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Abstract Dry granular avalanches exhibit bulk density
variations. Understanding the physical mechanisms behind
these density variations is especially important in the study
of geophysical flows such as snow and rock avalanches. We
performed small-scale chute experiments with glass beads
to investigate how bulk density changes, measuring velocity
profiles, flow height and basal normal stress in an Eulerian
measurement frame. The chute inclination and the starting
volume of glass beads were systematically varied. From the
flow height and basal normal stress data, we could com-
pute the depth-averaged density at the measurement location
during the passing of the avalanches. We observed that the
depth-averaged density is not constant, varying with chute
inclination and starting volume. Furthermore, the depth-
averaged density varies from the head to the tail within a
single avalanche.Wemodel changes in density by accounting
for the energy associated with the velocity fluctuations of the
grains, the density and the velocity fluctuations being related
by the constitutive relation for the normal stress. We propose
expressions for the conduction and decay coefficients of the
fluctuation energywhich allow us tomodel the observed den-
sity variations in the experiments.
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1 Introduction

Snow and rock avalanches are two examples of hazardous,
finite-sized granular flows occurring in the natural environ-
ment. Engineers often apply flow models to simulate veloci-
ties, impact pressures and runout distances in order to delin-
eate land into safe/unsafe zones [1]. Depth-averaged Savage-
Hutter typemodels are typically used for this purpose [2]. For
simplicity, the density of the flowing material is assumed to
be constant from initiation to deposition. However, density
variations in both natural and experimental flows are known
to exist. Density time series in small-scale snow avalanches
were recorded using a capacitance sensor and qualitative
statements about the change in density from one flow region
to another could be made [3]. The measured mean density
directly at the head is lower than the density in the body or
tail of the avalanche [4]. Impact pressure measurements of
large, real scale avalanches corroborate this result as they
sometimes show a “dilute” head, followed by a much denser
core [5]. Nonetheless, direct densitymeasurements in natural
flows remain difficult and are opposed by numerous techni-
cal difficulties. One fundamental problem is that the granules
in natural flows range over several orders of magnitude up
to the meter scale [6]. Thus, to determine the bulk density
in real scale geophysical flows requires density probes that
capture density variations in volumes on the order of the flow
height that is several meters.

To learn about the physical processes that take place
in natural granular flows, small-scale experiments are use-
ful. Shear cell experiments—including the original experi-
ments of Bagnold [7]—are performed under constant vol-
ume, therefore preventing a change in density, but allowing
for an increase in normal stress [8]. The measured normal
stress increase is often merged into the more general prob-
lem of assessing the granular rheology of the material. The
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concept of dilatancy, defined as the volume increase (or den-
sity decrease) of a granular material subjected to a shear
deformation, is often put forward to explain variations of the
shear resistance [9,10]. Dilatancy may also be related to nor-
mal stress dependent shear resistance, implemented in com-
mon flow models [2,11,12]. In granular flows down inclined
chutes, the flow volume is not fixed since the position of
the free surface can vary. However direct measurements of
density in chute experiments are scarce and no consensus
emerges from the available data. Depth-averaged density in
steady and uniform flows are either found to be almost con-
stant [9] or to vary significantly [13] for similar ranges of
chute inclinations and flow height to grain diameter ratios
h/d. Numerical simulations of steady and uniform free sur-
face flows within periodic boundaries predict non-constant
density [14]. The shape of the density profile is reported to
depend on the ratio h/d and on the slope inclination. Fur-
thermore the depth-averaged density value varies with the
slope inclination. For h/d ≈ 10 the density varies over the
whole flow depth whereas it varies only close to the bed and
free surfaces for h/d > 40 and it is constant in the inter-
mediate flow region. Models accounting for non-constant
density in dry granular flows generally include a fluctua-
tion energy equation in the system of governing equations.
Constitutive relations for the internal stresses and the coeffi-
cients of the fluctuation energy equation either are postulated
based on heuristic arguments [15,16] or are computed using
kinetic theory [17,18] or combine both approaches [19].
Kinetic theory calculations assume binary, short duration
contacts between grains and thus only apply to collisional
flows.

