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Abstract. For conservation managers, it is important to know whether landscape changes
lead to increasing or decreasing gene flow. Although the discipline of landscape genetics
assesses the influence of landscape elements on gene flow, no studies have yet used landscape-
genetic models to predict gene flow resulting from landscape change. A species that has
already been severely affected by landscape change is the large marsh grasshopper
(Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in
Switzerland. From transects drawn between all population pairs within maximum dispersal
distance (,3 km), we calculated several measures of landscape composition as well as some
measures of habitat configuration. Additionally, a complete sampling of all populations in our
study area allowed incorporating measures of population topology. These measures together
with the landscape metrics formed the predictor variables in linear models with gene flow as
response variable (FST and mean pairwise assignment probability). With a modified leave-one-
out cross-validation approach, we selected the model with the highest predictive accuracy.
With this model, we predicted gene flow under several landscape-change scenarios, which
simulated construction, rezoning or restoration projects, and the establishment of a new
population. For some landscape-change scenarios, significant increase or decrease in gene flow
was predicted, while for others little change was forecast. Furthermore, we found that the
measures of population topology strongly increase model fit in landscape genetic analysis. This
study demonstrates the use of predictive landscape-genetic models in conservation and
landscape planning.
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INTRODUCTION

Habitat loss and fragmentation resulting in small and

less-connected populations have been identified as

threats to the long-term survival of species (Lande

1998). Reduced connectivity and gene flow can decrease

the resilience, adaptability, fitness, and fertility of

populations, especially if populations are small (Frank-

ham 2006). Whereas anthropogenic causes of habitat

loss and fragmentation can be avoided or reduced to

some extent within designated nature protection areas,

these processes are difficult to mitigate in human-

dominated landscapes such as agricultural landscapes

(Bennett et al. 2006). In such landscapes, it is important

to determine whether human-induced changes to the

landscape will result in significant changes to gene flow

in species inhabiting these landscapes.

Determining the influence of landscape configuration

and composition on gene flow is the focus of the

discipline of landscape genetics (Manel et al. 2003,

Holderegger and Wagner 2008). Most landscape-genetic

studies are exploratory; their goal is to identify

landscape elements that have either an inhibiting or

facilitating effect on gene flow (Storfer et al. 2010).

However, many of the models developed in landscape-

genetic studies could, in principle, also be used for

predictive purposes, i.e., to forecast the effects of

landscape changes on genetic patterns. Storfer et al.

(2007:138) identified such predictive studies as ‘‘. . . an

important future application of landscape genetics’’ and

point out that ‘‘this type of study may allow managers to

choose a management alternative that minimizes im-

pacts on the focal species while allowing some develop-

ment to take place.’’ Although the importance of

predictive landscape-genetic studies for conservation

management has been recognized by several authors

(Storfer et al. 2007, Balkenhol et al. 2009a, Spear et al.

2010), no studies have yet experimented in this direction

(Spear et al. 2010). Therefore, the goal of this study is to

demonstrate the application of landscape-genetic models

to predict the effects of landscape change on gene flow

among populations.
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A species that inhabits agricultural landscapes and

that has been negatively affected by habitat loss and
fragmentation is the large marsh grasshopper (Stetho-

phyma grossum). The eggs of this species only develop at
high soil moisture levels (Ingrisch 1983), which makes S.

grossum reproductively bound to wet areas like wet-
lands, marshes, wet meadows, and swampy areas
alongside streams, lakes, and rivers (Baur et al. 2006).

Considering that .90% of Swiss wetlands and flood-
plains have disappeared since 1800 (SAEFL 1998), it is

not surprising that S. grossum is red-listed as vulnerable
in Switzerland (Monnerat et al. 2007). Ecological studies

have already identified structural landscape elements,
such as rows of tall trees (Sörens 1996, Bönsel and

Sonneck 2011) and high-banked roads (Marzelli 1995),
as potential barriers to S. grossummovement. Therefore,

we focus on this species to determine what changes in
gene flow can be foreseen after landscape alterations.

In a fragmented agricultural area of Switzerland, we
performed a complete sampling of all S. grossum

populations. Individuals were genotyped, and measures
of genetic distance between populations were determined

(Keller et al. 2013a). In a four-step landscape-genetic
approach, (1) we created a set of potential predictor

variables by determining the proportion of several
landscape elements within transects drawn between pairs
of populations (Emaresi et al. 2011, Keller et al. 2012b).

In addition to these measures of landscape composition,
we calculated several more complex measures of habitat

configuration from these transects (Schumaker 1996,
McGarigal et al. 2012). The effect of the spatial

arrangement of populations (i.e., population topology)
on gene flow has been identified as an important aspect in

landscape genetics (Keller et al. 2013a). Therefore, by
determining the number of populations surrounding a

population pair and the average distance to these
populations, we also introduce two predictor variables

to quantify population topology in landscape-genetic
models. From the complete set of predictor variables, (2)

we selected a subset that had the best predictive accuracy
based on a cross-validation approach modified to

accommodate for the nonindependence of response and
predictor variables derived from distance matrices as
commonly used in landscape genetics. Subsequently, (3)

we described hypothetical landscape-change scenarios.
We chose scenarios in which a residential area is

constructed, agricultural land is reforested, forest is
converted to agricultural land, or a new population is

established between existing populations. We quantified
the influence of these scenarios on the selected predictor

variables. With these new predictor values (4), we
predicted future gene flow values and determined whether

the corresponding change in gene flow was significant.

