2006). In the case of the pollen record we may use – with
some caution – the classical scheme of the absolute, empirical, and ra-
tional pollen limits as a tool for taxa such as Betula, Hippophaë, and
Populus (Firbas, 1949; Watts, 1973; Birks, 1986; Lang, 1994; Tinner
and Lotter, 2006; see also Table 2). These limits designate, respective-
ly, the first occurrences of a pollen type, the beginning of a continuous
curve, and the rapid increase in percentages. Obviously, the absolute
and empirical limits depend on the pollen sum, and the arrival time
in relation to these limits depends on the pollen productivity. For
taxa with low to medium pollen productivity such as Hippophaë, the
latest arrival has been shown by comparison with macroremains to
coincide with the empirical limit, and for high pollen producers such
as pine the rational limit usually coincides with arrival, but the empir-
ical limit can depend on long-distance transport. In compilations that
aim at showing migration, percentage values as thresholds are usually
selected that are proposed to show immigration and/or population ex-
pansion (e.g. Latalowa and van der Knaap, 2006; Magri et al., 2006).

To answer the questionwhether a taxon's temperature requirements
were fulfilled,we cannot use the temperature reconstruction by Lotter et
al. (2012), for this is based on the same pollen data, but we can use the
aquatic indicator species Myriophyllum spicatum, which plays no role in
Lotter et al.'s reconstruction. M. spicatum first occurs at ca. 15,280 yr
BP. It needs a mean July temperature of at least 9–11 °C (Kolstrup,
1980) which is high enough for the five most important woody taxa of
the late-glacial vegetation (see Table 3). It is not very original to use a
waterplant as a baseline because already Iversen (1954), Kolstrup
(1979), Birks (1981), van Geel et al. (1981), Pennington (1986) and
others showed thatwaterplants are useful indicators of summer temper-
atures, because of their fast dispersal by waterbirds, short life cycles, and
independence of soil development (Iversen, 1954).

Pinus shows the most interesting features in its record of arrival
and build-up of the population, as summarized in Fig. 5: Four steps
(1–4) separate four levels (a–d) in both percentages and influx.
Steps (2) and (4) are partly responsible for the statistically significant
boundaries of pollen zones (fromGRZpol-3 toGRZpol-4, and fromGRZpol-4
to GRZpol-5). The mean pine pollen percentages of the four levels are 8%,
23%, 49%, and 74%, respectively (Fig. 5). At step (2) the pine-pollen per-
centages are nearly tripled, at step (3) doubled, and at step (4) times
1.5, which implies an approximate tripling of the amount of pine pollen
compared to the remaining pollen at each of these steps (if the
non-pine pollen would be constant). The factors for percentages and
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influx are quite close together: Means in influx at the four levels are 10,
27, 51, and 85 grains mm−2 yr−1 (i.e. nearly tripled, nearly doubled
and times 1.66 on steps 2, 3, and 4). It needs to be checked with
high-resolution sampling if a similar behaviour of Pinus is found at
other sites. Stomata suggest that pine arrived at Gerzensee before or at
the beginning of step (2); this step constitutes the rational limit, which
is in agreement with Firbas (1949) as Pinus is a strong pollen producer,
whereas in level (a) and step (1), the empirical limit, could still result
from either long-distance transport or very scattered local individuals.
Pinus is thus certainly locally present at the rational limit (possibly ear-
lier), but not necessarily at the empirical limit as is the case with medi-
um pollen producers (e.g. Fagus or Abies).

The intrinsic growth rate of Pinus fluctuated around zero for sever-
al centuries before 14,100 BP (Fig. 6b). After 14,100 BP, the growth
rate remained predominantly positive as the population established.
This coincides with the cold period of the Aegelsee Oscillation and
with a decrease of the already established taxa Populus and Betula.
However, it cannot be decided, whether Populus and Betula were
suppressed by Pinus or by the colder climate, under which Pinus
profited from the lighter conditions, as suggested by simulations of
Lischke et al. (2013–this issue). The age of first flowering in Pinus
sylvestris is 15–40 yr, but larger amounts of seeds are only produced
at an age of 60–70 yr (Zoller, 1981). This could mean that these
steps may be the expression of new generations of pine or waves in
the build-up of the population 50 to 80 yr apart. This is also
supported by the intrinsic growth rates, which show fluctuations
with a dominant period of about 40 yr.