In this work we present velocity and depth-averaged
density measurements of finite-sized, unsteady granular
avalanches in small-scale chute experiments. Accurate mea-
surements of the basal normal stress and of the flow height
allow for the determination of the depth-averaged density
from the head to the tail of the avalanche. A high-speed cam-
era records the flow through one of the sidewalls and the
evolution of the velocity profile during the passing of the
flow is obtained using a pattern matching algorithm [20].
We performed series of experiments systematically varying
the chute inclination (22◦, 24.5◦, 27◦, 29.5◦) and the starting
volume (15 l and 30 l). In all experiments we used the same
granular material (1.4 mm glass beads) and the same chute
with a rough bed surface and smooth sidewalls. In the second
part of the article, we develop a simple model based on mass,
momentum and fluctuation energy conservation equations
for shallow, two-dimensional flows. We propose constitutive
relations for the internal stresses and for the coefficients of
the fluctuation energy equation (conduction and decay) fol-
lowing a phenomenological approach similar to the ones in
[15,16]. The system of governing equations is completed by
boundary conditions for the fluctuation energy and for the

normal stress at the bed and free surfaces. The momentum
and fluctuation energy equations are integrated numerically
at the location of the camera during the passing of the flows
and the results are compared with the depth-averaged density
measurements.

2 Experiments

2.1 Setup

We performed the experiments on a 2 m long, 0.2 m wide
chute with variable inclination (Fig. 1). Perpendicular side-
walls made of plexiglas bound the flow laterally. The bed
surface of the chute is covered with sand paper with 0.1 mm
(P150) roughness. The friction of the bed surface was there-
fore much higher than the one of the sidewalls. We define
a two-dimensional reference plane along the chute center-
line with the x-axis parallel to the chute length and directed
towards the lower end of the chute and a y-axis perpendicular
to the x-axis in the plane of the sidewalls directed opposite to
the bed surface (Fig. 2). The origin of the coordinate system
is set at the trap door. The chute inclination is parameterized
by the angle θ . Volumes of 15 and 30 l of glass beads were
released at four different chute inclinations: 22◦, 24.5◦, 27◦
and 29.5◦. The glass beads have amean diameter d of 1.4mm
with 92.5% of the beads having a diameter ranging between
1.18 and 2 mm. The range of inclination angles is centered
around the angle of repose of the glass beads,whichwasmea-
sured to be 25◦. At the location x = 1.5 m, the basal normal
stress N (t) is measured over a rectangular surface of 50 cm2

built in the bed surface. The force plate consists of a single
point load cell with a measurement frequency of 2 kHz. Cal-
ibration tests were performed using static loads. At the same
downstream location x = 1.5 m, at the sidewall, the veloc-
ity component in the x-direction u(y, t) is measured from
the recordings of the high-speed camera. A pattern match-
ing algorithm [20] is used to compute the velocity profiles
during the passing of the granular avalanche. We determine
the evolution of the flow height h(t), that is defined as the
y-coordinate of the free surface at the location of the camera,
from the same recordings using a grey level threshold value.

2.2 Results

In Figs. 3 and 4, the flowheight and the basal normal stress are
plotted versus time for the four different chute inclinations
and the two starting volumes. The normal stress p can be
related to the flowheight and to the density by the expression:

p (y) =
h∫

y

ρ
(
y′) gcosθ dy′ (1)
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Fig. 1 Experimental setup. a Chute with plexiglas sidewalls, sand
paper bed surface and location of the force plates. b Force plates.
c High-speed camera

Fig. 2 Scheme of the chute with coordinate system

with g the gravitational acceleration. Equation (1) represents
the conservation of momentum in the y-direction in integral
form for avalanches verifying the shallow flow assumption
[2]. The basal normal stress N is equal to the normal stress
evaluated at the bed surface y = 0:

p (y = 0) = N = ρ̄gcosθh (2)

Fig. 3 Flow height (a) and basal normal stress (b) versus time for four
different chute inclinations with 30 l starting volume measured at the
chute location x = 1.5 m. The flow height data was truncated below
0.02 m for the 30 l starting volume. Below this value, in the very head
and in the very tail, the flow height could not always be determined
precisely due to beads saltation at the free surface. The basal normal
stress data was truncated below 200 Pa for the 30 l starting volume in
agreement with the truncation of the flow height data

with ρ̄ the depth-averaged density:

ρ̄ (t) ≡ 1

h

h∫

0

ρ dy. (3)