METHODS

Study area and species

The study area (;180 km2) was located around the
town of Langenthal (4781205000 N, 784700500 E) on the

Swiss plateau. The landscape primarily consists of

intensive agriculture intermixed with forest patches

and settlements (Fig. 1). Three parallel streams flow

through the area that empty into the major river Aare.

The stream basins create suitable habitats for popula-

tions of S. grossum (Linnaeus, 1758; Acrididae).

Low levels of genetic differentiation have been

detected between the populations of S. grossum in this

study area (Keller et al. 2013a), indicating that there was

regular gene flow between populations. Mark–release–

recapture studies have recorded a maximum dispersal

distance of 624 m for S. grossum (Malkus 1997, Bönsel

and Sonneck 2011). Furthermore, single individuals

have been observed 1500 m from nearest populations

(Griffioen 1996). However, recordings from sighting

studies can easily underestimate true dispersal distances

(Franzén and Nilsson 2007, Hassall and Thompson

2012). Especially if species exhibit partial migration (i.e.,

most individuals are sedentary and only a few disperse

over longer distances [Chapman et al. 2011]), the few

long-distance migrants can easily be overlooked in

sighting studies. Judging from the frequency of move-

ment distribution presented in Bönsel and Sonneck

(2011), partial migration is present in S. grossum.

Therefore, we estimated the maximum dispersal distance

of S. grossum to be 3000 m, which is in accordance with

the genetic results of Keller et al. (2013a).

Genetic data set

The genetic data set used here has been described in

Keller et al. (2013a, b). In brief, we performed a

complete sampling of all populations of S. grossum in

the study area in July and August 2010. All potentially

moist areas (i.e., river or stream banks, valley bottoms,

lake shores, ditches and swamps) were checked for the

presence of S. grossum individuals. Samples were taken

only if populations were located at least 350 m from the

nearest known population. From each population, up to

30 individuals were sampled by removing the tibia and

tarsus of one mid-leg and storing those in 100% ethanol.

In the genetic analysis, seven polymorphic microsatellite

markers (Sgr10, Sgr13, Sgr15, Sgr19, Sgr38, Sgr40, and

Sgr45 [Keller et al. 2012a]) were amplified, analyzed on

an ABI 3730xl sequencer (Applied Biosystems; Life

Technologies, Carlsbad, California, USA) and scored

with GENEMAPPER 3.7 (Applied Biosystems). These

seven markers were in Hardy-Weinberg equilibrium,

had low null allele frequencies, and also a low

genotyping error rate averaging 4.7% (Keller et al.

2013a). Such an error rate is comparable to other genetic

analyses using microsatellites and acceptable to calculate

genetic differentiation between populations based on

allele frequencies (Selkoe and Toonen 2006).

For further analysis, we selected only those popula-

tions from which five or more individuals had been

sampled, and also removed two remote populations that

were outside the complete-sampling area (Fig. 1 and

Keller et al. 2013a). This resulted in a total of 37
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populations. As measures of gene flow between popu-

lations, we used both pairwise FST values (FSTAT

2.9.3.2; Goudet 1995) and pairwise mean assignment

probabilities (MAP; Keller et al. 2013a, b). The latter is

derived from assignment probabilities calculated with

GENECLASS 2.0.h (Piry et al. 2004). MAP between

populations A and B is the mean of the assignment

probabilities of individuals in population A to popula-

tion B, and vice versa. Thus, the higher MAP is, the

more gene flow is expected. Gene flow between any two

populations beyond the maximum dispersal distance of

S. grossum (i.e., 3 km; see Abstract) is probably directed

over several generations via intermediate populations

(e.g., McRae 2006). Thus, the landscape directly

between these two populations may not give a good

representation of the landscape encountered by the

majority of ‘‘indirect migrants’’ between the two

populations. Therefore, we only performed our land-

scape-genetic analysis on population pairs that were

within maximum dispersal distance (i.e., �3 km; see

Abstract), which resulted in a data set of 97 population

pairs.

Predictor variables

In landscape genetics, estimates of gene flow are

considered a function of interpopulation distance and

the intervening landscape. Several methods are currently

used to quantify the landscape between populations

(Spear et al. 2010). Recently, several studies have used

straight-line interpopulation transects of a certain width,

from which several landscape predictor variables are

calculated (Pavlacky et al. 2009, Angelone et al. 2011,

Emaresi et al. 2011, Keller et al. 2012b). In this transect

method, a separate predictor variable is calculated for

each landscape element (Emaresi et al. 2011), which is a

desirable property if the model is to be used to predict

the effect of changes of specific landscape elements.

We experimented with a range of transect widths (i.e.,

100, 200, 400, 700, and 1000 m), from which we

calculated several landscape predictor variables. To

account for isolation-by-distance (Jenkins et al. 2010),

we used the natural log-transformed length of the

transect (ln[DISTANCE]). From land cover grids (10

3 10 m spatial resolution) derived from 1:25 000

vectorized land cover maps of Switzerland (Vector25

FIG. 1. Map of the study area in Switzerland, in which all populations of Stethophyma grossum were sampled. Also shown is the
spatial distribution of the landscape elements that were selected as predictor variables in regression modeling. Habitat (hatched area)
was mapped by selecting all flat locations close to water (,500 m) and on agricultural land. A unique identification number was given
to each of the 37 populations. For the two population pairs that were genetically most isolated (pairs 13–14 and 10–34) and least
isolated (pairs 11–33 and 2–21) from each other, the border of the respective transect (dashed line) from which landscape metrics
were calculated is indicated. These transects were also used to predict changes in gene flow caused by landscape change (Fig. 5).
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2011; Swisstopo; DV033594; available online),5 we then

calculated the proportion of landscape elements in the

transects as measures of landscape composition (Pav-

lacky et al. 2009, Angelone et al. 2011, Emaresi et al.