Migrational lags depend i.a. on the mobility of a species, which is
determined by (1) dispersal vectors, e.g. ornithochorous taxa such
as waterplants or Hippophaë often being faster than wind- or
water-dispersed taxa, (2) life cycles, i.e. taxa with short life cycles
being faster than taxa with long generation times, (3) competition
that influences the generation times, (4) climate and soils, and
(5) geographical barriers such as mountains or seas (or the lack of
them). With a dynamic forest landscape model, such as TreeMig
(Lischke et al., 2006) these processes and their climate dependence
can be simulated in an integrated way. Potential migration rates and
their dependence on climatic and competition conditions can be
assessed (Meier et al., 2012). Such migration rates are consistent
with the arrival of Pinus in the Gerzensee record from 500 km dis-
tance (Lischke et al., 2013–this issue), e.g. from the Northeastern
Alps which are discussed as glacial refuges (Cheddadi et al., 2006).

A comparison of terrestrial and aquatic plants is shown in Table 3.
Immigration of taxa over time affects the species pool of an area, i.e.
the taxa regionally available for the formation of plant communities.

4.5.4. Plant communities
Species respond individually to climatic change. Therefore the region-

al species pool may change over time, and past plant communities
may have been non-analogous to modern ones. As shown by Jackson
and Overpeck (2000), changes of two or more environmental
variables through time may have caused separations or new overlaps of
niche-spaces of taxa. The non-analogue climate during the early
late-glacial, the incipient soil formation, and migrational lags are at least
threemajor reasons to expect non-analogue plant communities. A prom-
inent example is the juniper-dominated woodland with dwarf birches,
willows and some tree birches during the early Bølling that may or may
not be found today in high latitudes. A future study will quantify these
non-analogue vegetation types for several sites on the Swiss Plateau.
Fig. 7. Primary succession, plant functional types, and nutrients during the transitions fro
(A) Local and regional pollen zones. (B) Estimates of permafrost. (C) Changes in plant fu
reduction of wind fetch. (D) Soil development: some selected taxa (recorded as pollen and
soil nutrients. (E) Comparison of potential N and P resources to the types of mycorrhiza in o
indicates time of the rapid increase of the δ18O. At Gerzensee this coincides with the affore
The trend of species turnover in Fig. 4 has a striking similarity to
the silicates in the sediment (LOI at 950 °C or residue). This resembles
the findings at Kråkenes in Norway by Birks and Birks (2008),
although Fig. 1a in that study represents the mineral residue at 550°
because carbonates play no major role in that area. The similarity
between compositional turnover and inorganic (non-calcareous) res-
idue in our Fig. 4 is strongest in zones GRZpol-1 and 2. Assuming that
the silicates derive from eroded soils in the catchment and that soil
formation led to decreased erosional input in the lake, we hypothe-
size that species turnover and the inorganic sediment fraction are
linked by climate change triggering soil formation. This leads to the
following scenario:

Soil formation during zone GRZpol-1 must have been a slow
process due to the cool climate conditions of this period. This led to
a minor but clear decline of erosional sediment input, to which the
vegetation responded with a gradual turnover of minor species. The
(accumulation-based) floristic diversity remained about constant.
This implies that the minor species turnover reflects the gradual
replacement of a small number of (palynologically detected) taxa in
the landscape by about the same number of different taxa. This is
not necessarily only caused by local extinctions plus immigrations,
for additional processes are the crossing of the palynological detec-
tion level of continually present taxa in both directions and the
replacement of open ground by vegetation (i.e. a larger proportion
of the area became vegetated).

The rapid climate warming of zone GRZpol-2 led to a marked de-
crease of erosional sediment input due to soil formation, whereas
the species turnover was moderate. Erosional input decreased further
during the first one-and-a-half century of zone GRZpol-3 with its con-
tinued warm climate, and then it remained constant during the re-
mainder of the zone. Species turnover, on the other hand, continued
gradually through zones GRZpol-3 and 4, and in a minor way also dur-
ing zone GRZpol-5. This may reflect the combined effect of autogenic
succession, response to soil development, and immigration of new
taxa. The estimated pollen richness provides hints concerning the im-
migration of new taxa. The gradual increase of richness during zones
GRZpol-2 and 3 implies that the number of detected taxa increased.
This indicates the immigration of new taxa in the landscape and/or
the increase in abundance of (presumably rare) taxa from below to
above the palynological detection level.