In (2) we note that if the depth-averaged density is con-
stant, the basal normal stress is proportional to the flow
height (for a given chute inclination). In our experiments
the depth-averaged density is found not to be constant dur-
ing the passing of the flow. It is lower in the head and in the
tail than in the body (Fig. 5a, b). If the chute inclination is
increased, the depth-averaged density decreases in all flow
regions. Likewise by reducing the starting volume from 30
to 15 l, we observe that the depth-averaged density decreases
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Fig. 4 Flow height (a) and basal normal stress (b) versus time for four
different chute inclinations with 15 l starting volume measured at the
chute location x = 1.5 m. The flow height data was truncated below
0.016 m for the 15 l starting volume. The basal normal stress data was
truncated below 150 Pa for the 15 l starting volume

in all flow regions. For a chute inclination of 22◦ and a 30 l
starting volume, the value of the depth-averaged density in
the flow body is close to the “tapped density” value equal to
1,660 kg/m3 (0.69 volume fraction). The “tapped density”
was measured after pouring the material and vibrating the
material container. After pouring the material the “poured
density” was equal to 1,590 kg/m3 (0.66 volume fraction).
For a face centered cubic arrangement of monodisperse glass
spheres (ρs = 2,400 kg/m3) with a diameter d = 1.4 mm,
the bulk density ρ is given by the equation

ρ = ρs
π

3
√
2

d3

(l + d)3
. (4)

With l, the distance between the surfaces of neighbour-
ing grains, set to zero, Eq. (4) yields ρ = 1, 780 kg/m3

(0.74 volume fraction) whereas for a random close pack-
ing of monodisperse glass spheres, the density is equal

Fig. 5 Measured depth-averaged density versus time for four different
chute inclinations and two starting volumes 30 l (a) and 15 l (b). We
emphasize that the depth-averaged density is not measured simultane-
ously in different flow regions but successively. That is, we compute
the depth-averaged density at the stationary point x = 1.5m, and do
not move with the avalanche along the chute (Eulerian measurement
frame)

to 1,540 kg/m3 (0.64 volume fraction). The discrepancy
between the “tapped” and “poured” density values and the
density corresponding to a random close packing of glass
spheres is explained by the slight polydispersity of the beads.

The mean shear rate, mean velocity and slip velocity are
not constant during the passing of the flows (see Fig. 7a, b).
The shear rate is approximately constant over the flow depth,
i.e. the velocity profiles are close to linear (see Fig. 6), but
it is not constant from head to tail. The mean shear rate is
at a maximum in the head and at a minimum in the body.
It increases again in the tail but not to the same level as in
the head. The slip velocity shows a similar behaviour: it is at
a maximum in the head and decreases to a minimum in the
body. However it does not increase in the tail.
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Fig. 6 Velocity profiles u(y) at different instants of the flows at the location x = 1.5 m for the four chute inclinations 22◦ (a), 24.5◦ (b), 27◦ (c),
29.5◦ (d) and the 30 l starting volume

3 Model

3.1 Fluctuation energy equation

In this section we develop a model with the aim of repro-
ducing the evolution of the depth-averaged density mea-
sured experimentally. The velocity 〈u〉 is defined as the
mean of the velocities of the N grains belonging to an aver-
age ensemble. An average ensemble must contain enough
grains so that the averaged quantities are continuous and
differentiable:

〈u〉 ≡ 1

N

N∑
i=1

ui . (5)

The granular temperature T is defined as the standard devia-
tion of the grain velocities over an average ensemble divided
by the dimension of the space [21]:

T = 1

3
〈(〈u〉 − u)2〉. (6)

We note that only translational velocities of the grains are
considered. We simplify the notation by dropping the brack-
ets of the velocity 〈u〉. Anisotropic granular temperature was
reported for glass beads in a specific experimental setup [22],
however, for simplicity, we assume T to be isotropic. The
energy density ρT associated with the velocity fluctuations
of the grains is termed the fluctuation energy. The mole-
cular temperature of the granular material is irrelevant in
the present problem since the energy associated with the
molecular temperature of the grains is small compared to
the kinetic and potential energies. We consider the granular
avalanche as a continuum characterized by its density, veloc-
ity and velocity fluctuations and obeying the conservation
equations for mass, momentum and fluctuation energy [23].
Besides we do not make a distinction between the grains
and the interstitial air. The one-phase assumption is moti-
vated by the small mean free path of the grains and by the
low viscosity of air. The mass and momentum equations
write:

∂ρ

∂t
+ ∇ · (ρu) = 0 (7)
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ρ
∂u
∂t