2011, Keller et al. 2012b). As potential barriers to gene

flow in S. grossum, we considered the proportion of

residential area (RESIDENTIAL; m2/m2) and the

proportion of forest (FOREST; m2/m2; Fig. 1). As

potential facilitators to gene flow, we selected the

proportion of agricultural land (AGRICULTURE;

m2/m2), the proportion of streams (STREAMS; m2/

m2) and the proportion of suitable habitat (HABITAT;

m2/m2; Fig. 1). Suitable habitat was mapped in the study

area by selecting all areas that were close to open water

(�500 m), in open agricultural land and relatively flat

with little runoff (i.e., all areas differing not more than

20 m in elevation compared to the lowest point in a 500

m radius [Keller et al. 2013a]). Since the proportion of

agricultural land was strongly correlated to the propor-

tion of forest (Spearman q , �0.68) in all transect

widths, we decided to remove the latter from further

analysis.

Apart from the above landscape predictor variables

that quantify landscape composition, we also calculated

measures of habitat configuration from the transects, as

they may give a better representation of the landscape

that a dispersing individual encounters (e.g., Schumaker

1996). We focused on class-level statistics (McGarigal et

al. 2012), in which the landscape class under consider-

ation was the mapped suitable habitat. Binary maps of

suitable habitat and matrix were created for each

transect and used as input for FRAGSTATS 4.0

(McGarigal et al. 2012). As many landscape metrics

are highly correlated and conceptually similar (Riitters

et al. 1995), we selected two ecologically meaningful

indices that are supposed to be insensitive to transect

size. The first landscape index was the patch cohesion

index (COHESION), which was calculated from the

perimeter and area of the habitat patches in the transect

and the total area of the transect (McGarigal et al.

2012). This index measures the connectedness of habitat

patches and has proved to correlate well to estimates of

dispersal (Schumaker 1996). Second, we calculated the

aggregation index (AI), which measures the aggregation

or clumpiness of a landscape class (He et al. 2000). This

index was calculated from the number of adjoining

habitat pixels in the transect and the theoretical

maximum number of adjoining habitat pixels (McGar-

igal et al. 2012). We found COHESION and AI to be

highly correlated with HABITAT (Spearman q . 0.69)

for some, but not all, transect widths, so we retained

these three predictor variables in the final list of

landscape predictor variables. All spatial analyses were

performed in ARCGIS 9.3 (Esri, Redlands, California,

USA), unless otherwise specified.

Recently, several studies have emphasized the need to

take population topology (i.e., the arrangement of

populations in the landscape) into account in land-

scape-genetic analysis (McRae 2006, Dyer et al. 2010,

Keller et al. 2013a). Gene flow between two populations

can, over several generations, take place via intermediate

populations. The establishment or disappearance of

intermediate populations may thus influence gene flow

between populations. Therefore, we experimented with

two predictor variables that aim to quantify population

topology around a given population pair. For each

population, we determined the number of populations

that were within maximum dispersal distance (number

of links: NL) and the mean distance to these populations

(mean distances of links: MDL). We then determined

the mean of both measures per population pair (i.e.,

MEAN-NL and MEAN-MDL, respectively; Fig. 2). We

expected that the more populations surround a popula-

tion pair and/or the closer these surrounding popula-

tions are to either of the two populations, the higher is

gene flow between the two populations. To determine

whether these two predictor variables have any predic-

FIG. 2. Demonstration of the calculation of population
topology predictor variables used in this study. In this
hypothetical population network, all population pairs within
the maximum dispersal distance (i.e., �3 km) of one another
are linked. The number of links (NL) from population H to
other populations is 4 (i.e., to populations E, G, I, and K), and
the mean distance of these links (MDL) is (2325þ 2470þ 2720
þ 2915)/4¼ 2608 m. Similarly, for population I, NL is 4 (i.e., to
populations D, H, K, and J), and MDL is (1640þ 2720þ 2040
þ2200)/4¼2150 m. Mean NL (MEAN-NL¼ (4þ4)/2¼4) and
mean MDL (MEAN-MDL ¼ (2608 þ 2150)/2 ¼ 2379 m) are
then assigned to population pair H–I as population topology
predictor variables.

5 http://www.swisstopo.admin.ch/internet/swisstopo/en/
home/apps/geodata_portal.html
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tive power in landscape-genetic analysis, we tested the

predictive ability of models with and without these

variables. We checked that both MEAN-NL and

MEAN-MDL were never in the final model, as these

predictor variables were highly correlated (Spearman q
¼�0.74).