In zones GRZpol-4 and 5, the trend of pollen richness estimated by
rarefaction starts to deviate from the pattern of the accumulation-based
estimate of pollen richness. A marked maximum in the latter in and
around sub-zone GRZpol-4b (310–330 cm sediment depth) coincides
with an even more marked maximum both in total pollen influx and in
sediment accumulation rates, indicating variability in lacustrine sedimen-
tation (see Sections 3.3.4. and 4.3. and van Raden et al. (2013–this issue).
van der Knaap (2009) estimated the same type of accumulation-based
pollen diversity by using the same pollen data but with a preliminary
depth-linear time scale, and he came to a strikingly different result: nei-
ther the total pollen accumulation (named there ‘accumulation-based
rarefaction sum’) nor the accumulation-based diversity shows a maxi-
mumin this depth interval (310–330 cm). Both accumulation-basedvari-
ables are obviously dependent on peculiarities of the depth–age model.

During zone GRZpol-5 the scores on axis 1 in the DCCA and the
accumulation-based estimate of pollen richness decline. Several
causes are possible: (1) local extinctions: the floristic diversity of
the landscape decreased; (2) populations of plant species declined
below palynological detection; and (3) the pollen catchment
m the shrub-tundra to birch- and later pine forests as reflected in the pollen record.
nctional types and potential effects on evapotranspiration, lake levels, soil humidity,
plant macrofossils, the latter from neighbouring sites, Gaillard, 1984a,b) relevant for

bserved modern successions as proposed by Read, 1993. The red arrow near the bottom
station by juniper and tree-birches.



Primary Succession
on a secular scale

Oldest Dryas, last 
third, ca 15676–
14665 cal BP

Early Bølling
Ca14665–14443 cal
BP

Late Bølling
Ca14443–13835 
cal BP

Allerød
Ca14835–12710 
cal BP

Younger Dryas
Ca12710–11500 
cal BP

(A)  Pollen zones
Gerzensee

GRZpol-1 GRZpol-2 GRZpol-3 GRZpol-4 and 
GRZpol-5

Wick 2000, 
Ammann et al. 
2000

Regional zones Western 
Swiss Plateau, Romandie 
(Gaillard 1984) 10 sites 

Artemisia–Betula 
nana

Juniperus–
Hippophaë

Betula alba–
Gramineae

Betula–Pinus Pinus–
Gramineae–
Artemisia

Biozones (Welten 1982, 
Firbas 1952)

Ia Ib II III

Regional biozones Swiss 
Plateau (Amman et al.
1996)

CHb-1c CHb-2 CHb-3 CHb-4a CHb-4b

Vegetation western and 
central Swiss Plateau 

Shrub tundra: 
Artemisia,
Chenopods, Salix
spp., Betula nana

Juniper–birch 
forest, B. alba-
type, Hippophaë 

Birch forests Birch–pine 
forests, then 
pine–birch 
forests

More open pine–
birch forests

(B)  Permafrost Probably 
important

Rapidly melting Probably 
absent

Probably absent ?

Potential effect on lake 
level

Rise of lake level

Potential effect on soils Active layer thin Active layer rapidly thickening
(C) Plant functional types Grasses, herbs, 

some legumes, 
shrubs

Trees and shrubs Trees, some 
shrubs, herbs

Trees, some 
shrubs and herbs

Trees, some 
shrubs, more 
herbs

Evapotranspiration Low Rapidly increasing increasing Relatively high

Potential effects on lake 
level and soil humidity

decreasing decreasing

Potential effect on wind 
fetch

Lakes exposed to 
wind

Lake sheltered between trees, wind fetch decreased, 
wind effects on lake and sedimentation decreased

(D)  Soil development and the presence of N2-fixers
Pollen/Macros 
(Gaillard 1984)
Dryas octopetala
Leguminosae
Hippophaë

+
+
+

+
+
+++

+
+
+

+
+
+

+
+
+

Soils on western and 
central Swiss Plateau 
(Gaillard 1984)

Regosols or 
lithosols 
(patches of open 
ground and of 
vegetation)

Accumulation of 
organic matter 

Coexistence of 
dry and humid 
soils

Probably 
cambisols 
(Brown earths) of 
various types

(E)  Hypothetical comparison with a primary succession (Read 1993): Mycorrhizal status of plant community, direction of 
succession
Plant–microbe 
mutualism

Mineral P, N ,
Cyanobacteria 
on raw soils; non-
mycorrhizal 
ruderals, AM on 
grasses, 
Legumes fixing N2

AM, and possibly 
maximum of N2-
fixation
(e.g. Hippophaë)

Facultatively AM
or 

ectomycorrhiza

Ecto-mycorrhiza increasing (on 
Pinus)
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decreased due to the newly established Pinus–Betulawoodland filtering
outmuch pollen before it could reach the lake. (1) is not unlikely due to
outshading by the woodland, and (2) and especially (3) are likely. In
contrast, the juniper expansion during GRZpol-2 did not have any no-
ticeable effect on floristic diversity if estimated by accumulation-based
pollen richness (but pollen richness by rarefaction based on a constant
pollen sum does show a minimum in GRZpol-2). This indicates that the
juniper shrubland remained sufficiently open for continued growth of
herbs.