+ ρ (u · ∇)u = ∇ · σ + ρg (8)

with σ the stress tensor and g the gravitational acceleration
vector. The fluctuation energy equation is specific to granular
flows:

ρ
∂T

∂t
= −ρu · ∇T − p∇ · u + τik

∂ui
∂xk

+∇ · (κρ∇T ) − ργ (9)

with κ the granular temperature conduction coefficient. We
assume that the normal stress p is sustained by the velocity
fluctuations. As a consequence a volume change results in a
variation of the fluctuation energy equal to−p∇ ·u. Dissipa-
tive contacts between grains reduce the norm of the velocity
vectors of the grains. The associated decay of fluctuation
energy is accounted for by the coefficient γ . For experimen-
tal work on the decay of fluctuation energy see [24]. In Eq. (9)
we assume that the stress tensor can be separated into a mean
normal stress tensor and a stress deviator tensor:

σ = −pI + τ with p = −1

3
Tr (σ ). (10)

The dissipative work rate done by the stress deviator tensor is
the source of fluctuation energy. The contacts between grains
resulting from the shear deformation change the direction
of the velocity vectors of the grains and thus increase the
fluctuation energy at the expense of the mean kinetic energy.
To summarize, the first term on the right-hand side of Eq. (9)
is the convective acceleration term, the second term accounts
for the work done by the normal stress in case of volume
change, the third term represents the production of granular
temperature in case of shear deformation, the fourth term
stands for the conduction of granular temperature similarly to
thermal conduction (i.e. from regions with high T to regions
with low T ), the last term accounts for the decay of granular
temperature due to dissipative contacts between grains. We
rewrite Eq. (9) in the case of a two-dimensional flow:

ρ
∂T

∂t
= −ρ

(
u

∂T

∂x
+ v

∂T

∂y

)
− p

(
∂u

∂x
+ ∂v

∂y

)

+τxy

(
∂u

∂y
+ ∂v

∂x

)

+κ

(
ρ

∂2T

∂x2
+ ∂ρ

∂x

∂T

∂x
+ρ

∂2T

∂y2
+ ∂ρ

∂y

∂T

∂y

)
−ργ. (11)

The stress deviator tensor is symmetric to ensure that it can-
cels for any uniform flow (in particular for a rotating uniform
flow [25]) and the granular temperature conduction coeffi-
cient κ is assumed to be a constant for simplicity. In [15,17],
the authors propose relations for the conduction coefficient
that are functions of ρ and T . We have implemented such
relations without noticing significant changes in the results.
Invoking scaling arguments valid for shallow flows, several
terms in Eq. (11) can be neglected. Let us adimensionalize

Eq. (11). The new dimensionless variables are:

t̃ = t

√
g

L
, x̃ = x

L
, ỹ = y

H
, ũ = u√

gL
, ṽ = v

√
L

gH2 ,

ρ̃ = ρ

ρ∗ , T̃ = T

T ∗ , p̃ = p

ρ∗gH
, τ̃xy = τxy

ρ∗gH
, κ̃ = κ

κ∗ ,

γ̃ = γ

γ ∗ (12)

with g the norm of g, L a typical flow length, H a typical
flow height, ρ∗ a typical flow density of the material, for
example the “tapped” density, T ∗ a typical flow granular
temperature, κ∗ a typical conduction coefficient and γ ∗ a
typical decay coefficient. We rewrite Eq. (11) in terms of
the new dimensionless variables introducing the shallowness
parameter ε ≡ H

L :

ρ̃
∂ T̃

∂ t̃
= −ρ̃

(
ũ

∂ T̃

∂ x̃
+ ṽ

∂ T̃

∂ ỹ

)
− gH

T ∗ p̃

(
∂ ũ

∂ x̃
+ ∂ṽ

∂ ỹ

)

+gH

T ∗ τ̃xy

(
1

ε

∂ ũ

∂ ỹ
+ ε

∂ṽ

∂ x̃

)

+ κ∗

L
√
gL

κ̃

(
ρ̃

∂2T̃

∂ x̃2
+ ∂ρ̃

∂ x̃

∂ T̃

∂ x̃
+ 1

ε2
ρ̃

∂2T̃

∂ ỹ2

+ 1

ε2

∂ρ̃

∂ ỹ

∂ T̃

∂ ỹ

)
− γ ∗L

T ∗√gL
ρ̃γ̃ . (13)