Predictive models and cross-validation

We used multiple linear regression to correlate the

response variable (i.e., either FST or MAP) to the suite of

predictor variables (i.e., ln(DISTANCE), STREAMS,

HABITAT, RESIDENTIAL, AGRICULTURE, AI,

COHESION, MEAN-NL, and MEAN-MDL). A pri-

mary goal of the statistical analysis in this study was to

select the subset of predictor variables that had the

highest predictive accuracy. Two approaches that have

been advocated for variable selection are information

criterion (e.g., AIC) and cross-validation (Burnham and

Anderson 2002). It has been shown that these approach-

es (i.e., AIC and leave-one-out cross-validation) are

asymptotically equivalent (Stone 1977, Shao 1993). We

chose to use leave-one-out cross-validation (LOOCV)

for variable selection, as this method is commonly used

to estimate prediction accuracy (Verbyla and Litvaitis

1989, Molinaro et al. 2005), and after making some

slight adaptations, allowed us to verify the predictive

model on pairwise FST or MAP values that are

‘‘independent’’ (i.e., the model is validated on FST or

MAP values that are not used to fit the model). With

normal LOOCV an ‘‘independent validation’’ of a model

is simulated by fitting a regression model to a calibration

(or estimation or training) set, which consists of the

whole data set excluding one observation (i.e., the

validation, evaluation, or testing set). This excluded

observation is then used to validate the model. However,

when distance or (dis)similarity matrices are used as

response variables (as in many landscape-genetic stud-

ies) and a certain population pair is selected as

validation set, there may still be pairwise observations

involving either of these two populations in the

calibration set, which diminishes the independence of

the validation set. Therefore, we propose a slightly

modified LOOCV, in which all pairwise observations,

involving either of the two populations in the validation

set, are excluded from the calibration set (Fig. 3).

The predictive accuracy of a model is determined by

comparing the value of FST or MAP in the ‘‘indepen-

dent’’ validation set with that predicted by the model

based on the predictor variables in the validation set.

The closer the predicted FST or MAP value is to the true

value, the better is the predictive accuracy of the model.

The process of comparing true with predicted FST or

MAP values is iterated until every population pair has

been in the validation set exactly once (i.e., 97

iterations). Finally, the predictive accuracy of the model

was expressed in the root mean square prediction error

(RMSE), which is the root of the mean of the summed

squared differences between the predicted and the true

FST or MAP values in the validation sets (Esposito et al.

2004). Not every population occurred equally frequently

in our data set, since it consisted of only those

population pairs with ,3 km distance among popula-

tions. Therefore, the size of our calibration set fluctuated

between 77 and 94 observations. For each transect width

and both sets of predictor variables (i.e., with or without

the MEAN-NL and MEAN-MDL), we calculated the

RMSE for all possible combinations of predictor

variables. The combination of predictor variables that

resulted in the lowest RMSE was the model with the

highest predictive accuracy. Shao (1993) concluded that

model selection with LOOCV is slightly too conservative

(i.e., retaining too many predictor variables), if the true

model is known. In our case the true model was not

known, and we therefore found this an acceptable bias.

For the model with the lowest RMSE, we also calculated

R2 and the cross-validated R2, i.e., Q2, statistics. The

latter is a measure of ‘‘goodness of prediction’’ (Leach

2001). We chose the model with the highest overall Q2 to

predict gene flow resulting from landscape change

scenarios. All statistical analyses were performed in R

(R Development Core Team 2012). With the ‘‘dredge’’

function in the R package ‘‘MuMIn’’ (Barton 2012), we

determined all possible combinations of predictor

variables from a full model.

FIG. 3. An example of the splitting of all population pairs in
the data set into a calibration and a validation set for leave-one-
out cross-validation. As in Fig. 2, a hypothetical population
network is built of links between populations that are within
maximum dispersal distance. Regression models are fit to the
population pairs in the calibration set and subsequently
evaluated with the validation set. The validation set consists
of one population pair (dark-gray line), and the calibration set
consists of all other population pairs in the network (dark-gray
dashed lines), excluding the population pairs that are linked to
either of the two populations in the validation set (dashed light-
gray lines). This process is repeated until all population pairs
have been in the validation set once.
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Landscape-change scenarios and gene flow predictions

As an illustration of how multiple regression models
can be used for forecasting in landscape genetics, we

predicted the effects of hypothetical landscape-change
scenarios on gene flow among populations of S.

grossum. From our data set, we selected the two
population pairs that were genetically most isolated

from each other and the two population pairs that were
least isolated from each other. Under the assumption of

isolation by distance (Wright 1943), close populations
pairs have more gene flow than distant pairs, and we

would simply end up selecting the two closest and two
farthest population pairs. To correct for this potential

effect, we calculated relative ‘‘gene flow rates’’ by
dividing the measure of gene flow from the best-fitting

model by the log of the distance (MAP/ln(DISTANCE)
or FST/ln(DISTANCE), where DISTANCE is measured

in meters). Between the population pairs with the
highest MAP gene flow rate or lowest FST gene flow
rate there is relatively more gene flow than would be

expected from the distance between the two populations,
and these populations can be considered genetically least

isolated from each other. Similarly, the population pairs
with the lowest MAP gene flow rate or highest FST gene

flow rate can be considered genetically most isolated
from each other. For the two genetically most isolated

population pairs, landscape change was focused on
increasing gene flow, while for the two genetically least

isolated population pairs, we assessed whether hypo-
thetical landscape change would negatively influence

gene flow. By changing the landscape in the transects
between these population pairs, we simulated four types

of landscape change. In the ‘‘construction’’ scenario, a
residential area was constructed adjacent to a small

settlement. In the ‘‘restoration’’ scenario, an area of
agricultural land was reforested as part of a river
restoration project. In the ‘‘new population’’ scenario,

some old factory buildings were demolished and a new
population of S. grossum established itself in between

the population pair under consideration. Finally, in the
‘‘rezoning’’ scenario, a forest plantation was converted

to agricultural land.
After having implemented the above scenarios to the

landscape in the transects between the four selected
population pairs, we calculated new values for all

predictor variables. These modified variables were
entered into the model with the highest Q2 (see

Predictive models and cross-validation) to make predic-
tions of gene flow estimates (FST or MAP). We

calculated the 95% prediction intervals of these new
gene flow estimates using the estimated mean-squared

prediction error from the LOOCV (i.e., RMSE2) as
prediction variance. A change in gene flow was

considered significant, if the observed gene flow (in the
unchanged landscape) was outside the prediction
interval of the predicted gene flow (in the changed

landscape). Models were fitted with the ‘‘lm’’ function
and predictions and prediction intervals were calculated

with the ‘‘predict’’ function in R (R Development Core

Team 2012).