As all estimates of biodiversity depend on the two components
of (1) species richness and (2) evenness, it is interesting to note
the curve of pollen evenness calculated here as PIE (probability of
interspecific encounters, according to Hurlbert, 1971; see van der
Knaap, 2009) in Fig. 4: the strongest change in evenness co-occurs
with the “juniper-jump”. As van der Knaap (2009) discussed the
evenness of a pollen assemblage and the evenness of the vegetation
may differ quite strongly due to differences in taxon-specific pollen
productivity.

4.5.5. Level of the ecosystem

4.5.5.1. The example of mycorrhiza and N2-fixers. At many sites of
southern Central Europe, the late-glacial vegetation development was
interpreted as a primary succession in which various species interac-
tions occur. Well known are the competition for light and the facilita-
tion by the accumulation of organic matter fostering pedogenesis.
The sequence from pioneer taxa undemanding concerning soils to
taxa requiring developed soils is well described (e.g. Iversen, 1954;
Gaillard, 1984a) but hard to quantify.

Supply of nutrients is linked to at least three sources: (1) the com-
position of the inorganic sub-soil, (2) the accumulation of organic
matter, and (3) symbioses between microorganisms and phanero-
gams. We hypothesize that the temporal sequence at Gerzensee
(and many other sites in Central Europe) recorded in the pollen is
similar to the succession derived from spatial observations and
chronosequences (see Fig. 7). Read (1993) recognized four stages in
space that are possibly comparable to four pollen zones in time.

(1) In early phases of primary succession with much open ground
and patchy vegetation, the minerogenic supplies of P and N
may or may not be high (depending on the geological back-
ground). They decrease with closing vegetation cover. The
early nitrogen-fixers may not leave any fossil trace because
they are primarily cyanobacteria (both free-living and symbi-
otic in lichens), as found in modern studies of the primary suc-
cession in glacier forefields (Solheim et al., 1996). As van Geel
et al. (1996) summarize, Cyanobacteria are so far not recorded
as recognizable fossils from terrestrial sites, whereas aquatic
Cyanobacteria are.

(2) With decreasing minerogenic N-supply, major N2-fixers
establish such as Rhizobium (bacteria) on nodulated legumes
and Frankia (actinomycetes) on Dryas spp. and Hippophaë.
After this, the succession of mycorrhiza types may open
with Dark Septate Endophytes (Jumpponen and Trappe, 1998;
Jumpponen, 2001), and arbuscular mycorrhiza (AM; a form of
endomycorrhiza, formerly called vesicular–arbuscular or VA)
on non-woody plants such as herbs, grasses, and forbs. AM pro-
vides primarily phosphorus and may go through various succes-
sional stages (Hart and Klironomos, 2002; Hart et al., 2003). In
parallel, the leaf-litter increases in quantity and changes in qual-
ity.

(3) Later, with afforestation, ectomycorrhiza become important.
They are found today on taxa such as Dryas, Helianthemum,
Salix, B. nana, and Helianthemum (all wide-spread during the
shrub-tundra phase of the Oldest Dryas), on tree birches and
Populus (important during the Bølling), and on Pinus (important
during the Allerød). Ectomycorrhiza provides both N and P.
The temporal transition from AM to ectomycorrhiza is not
sharp, as illustrated by Salix, a genus that includes both early
and transitional species. Salix herbacea is one of the earliest
ectomycorrhizal plants in glacier forefields (Graf and Brunner,
1997; Mühlmann and Peintner, 2008), whereas S. repens was
observed as having abundant ectomycorrhiza but little AM
(van der Hejden and Vosatka, 1999). Maximum N2 fixation took
place during the afforestation phase (with abundant Hippophaë)
when Juniperus was dominant. For Hippophaë see also the
modelling study of Pfeiffer et al. (2013–this issue). For Juniperus,
endomycorrhiza are commonly reported and ectomycorrhiza
occasionally (Thomas et al., 2007). In addition DeLuca and
Zackrisson (2007) found enhanced soil fertility under Juniperus
partly due to the facilitation (through shade, soil, and air humidi-
ty) of the nitrogen-fixing feather moss Pleurozium schreberi. Such
“islands of fertility” under Juniperus may also be enhanced
through the capability of juniper to exploit bio-available N and P
through its extensive root system (DeLuca and Zackrisson,
2007). The phase of maximum N2 fixation is in both the spatial
(Read, 1993) and the temporal (Gerzensee) sequence intercalated
between grassland (with much AM) and pioneer forest (with AM
and ectomycorrhiza).