The flows investigated in this work match the shallow flow
criteria i.e. the typical flow height H is by far smaller than
the typical flow length L . We have H ≈ 0.03 m and L ≈
6 m yielding a shallowness parameter ε ≈ 0.02. Not know-
ing a priori all typical flow parameters (T ∗, κ∗, γ ∗), it is
only possible to compare some of the terms in the dimen-
sionless fluctuation energy equation. The source term with
the velocity gradient in the x-direction in Eq. (13) is smaller
than the one with the gradient in the y-direction (factor ε−2)
and thus can be neglected. On the third and fourth lines, the
terms with spatial gradients of ρ and T in the x-direction are
smaller than the termswith spatial gradients in the y-direction
(factor ε−2) and can be dropped from further consideration.
Since we assume that the normal stress is sustained by the
velocity fluctuations of the grains, all terms on the first line
of Eq. (13) have the same order of magnitude. Therefore, the
remaining term on the second line of Eq. (13) is a factor ε−1

larger than the terms on the first line. Comparison with the
remaining terms on the third and fourth lines is not possible
a priori, but will be performed after the computation. The
terms on the first line are thus neglected and the correctness
of the simplification is assessed a posteriori. Returning to the
dimensional formulation, Eq. (11) reduces to:

τxy
∂u

∂y
+ κ

(
ρ

∂2T

∂y2
+ ∂ρ

∂y

∂T

∂y

)
− ργ ≈ 0. (14)
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3.2 Constitutive relations

The system of Eqs. (7), (8) and (9) for two-dimensional, shal-
low flows is under determined meaning that they are more
unknown variables than equations. Thus, constitutive rela-
tions are needed to close the system. We look for constitu-
tive relations specifying the shear stress τxy , the pressure p
and the decay coefficient γ . For the shear stress, we use an
approach similar to the one in [16]. We assume that it is con-
trolled by contacts between grains resulting from the shear
deformation. The term τxy

∂u
∂y represents the energy per unit

of time and volume dissipated by frictional and inelastic con-
tacts between grains in a flow region sheared at a rate of ∂u

∂y .
We argue that it scales with the contact rate per grain times
the number of grain per unit volume times the energy lost per
contact. Wemoreover assume that the energy lost per contact
is proportional to the relative velocity of the contacting grains
(equal to d ∂u

∂y in average) squared times the grain mass. We
obtain:

τxy
∂u

∂y
∝ ρ

l

(
d

∂u

∂y

)3

. (15)

The above expression holds in the collisional regime inwhich
binary and short-duration contacts are dominant. In the fol-
lowing we make the assumption that it is also valid in the
range of shear rate, density and normal stress investigated
in this work. Equation (15) resembles the constitutive rela-
tion proposed in [9] for steady, dense granular flows. In [15],

the shear stress scales with the contact rate
√
T
l valid for a

uniform flow with non-zero T times an energy loss per con-

tact proportional to
(

∂u
∂y

)2
that holds for a simple shear flow

with zero T . The argument is inconsistent from a microme-
chanical point of view even though it introduces the same
coupling between granular temperature and shear rate as in
[17]. We use a similar approach for the decay coefficient γ .
For a face centered cubic arrangement of spherical grains,
the mean distance between neighbouring grains l is given by
Eq. (4). The energy per unit time and volume dissipated by
grain contacts in a uniform flow region (the relative velocity
of grains is proportional to

√
T ) scales with the contact rate

per grain times the number of grains per unit volume times
the energy lost per contact. It yields:

ργ ∝ ρ

l
T

3
2 . (16)

It is straightforward that if
√
T < d ∂u

∂y , the production of
fluctuation energy will dominate the decay. In the opposite
case

√
T > d ∂u

∂y the decay will generally exceed the produc-
tion. The decay and the production (through the shear stress)
of fluctuation energy are largely influenced by the friction
and the inelasticity of the grains. In the ideal case of fric-
tionless and elastic grains γ = 0. A parameter describing
the degree of friction and inelasticity of the grains could be

introduced in Eqs. (16) and (15). However since the granular
material is the same in all experiments, we assume that the
grain properties are included in the dimensionless propor-
tionality coefficients τ0 and γ0 making the proportionality
signs in Eqs. (15) and (16) explicit. The normal stress p is
assumed to be sustained by the velocity fluctuations of the
grains. They are responsible for the normal component of
the relative velocity of the grains during contacts. The nor-
mal stress is defined as the momentum exchanged per unit
of time and surface. We quantify it as the contact rate per
grain times the number of grains per unit surface times the
momentum exchanged per contact. We obtain:

p ∝ l + d

l
ρT . (17)