RESULTS

Predictive model selection

From FST or MAP regressed against landscape
metrics (i.e., ln(DISTANCE), STREAMS, HABITAT,

RESIDENTIAL, AGRICULTURE, AI and COHE-
SION), we determined the subset of predictors with the

lowest RMSE (Table 1). For both response variables,
the selected predictor variables were ln(DISTANCE)

and AGRICULTURE for all transect widths. Never-
theless, predictor variables calculated from transects

with a width of 700 m produced the models with the
highest predictive accuracy for both response variables

(FST, Q
2 ¼ 0.0753; MAP, Q2 ¼ 0.2163). The landscape

index COHESION was never selected and the index AI

was only selected once, namely in the model from 100-m
transects; FST ; AIþ AGRICULTURE.

After adding the two population topology predictors
(MEAN-MDL and MEAN-NL) to the full model, we

found that the models with the highest Q2 for both
response variables were again those from transects with
a width of 700 m (FST, Q

2¼ 0.1925; MAP, Q2¼ 0.3444;

Table 1). From the differences in Q2 value between
models with and without MEAN-MDL and MEAN-

NL, it was apparent that the inclusion of measures of
population topology greatly improved the predictive

accuracy of the models (FST, highest Q
2 from 0.0753 to

0.1925; MAP, highest Q2 from 0.2163 to 0.3444; Table

1). For FST as response variable, the models with
AGRICULTURE and MEAN-NL produced the lowest

RMSE (¼ 0.0260; transect width ¼ 700 m). The model
MAP ; 0.7551 – 0.02653 ln(DISTANCE) � 0.19333

RESIDENTIAL þ 0.19943 AGRICULTURE � 1.770
3 10�4 3 MEAN-MDL was selected for having the

lowest RMSE (¼ 0.0854; transect width ¼ 700 m). This
model also had the highest overall Q2 value and was

therefore used in the following step to predict gene flow
after landscape change. For this model, Fig. 4 shows the
observed (true) MAP values plotted against predicted

MAP values from leave-one-out cross-validation. Fur-
thermore, from the models including the population

topology predictors, we found that the models with
MAP as response variable generally had a higher model

fit than models with FST as response variable (FST, R
2 �

0.3011; MAP, R2 � 0.4085; Table 1)

Prediction of gene flow

The population pairs 13–14 and 10–34 had the highest
MAP gene flow rates (0.0849 and 0.0848, respectively),

and population pairs 11–33 and 2–21 had the lowest
MAP gene flow rates (0.0182 and 0.0147, respectively).

In 700 m wide transects between these four population
pairs (Fig. 1), we demonstrate below how landscape
change may alter MAP (Fig. 5).

In the ‘‘construction’’ scenario between populations

13 and 14 (Fig. 5), the construction of a 0.11-km2
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residential area would result in a 180% increase of the

predictor RESIDENTIAL from 0.066 to 0.185 m2/m2

and a 17% decrease of AGRICULTURE from 0.612 to

0.509 m2/m2. Due to these changes, the MAP was

predicted to significantly decrease from 0.566 to 0.364.

In the transect between populations 10 and 34, we

simulated a ‘‘restoration’’ scenario with the planting of a

0.15-km2 forest patch along a stream (Fig. 5). This

landscape change would bring about a 19% decrease of

the predictor AGRICULTURE from 0.949 to 0.770 m2/

m2, which would result in a slight and insignificant

decrease of MAP from 0.550 to 0.412. In the ‘‘new

population’’ scenario between population 11 and 33

(Fig. 5), the demolition of old factory buildings and the

establishment of a new population caused changes in

RESIDENTIAL from 0.030 to 0.009 m2/m2 (70%

decrease), AGRICULTURE from 0.717 to 0.737 m2/

m2 (3% increase) and MEAN-MDL from 2072 to 1848

m (11% decrease). These changes would lead to a

significant increase of MAP from 0.137 to 0.373. Lastly,

in the ‘‘rezoning’’ scenario, a 0.27-km2 piece of land was

transformed from forest plantation to agriculture

between populations 2 and 21 (Fig. 5). This caused a

43% increase in AGRICULTURE from 0.296 to 0.424

m2/m2, and, because a forest hut would also be

demolished in the process, a 3% decrease in RESIDEN-

TIAL from 0.039 to 0.038 m2/m2. These changes would

result in a slight and insignificant change in MAP from

0.115 to 0.162.

DISCUSSION

In this study, we presented how landscape-genetic

models can be applied to predict the effects of landscape

change on gene flow among populations of the

TABLE 1. Results of model selection for gene flow linearly regressed against landscape metrics calculated from interpopulation
transects of different widths (upper half ) and later combined with measures of population topology (lower half ).