(4) As succession proceeds, organic litter reinforces the change from
mainly AM to more ectomycorrhiza and ericoid mycorrhiza, be-
cause only the latter two are adapted to litter. With soil develop-
ment and its leaching, ericoid mycorrhiza start to play a major
role. A modern study of a chronosequence in a glacier forefield
by Cazares et al. (2005), shows this clearly, although on a much
shorter time scale (60 yr).

In aquatic systems van Geel et al. (1984, 1989) found sheets of the
N2-fixing pioneers of the Gleotrichia-type in the early Late-Glacial of
Usselo.

In other parts of the world, there are some successions where it is
not Hippophaë but Alnus (and Sheperdia), which also has nodules of
Frankia, which plays a major role, e.g. in Glacier Bay, Alaska, where –

after Salix and Dryas – Alnus sinuata becomes dominant (Chapin et
al., 1994; Engstrom et al., 2000; Engstrom and Fritz, 2006). Also at
Grandfather Lake, Alaska, where the increase of Alnus pollen runs
parallel with increasing percentages of C and N in the lake sediment
(Hu et al., 2001). But on the Swiss Plateau Alnus only arrived during
the Holocene.

4.5.5.2. Feedbacks on the ecosystem level. Feedbacks on regional and
global scales (including climate) are discussed in the synthesis,
which reviews biotic responses to climate change in both terrestrial
and aquatic ecosystems (Ammann et al., this issue). But already at a
local scale and for terrestrial ecosystems we can infer feedback mech-
anisms. These may concern the compartments of soils, hydrology,
vegetation, and their interactions. One example is given above with
the hypothesis on a temporal sequence of nitrogen fixers (compara-
ble to the spatial sequence as observed today, Fig. 7): The nitrogen
enrichment in the soil by N2-fixation can be considered as a positive
feedback in the ecosystem, by increasing the population of the N2-
fixers and further N2-fixation. This is another potential cause
for the (intermediate) increase in the intrinsic growth rate, i.e.
hyperexponential growth of Juniperus (Lischke et al., 2013–this
issue). In addition quality and quantity of the litter changed, espe-
cially also with the increase of the populations of tree birches,
willows, and poplar with higher LAI than tundra plants. This in turn
added organic matter to the developing soils (see decreasing values
of the minerogenic residue on loss on ignition at 950 °C on Fig. 4, in-
dicating less open gound and more vegetation cover). With increas-
ing organic matter in the soils there the water-holding capacity
improved (compared to the till rich in sand). This in turn may have
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fosteredmany plant species, their abundances, and therefore vegeta-
tion density (delivering more litter, etc.).

4.6. Impact of minor climatic oscillations on vegetation

The minor cool periods during the Late Glacial Interstadial do not
seem to have reduced the vegetation cover at the altitude of 603 m
asl. An interesting case is the cool period GRZibulk-6 (Greenland inter-
stadial GI-1d; Older Dryas or Aegelsee Oscillation), during or at the
end of which Pinus populations expanded on the Swiss Plateau (see
Section 3.3.4. and Lotter et al., 1992b). This indicates that Pinus was
not yet in equilibrium with climate, or, in other words, had a migra-
tional lag (see Section 4.5.3 and Table 3). Alternatively, moisture,
and soil and/or temperature conditions (incl. seasonality) may have
been unsuitable for the spread of the taxon. The Scandinavian treeline
vegetation today may serve as a partial analogue. In northern
Fennoscandia Betula is able to form open forests where P. sylvestris
is unable to grow, for the occurrence of pine is limited to latitudes
about 100 km south of the treeline birch vegetation (Lang, 1994).