We remind that Eq. (1) states that the normal stress is in equi-
libriumwith the weight of the overburden material. Equation
(1) does not always apply though, even for static cases. In
certain configurations (piles of grains with a typical height
H larger than the typical width W for example) granular
materials do not exhibit depth dependent normal stress due
to boundary effects (arching) [21]. In the present case we
argue that Eq. (1) holds since H is small compared toW and
L and since the friction of the sidewalls is small.

3.3 Computation

Wecompute the depth-averageddensity ρ̄ (t)during the pass-
ing of the flow at the location x = 1.5 m. To that purpose
we solve the system of coupled partial differential equations
made up by the momentum equation in the y-direction (dif-
ferential form of Eq. (1)) and the fluctuation energy equation
in Eq. (14) in which we introduce the constitutive relations
(15) and (16):

∂p

∂y
= −ρgcosθ. (18)

τ0
ρ

l

(
d

∂u

∂y

)3

+ κ

(
ρ

∂2T

∂y2
+ ∂ρ

∂y

∂T

∂y

)
− γ0

ρ

l
T

3
2 ≈ 0.

(19)

The density is the solution of the cubic equation obtained by
eliminating l in Eqs. (4) and (17) with p0 the dimensionless
proportionality coefficient making Eq. (17) explicit:

ρ

(
p

p − p0ρT

)3

= ρs
π

3
√
2
. (20)

In order to solve the second order partial differential equation
in Eq. (19) boundary conditions are needed for the granular
temperature and the granular temperature gradient in the y-
direction.We assume that the granular temperature at the bed
surface is proportional to the square root of the slip velocity

T (y = 0, t) = ξ
√
us (21)
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where ξ is a constant that is a function of the bed surface and
glass beads properties. We justify the form of the boundary
condition by noting that the maximum values of the normal
stress at the location of the force plate are approximately the
same for a given starting volume independently of the chute
inclination (see Figs. 3, 4). Thus, if there is a dependency of
the basal shear stress on the basal normal stress, it is the same
for all flows (for a given starting volume). Considering a flow
at the location of the force plate at the time of maximum
normal stress as a sliding block with constant velocity us ,
the basal shear stress must be equal to the component of
the flow weight in the x-direction. From the slip velocity
measurements, we find that the component of the weight
in the x-direction is proportional to the square root of the
slip velocity τxy (y = 0) = ρ̄gsinθ ∝ √

us . The boundary
condition is derivedbyassuming that the velocityfluctuations
at the bed surface scalewith thework of the basal shear stress.
At the free surface we assume that the granular temperature
gradient in the y-direction is equal to zero ∂T

∂y (y = h, t) = 0.
An additional boundary condition is needed to solve the first
order partial differential equation in Eq. (18). We choose the
traction free condition at the free surface p (y = h) = 0. For
the computation we approximate the shear rate by the mean

shear rate over the flowdepth ∂u
∂y (y, t) = ∂̄u

∂y (t).We consider

the measured mean shear rate values ∂̄u
∂y and slip velocity

values us plotted in Fig. 7a, b. The coupled partial differential
equations in Eqs. (18) and (19) are solved numerically in an
iterative way using the forward Euler method. For details
of the discretization of the system of equations, we refer
to the “Appendix”. In the flow bulk T is initialized to one
half of the T value at the bed surface and ρ is initialized
to 1400 kg/m3. The iteration process is continued until the
depth-averaged density converges (around 10 iterations). The
input parameters are: the basal normal stress (the initial flow
height is determined from the basal normal stress and the
initial density value of 1400 kg/m3), themean shear rate, the
slip velocity, the ratios of coefficients τ0

κ
= 0.625 s/m2 and

γ0
κ

= 1.25 s/m2, the coefficient p0 = 1 and the coefficient

ξ = 0.015(m/s)
3
2 . The values of the coefficients τ0

κ
,

γ0
κ
and

ξ were chosen following a best-fit approach for the flowwith
22◦ chute inclination and 30 l starting volume. They were
then kept constant for the computations of the other flows.