Transect
width

Full/selected
model Model formula RMSE Q2 R2

full model MAP ; ln(DISTANCE) þ STREAMS þ HABITAT þ
RESIDENTIAL þ AGRICULTURE þ AI þ COHESION

100 selected model MAP ; ln(DISTANCE) þ AGRICULTURE 0.0989 0.1210 0.2513
200 selected model MAP ; ln(DISTANCE) þ AGRICULTURE 0.0980 0.1362 0.2630
400 selected model MAP ; ln(DISTANCE) þ AGRICULTURE 0.0965 0.1622 0.2855
700 selected model MAP ; ln(DISTANCE) þ AGRICULTURE 0.0933 0.2163 0.3349
1000 selected model MAP ; ln(DISTANCE) þ AGRICULTURE 0.0947 0.1937 0.3250

full model FST ; ln(DISTANCE) þ STREAMS þ HABITAT þ
RESIDENTIAL þ AGRICULTURE þ AI þ COHESION

100 selected model FST ; ln(DISTANCE) þ AGRICULTURE� 0.0286 0.0229 0.1606
200 selected model FST ; ln(DISTANCE) þ AGRICULTURE 0.0284 0.0426 0.1736
400 selected model FST ; ln(DISTANCE) þ AGRICULTURE 0.0280 0.0644 0.1859
700 selected model FST ; ln(DISTANCE) þ AGRICULTURE 0.0279 0.0753 0.1961
1000 selected model FST ; ln(DISTANCE) þ AGRICULTURE 0.0286 0.0238 0.1601

full model MAP ; ln(DISTANCE) þ STREAMS þ HABITAT þ
RESIDENTIAL þ AGRICULTURE þ AI þ COHESION
þ MEAN-MDL þ MEAN-NL

100 selected model MAP ; ln(DISTANCE) þ RESIDENTIAL þ
AGRICULTURE þ COHESION þ MEAN-MDL

0.0866 0.3250 0.4606

200 selected model MAP ; ln(DISTANCE) þ RESIDENTIAL þ MEAN-MDL 0.0874 0.3129 0.4085
400 selected model MAP ; ln(DISTANCE) þ RESIDENTIAL þ MEAN-MDL 0.0866 0.3251 0.4170
700 selected model MAP ; ln(DISTANCE) þ RESIDENTIAL þ

AGRICULTURE þ MEAN-MDL
0.0854 0.3444 0.4883

1000 selected model MAP ; ln(DISTANCE) þ AGRICULTURE þ MEAN-MDL 0.0869 0.3205 0.4662
full model FST ; ln(DISTANCE) þ STREAMS þ HABITAT þ

RESIDENTIAL þ AGRICULTURE þ AI þ COHESION
þ MEAN-MDL þ MEAN-NL

100 selected model FST ; AGRICULTURE þ MEAN-MDL 0.0267 0.1510 0.2759
200 selected model FST ; AGRICULTURE þ MEAN-NL� 0.0264 0.1671 0.2875
400 selected model FST ; AGRICULTURE þ MEAN-NL 0.0261 0.1866 0.2963
700 selected model FST ; AGRICULTURE þ MEAN-NL 0.0260 0.1925 0.3011
1000 selected model FST ; AGRICULTURE þ MEAN-NL§ 0.0270 0.1297 0.2641

Notes:Gene flow was estimated as either pairwise mean assignment probability (MAP) or genetic differentiation (FST). For each
transect, the DISTANCE (m) and proportion of the landscape elements STREAMS, HABITAT, RESIDENTIAL, and
AGRICULTURE (m2/m2) together with the COHESION and aggregation index (AI) were calculated. Measures of population
topology were calculated by averaging per population pair the number of populations within dispersal distance from either
population and the mean distance (with distance originally measured in meters) to these surrounding populations (i.e., MEAN-NL
and MEAN-MDL, respectively; Fig. 2). From all potential combinations of predictor variables in the full model, the model with
the lowest root mean square error (RMSE) was selected for each transect width. For the selected models, estimates of goodness of
prediction (Q2) and goodness of fit (R2) were calculated. The models with the lowest overall RMSE are displayed in bold for both
response variables, MAP and FST.

� Same RMSE: FST ; AI þ AGRICULTURE.
� Same RMSE: FST ; AGRICULTUREþ AI þMEAN-NL.
§ Same RMSE: FST ; ln(DISTANCE)þ AGRICULTUREþMEAN-MDL and FST ; AGRICULTUREþMEAN-MDL.
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vulnerable grasshopper species S. grossum inhabiting an

intensive agricultural landscape. We showed that some

landscape changes are expected to increase gene flow

between less-connected population pairs, while some

well-connected pairs may experience less gene flow after

certain landscape changes. Species distribution modeling

is widely used in species conservation to predict the

effects of environmental change on the area of available

habitat of certain species (Rodrı́guez et al. 2007).

Likewise, our study opens up new possibilities for

conservation practitioners to consider the effects of

landscape change between patches of suitable habitat on

gene flow. Furthermore, we found that the inclusion of

measures of population topology strongly improved the

model fit and predictive accuracy of our landscape-

genetic models.

Predictor variables

Apart from the Euclidean distance among popula-

tions, we found that the proportions of agricultural land

and residential areas in the transects were the most

important landscape predictors for gene flow (i.e.,

MAP). Also working with transects and S. grossum,

Keller et al. (2013a) assessed the significance of predictor

variables in full landscape-genetic models, and, in their

best-performing model, also found distance and the

proportion of residential area to be significant predictors

of MAP. However, they also found the proportion of

forests, roads, and streams to be significant predictors.

Instead of the proportion of forest, we decided to

incorporate the proportion of agriculture. We made this

choice, because we found the proportion of forest to be

strongly and negatively correlated to the proportion of

agriculture. Including correlated predictor variables in

regression models can lead to misspecification of the sign

of regression coefficients (Legendre and Legendre 1998).