Oxygen isotopes showminor fluctuations during the Late Glacial In-
terstadial in various lacustrine cores in the Northern Hemisphere,
which were correlated to records from Greenland ice cores (Lotter et
al., 1992a,b; Grafenstein et al., 1999; Yu and Eicher, 2001). Table 2 pre-
sents an overview of potential correlations between minor fluctuations
of oxygen isotopes of the Late Glacial Interstadial of Gerzensee and veg-
etation development. In Juniperus and Hippophaë, the decreases (both
the onset of decrease and the rapid or stepwise decrease) occur clearly
before theminor cool phase of GRZibulk-4 and seem to have been caused
by shading-out by tree birch (Gaillard, 1984a). Interestingly, two
woody taxa started a distinct increase during minor cool phases:
Populus at the beginning of the minor minimum in the last third of
isotope-zone GRZibulk-4, and Pinus within the somewhat younger
and stronger minimum of the isotope-zone GRZibulk-6 (Aegelsee Os-
cillation of Lotter et al., 1992b).

The herbaceous taxa Gramineae, Artemisia, and Thalictrum show
minor peaks during minima in oxygen isotopes (asterisks in Figs. 2
and 3, Section 3.3.3 on the late Bølling). In summary we can conclude
that at the altitude of Gerzensee (603 m asl), these minor cool phases
had only minor effects on the vegetation, even though the Aegelsee
Oscillation is visible in the pollen-based reconstruction of July
temperatures by Lotter et al. (2012). Sites at higher altitudes may
have been in ecotonal situations at that time and thus more sensitive
in their vegetation, such as Aegelsee (995 m asl, 23 km south of
Gerzensee in the northern Prealps (Wegmüller and Lotter, 1990) or
Rotmeer (960 m asl, 125 km to the north in the southern Black
Forest; Lotter and Hölzer, 1994; Lang, 2005).

The minor decreases in Juniperus, Hippophaë, Salix, Betula, and
Populus after ca 13,760 yr BP may not necessarily be due to cooler
summer temperatures but rather to competition (outshading) by Pinus.

5. Conclusions

1. Some of the vegetational changes were responses to the early
rapid warming (as recorded in the oxygen-isotope ratios between
14,830 and 14,400 yr BP) within the sampling resolution (which
was about 8.4 yr in this section) or up to 20 yr before and after.
In other cases, recorded vegetational changes were probably
triggered by the rapid warming but then took centuries to develop
(e.g. migrations).

2. Afforestation (shift from shrub-tundra to a juniper–birch-woodland)
was at Gerzensee the main response of regional vegetation to the
rapid warming after 14,685 yr BP, as was the case at numerous sites
on the Swiss Plateau and several sites in southern Central Europe.

3. The characteristic sequence of immigration and expansion of
woody taxa is confirmed for southern Central Europe: Juniperus –
Hippophaë – Betula (trees) – Salix – Pinus.
4. Population growth was hyperexponential in some cases, i.e. with
positive and increasing intrinsic growth rate α, e.g. in Juniperus.

5. In Pinus, four steps and four levels can be distinguished as phases
of population build-up (each lasting about 35–100 yr).

6. Vegetation responded to the very rapid warming after 14,850 yr
BP on all organisational levels

(a) Level of the individual organism, here pollen production
(e.g. Juniperus); this is the fastest response, as it can occurwithin
a year or two.

(b) Level of the population: intermediate response times, especially
the building-up of populations, a process that depends heavily
on generation times (e.g. annuals vs trees).

(c) Level of biogeography: migration can be fast or slow depending
on the vectors, life-history traits such as generation times, as
well as on geographical barriers.

(d) Level of plant communities: the species pool changed rapidly,
the unvegetated surfaces decreased, or with afforestation the
distribution of plant-functional types changed.

(e) Level of the ecosystem: response times vary, depending on
species competition (e.g. for light) or facilitation (e.g. by
enhanced pedogenesis), and on changing types and abun-
dances of nitrogen-fixers.

7. The minor cool phases recorded in the oxygen-isotope record dur-
ing the Late Glacial Interstadial were no more than weakly
reflected in pollen stratigraphy at this altitude of 600 m asl. Even
the relatively marked cool phase about 14,044–13,908 yr BP
(GI-1d; Aegelsee Oscillation; Older Dryas biozone) resulted in no
more than very minor peaks in a few herb taxa, which were,
all the same, picked up in the reconstruction of July temperatures
by Lotter et al. (2012). Sites at higher altitudes may have been
ecotonal and therefore more sensitive.

8. The estimates of palynological diversity based on pollen influx
(which is independent of pollen abundances) indicate that floristic
diversity gradually increased during afforrestation up to the time
of major Pinus expansion.
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