In Fig. 8 the computed depth-averaged density during the
passing of the flows (30 and 15 l starting volumes and four
different chute inclinations) are plotted (symbols). They are
in good agreement with the evolution of the measured depth-
averaged density (solid lines). In the flow head the model
underestimates the depth-averaged density in particular for
the flowswith 22◦ chute inclination.We remark that the pass-
ing of the flow head is very short (less than a second) during
which the flow height and the basal normal stress vary from
zero to their maximum values. Small systematic errors in

Fig. 7 Mean shear rate (a),meanvelocity (dashed lines) and slip veloc-
ity (solid lines) (b) versus time at the location x = 1.5 m for the four
chute inclinations and the 30 l starting volume

the flow height or basal normal stress data would result in
large uncertainties in the measured depth-averaged density
values (ratio of small quantities). The agreement of the com-
puted depth-averaged density with the measured one in the
flow head is thus difficult to assess. The model predicts low
depth-averaged density in the flow head due to high shear
rate and slip velocity. In the flow body and tail the agreement
between measurement and computation is good.

4 Discussion

The evolution of the measured depth-averaged density is
reproduced using a model that accounts for the fluctuation
energy of the grains. The normal stress is assumed to be
sustained by the velocity fluctuations of the grains and the
shear stress to be proportional to the density and to the shear
rate squared. The granular temperature decay coefficient is
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Fig. 8 Computed (symbols) and measured (solid lines) depth-averaged density versus time for flows with four different chute inclinations 22◦ (a),
24.5◦ (b), 27◦ (c), 29.5◦ (d) and two starting volumes

postulated to scale with the density times the power 3/2 of
the granular temperature. The agreement between the com-
puted and the measured depth-averaged density values is
good using one set of three parameters for the eight flows
investigated (two starting volumes and four different chute
inclinations).With regard to themodel assumptions we inter-
pret the evolution of density in a finite sized, dry granular
avalanche as follows:

– The depth-averaged density is lower in the flow head and
tail and higher in the flow body. In the flow head and
tail, the flow height is smaller and thus the conduction of
fluctuation energy from the bed surface to the free surface
is important. In addition the normal stress is lower in the
flowhead and tail, allowing the granularmaterial to dilate
more for a given granular temperature.

– The depth-averaged density is lower for flows with large
chute inclination. Two effects are competing. On the one
hand the flow height is larger for flows with large chute
inclination and less fluctuation energy is conducted to the
free surface. On the other hand the shear rate and the slip
velocity are larger for flows with large chute inclination

resulting in larger production at the bed surface and in
the flow bulk. All in all the last effect dominates.

– The depth-averaged density is lower for flows with small
starting volume. The explanation follows from the pre-
vious points of discussion. The shear rate and slip veloc-
ity are similar or slightly larger whereas the flow height
is smaller allowing for larger conduction of fluctuation
energy over the flow depth and enhanced dilation (lower
overburden pressure).

We now compare the terms in Eq. (19). For the flow with
30 l starting volume and 29.5◦ chute inclination, we find that
the first conduction term is in average three times larger than
the source term, the second conduction term is five times
smaller and the decay term is five times larger. The smallest
term in Eq. (19) (second conduction term) is thus 10 times
larger than the three terms (time derivative, spatial gradient
and normal stress terms) on the first line of Eq. (13). Indeed
the source term is 50 times larger than the three terms on
the first line according to the shallow flow scaling. Therefore
we argue that the important terms for the computation of the
granular temperature were taken into account.
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We note that Eq. (19) is valid only if the shear rate scales

with
√
gL
H as we assumed it when simplifying Eq. (11). In the

case of a plug flow the shear rate would be close to zero and
terms in Eq. (11) could not be neglected. The same remark
holds for the conduction of T . In the case of zero spatial gra-
dients of T and ρ in the y-direction additional terms should
be accounted in Eq. (19).

The choice of boundary conditions for T makes up aweak-
ness of the model since they are not supported by direct mea-
surements of the granular temperature. At the bed surface we
put forward the evolution of the slip velocity with respect to
the basal normal stress to set up the value of T . In [26] the
authors derive the boundary condition T (y = 0) ∝ u2s at a
bumpy bed surface assuming low density and us � √

T .
At the free surface it is simplicity that dictates our choice
of a zero spatial gradient of T in the y-direction. An alter-
native boundary condition would be a zero conduction term
at the free surface ρ ∂2T

∂y2
+ ∂ρ

∂y
∂T
∂y = 0. However using the

condition of a zero spatial gradient, we obtain values of
the conduction term close to zero for all flows at the free
surface.