Whether gene flow was facilitated by agriculture or

inhibited by forest or both in S. grossum cannot be

determined with certainty from such landscape-genetic

models (Angelone et al. 2011). A review of literature

suggests both to be important. Marzelli (1995) and

Griffioen (1996) mentioned that S. grossum disperses

through extensive grassland and intensive agriculture,

respectively. Sörens (1996) and Bönsel and Sonneck

(2011) suggested high trees as a barrier to movement in

S. grossum. Furthermore, we decided not to consider the

proportion of roads in our study. Surprisingly, this

predictor had a strong positive correlation with MAP in

Keller et al. (2013a). These authors discussed that this

finding may be explained by dispersal of S. grossum

along road verges. Thus, the proportion of roads itself is

most probably not facilitating gene flow, and is only an

indirect predictor variable (Austin and Smith 1989).

Including such predictor variables in predictive models

may lead to biased forecasts. For instance, a predictive

model with positive correlation between MAP and the

proportion of roads would predict highest gene flow if

the entire transect was paved. These issues clearly show

the importance of including only ‘‘uncorrelated’’ causal

or direct predictor variables in predictive models, as has

also been emphasized for species distribution modeling

(Guisan and Zimmermann 2000).

We experimented with two types of predictor vari-

ables that previously have not been used in landscape-

genetic models. First, we calculated measures of habitat

configuration from transects between populations.

Although these predictor variables hardly added predic-

tive accuracy to our models, we remain in favor of their

use in landscape genetics. For instance, we see potential

in developing landscape indices that indicate the

location of certain landscape elements in a transect.

Such indices would allow us to differentiate between

landscape change taking place at the edge or in the

middle of a transect. Furthermore, we added predictor

variables that quantified population topology to our

landscape-genetic models. This resulted in a substantial

increase in model fit (R2) and predictive accuracy (Q2).

As we expected, we found that the farther surrounding

populations were from a certain population pair, the less

gene flow was estimated between that population pair

(i.e., negative correlation between MEAN-MDL and

MAP). From this, we conclude that an important part of

the gene flow between two populations is the result of

indirect dispersal via surrounding populations across

several generations. These findings confirm the recom-

mendations of earlier studies (Dyer et al. 2010, Keller et

al. 2013a) to more explicitly consider population

topology in landscape genetics. In the current study,

we included the effect of population topology (MEAN-

MDL) as a predictor variable and only assessed its effect

FIG. 4. Scatterplot of predicted and observed pairwise
mean assignment probabilities (MAP) from a leave-one-out
cross-validation of the regression model MAP ; ln(DIS-
TANCE) þ MEAN-MDL þ RESIDENTIAL þ AGRICUL-
TURE (Table 1). For an explanation of the procedure see Fig.
3. The dashed line through the origin with a slope of 1
represents the line of perfect match between predicted and
observed MAP values.
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on a single population pair. In reality, however, there

may be an interaction effect between population pairs,

i.e., a change in gene flow between two populations will

also have effects on gene flow between surrounding

populations. Implementing such an effect in predictive

landscape-genetic models would require more dynamic

agent-based models (Landguth and Cushman 2010).

Furthermore, populations located close to a certain

population pair may not only enhance gene flow, but

might in fact also reduce gene flow between the

population pair by acting as ‘‘sponges’’ to dispersing

individuals (Adriaensen et al. 2003).

Considerations in predictive landscape genetics

In this study we selected predictor variables based on

their predictive accuracy making use of a modified leave-

one-out cross-validation (LOOCV) approach. An alter-

native to LOOCV is variable selection based on AIC

(Burnham and Anderson 2002). Opposed to selecting a

single best model, a benefit of using AIC-based variable

selection is that a set of top-ranked models is selected

(e.g., Goldberg and Waits 2010, Emaresi et al. 2011), of

which the regression coefficients can be averaged to

define a final model. The difference in AIC value

between each model and the model with the lowest

AIC determines the relative weight of the models in the

final model. This relative weighting of the models is

biased if observations are not independent from one

another (as in distance or (dis)similarity matrices

[Burnham and Anderson 2002]). Goldberg and Waits

(2010) propose a method to select only independent

observations from dissimilarity matrices in order to

FIG. 5. The effect of hypothetical landscape-change scenarios on gene flow (pairwise mean assignment probability, MAP)
between four population pairs predicted with the linear model MAP ; ln(DISTANCE) þ MEAN-MDL þ RESIDENTIAL þ
AGRICULTURE (Table 1), with all distances originally measured in meters. Four different landscape-change scenarios were
implemented in the transects between the two population pairs with the highest (upper two) and lowest (lower two) gene flow rates.
Between each population pair (Fig. 1), the observed MAP value, the current landscape in the transect, and the corresponding
predictor variables are displayed. The hypothetical landscape change is described and applied to the landscape (future landscape) in
the transect, resulting in new values of the predictor variables (future predictor values). Based on these new predictor values, future
values of MAP together with the lower and upper limits of their 95% prediction intervals were predicted. Change in MAP was
significant if the current value of MAP was outside the prediction intervals of the predicted MAP. Gray shading of the landscape
elements are the same as in Fig. 1.
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obtain unbiased AIC differences. However, this method

has been criticized (Van Strien et al. 2012), and to our

knowledge no methods are currently available to adjust

AIC values for nonindependent observations originating

from distance or (dis)similarity matrices. Although

asymptotically equivalent to AIC-based variable selec-

tion (Stone 1977, Shao 1993), we preferred LOOCV,

because this intuitive approach could easily be adapted

to test the predictive accuracy of our models on

‘‘independent’’ data. As truly independent data (i.e.,

using different data sets for calibration and validation) is

not available in many studies, cross-validation is a

commonly used alternative (i.e., using the same data set

for calibration and validation [Verbyla and Litvaitis

1989]). By modifying LOOCV, models could be verified

with pairwise gene flow measures originating from

populations that were not used to calibrate the model.