The simplified fluctuation energy equation in Eq. (19)
also applies to steady and uniform flows. Indeed it does
not include any time derivative or spatial gradients in the
x-direction terms. Likewise the constitutive relations for the
internal stresses and the decay coefficient are also valid in the
case of steady and uniform flows. In contrast the mass and
momentum equation in the x-direction for steady and uni-
form flows do not apply to unsteady flows. That is the reason
why we do not solve the full system of governing equations
since it would require that we compute the flow over time and
space (x- and y-directions) and not only in the y-direction
at the location of the camera. In [27,28] the full system of
governing equations is solved numerically for steady and
uniform flows that is equivalent to computing the flow only
in the y-direction. Density and granular temperature profiles
are qualitatively similar to the ones in Fig. 9.

5 Conclusions

Dry granular avalanches in the frictional-collisional regime
are generally modeled as continuum materials obeying mass
andmomentum conservation equations for two-dimensional,
shallow flows. Their description is completed by constitutive
relations specifying shear stress and density and by boundary
conditions. Common constitutive relations assume a normal
stress (Coulomb friction) and/or shear rate (power law rheol-
ogy) dependent shear stress and constant density [2,9,11,12].
In the present work evidence of density variations in dense,
sheared, dry granular avalanches is shown. Moreover the
dependence of density on chute inclination and starting vol-
ume is quantified. The consequences of non-constant den-

Fig. 9 Computed profiles of granular temperature (a) and density (b)
versus flow depth at eight instants during the passing of the flow with
27◦ chute inclination and 30 l starting volume

sity for the modeling are wide-ranging. They include: extra
terms in the mass and momentum conservation equations
which make depth-averaging more difficult, another equa-
tion if fluctuation energy is taken into account and additional
constitutive relations since the number of equations minus
the number of unknown variables is increased. We add that
non-constant density de facto brings together models assum-
ing either normal stress or shear rate dependent shear stress
since the density factor in Eq. (15) includes implicitly the
normal stress dependence.

The present model has interesting implications for flows
with different boundary conditions or geometry. In this work,
the computed granular temperature is maximum at the bed
surface. However for flows with low slip velocity compared
to the shear rate (very rough bed surface, large normal stress,
lubricated grains) the granular temperature would be larger
in the flow bulk than at the bed surface, modifying the shape
of the velocity and density profiles. A limitation of the model
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concerns frictional flows characterized by low shear rate,
large normal stress and high density. Enduring and multi-
particle contacts dominate in the frictional regime and the
constitutive relations proposed herewould likely not be valid.
In particular the contact rate would not scale with the shear
rate and the energy lost per contact would not be propor-
tional to the shear rate squared. Future work shall aim at
the combined measurement of velocity, density and granular
temperature profiles. Such experimental data would enable
the direct derivation of constitutive relations and the verifi-
cation of their validity over the flow variable space.

6 Appendix

The interval [0, h] is discretized in N elements. The vector
y with size N+1 contains the y-coordinates of the elements
edges. In a first step Eq. (18) is integrated for n = N to 1
yielding the normal stress vector with size N+1:

pn = pn+1 + ρngcosθ
(
yn+1 − yn

)
. (22)

with the boundary conditions pN+1 = 0. In a second step
Eq. (19) is integrated over the flow depth. First the vector
∂T
∂y with size N+1 is computed for n = N to 1, second the
vector T with size N+1 is calculated for n = 2 to N+1:

∂T

∂y

n

= ∂T

∂y

n+1

−
(
yn+1 − yn

) (
− τ0

κln+1

(
d

∂u

∂y

)3

− 1

ρn+1

∂ρ

∂y

n+1 ∂T

∂y

n+1

+ γ0

κln+1 T
n+1 3

2

)

T n+1 = T n +
(
yn+1 − yn

) ∂T

∂y

n

(23)

with the boundary conditions ∂T
∂y

N+1 = 0 and T 1 = ξ
√
us .

In a third step, the normal stress and the granular temperature
are evaluated at the centre of the elements (vectors with size
N ) and a new density vector with size N is calculated. The
size of the elements 1 to N i.e. the vector y is modified with
respect to the new density vector so that the mass of each
element is conserved.
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