Thus, model selection with LOOCV does not make use

of significance values or information criteria (e.g., AIC),

but simply assesses which model best predicts gene flow

between a pair of populations of which only the

predictor variables are known. Nevertheless, there is

an urgent need for more robust statistical techniques in

landscape genetics. The nonindependence of pairwise

genetic distance measures results in an unknown number

of degrees of freedom (Dow et al. 1987), rendering many

statistical tests or measures unsuitable for landscape-

genetic analyses (e.g., Legendre and Fortin 2010).

Therefore, most landscape-genetic studies draw infer-

ence simply by testing the significance of predictor

variables making use of Mantel tests (Balkenhol et al.

2009b, Storfer et al. 2010), which have been specifically

designed to correlate distance matrices (Mantel 1967).

However, the statistical validity of Mantel tests has also

recently been questioned (Guillot and Rousset 2013).

Although our models predict estimates of future gene

flow, it is uncertain how fast such future gene flow values

would establish in reality. With a simulation study,

Landguth et al. (2010) have shown that recently

established barriers to gene flow were genetically

detectable within only a few generations (i.e., 1–15

generations), but that genetic patterns remained unaf-

fected for many generations (i.e., .100 generations)

after the removal of a barrier. We thus expect that a

predicted decrease in gene flow will manifest itself in a

relatively short time span, while a predicted increase

may only materialize over longer time periods. To

empirically confirm these expectations, landscape genet-

icists should focus on sampling many populations in

several, replicated study areas (e.g., Short Bull et al.

2011) and resampling populations at intervals after

landscape change has taken place.

We chose to use straight-line transects to quantify the

landscape between populations. However, if individuals

do not disperse between populations in fairly straight

lines, such transects do not represent the landscape

encountered by a dispersing individual (Spear et al.

2010, Van Strien et al. 2012). Contrary to straight-line

transects, Van Strien et al. (2012) proposed to direct

transects along dispersal routes through a specific

dispersal habitat (i.e., least-cost transect analysis;

LCTA). With LCTA, landscape change could, thus,

not only change the composition of the landscape in the

transect, but also the course of the transect as a whole.

Although such changes may be ecologically realistic

(i.e., species may change their dispersal route after

landscape change), the complex LCTA models would

need further empirical and theoretical evaluation before

being implemented for predictive purposes.

Recently, Jay et al. (2012) showed how species

distribution models can be used to predict the effect of

climate change on the distribution of and contact zones

between genetic population clusters in 20 alpine plant

species. In a study area spanning across the European

Alps, these authors predicted that 48C warming would

lead to significant changes in the genetic composition

within the studied species. The study of Jay et al. (2012)

presents a method to predict shifts in the genetic

composition of populations, but it did not take the

intervening landscape into account. On the other hand,

landscape genetics focuses on the prediction of gene flow

through the landscape in between populations, without

taking changes in the genetic composition of the

populations into account. These two aspects are closely

interlinked, and combining both methods could thus

add increased reliability to predictions.

Different forms of population structure and specialization

For some groups of organisms the landscape-genetic

models presented in this study may not be applicable or

have to be adapted. Because S. grossum is reproductively

bound to moist areas (Baur et al. 2006), we were able to

identify discrete populations of this species in the study

area where moist areas were patchily distributed. For

species in which individuals are more continuously

distributed throughout a study area, complete sampling

is impractical and the influence of the arrangement of

individuals or populations on gene flow may be difficult

to determine. If no spatially distinct populations are

present in a focal species, genetic distance could be

measured between pairs of individuals (e.g., Rousset

2000), opposed to the genetic distance measures between

populations used in the current study. Alternatively,

genotypes of randomly sampled individuals can be

statistically grouped into genetic populations based on

the principles of Hardy-Weinberg equilibrium and

linkage equilibrium using assignment tests (Manel et

al. 2007). Furthermore, identifying certain landscape

elements that inhibit or facilitate movement may be

easier for habitat specialists, such as S. grossum (Bönsel

and Sonneck 2011), than for habitat generalists. The

movement of habitat generalists may be less driven by

the availability of certain landscape elements and more

by factors like disturbance, competition for food

sources, or random movement behavior. It is difficult

to express these latter factors in a spatial context. For
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instance, Driezen et al. (2007) used empirical movement

data from radio-tagged hedgehogs to determine the

most likely relative resistance-to-movement values for

certain landscape elements in their study area. They

stated that their low success rate in assigning resistance

values to particular landscape elements was partly due

to the fact that hedgehogs are habitat generalists.

Benefits for conservation planning

With the current study, we hope to show how

landscape genetic models can be applied to ‘‘real world’’

conservation planning. When implementing landscape

change in our study area, our best predictive model

could be directly applied to the conservation of S.

grossum. Empirical studies have shown that anthropo-

genic landscape change often results in decreased gene

flow among populations and decreased genetic variation

within populations (e.g., Athrey et al. 2012). On the

other hand, landscape management can also effectively

reconnect isolated (meta) populations (e.g., Hale et al.

2001). Likewise, our model forecasts that some land-

scape changes will lead to significant decreases in gene

flow between populations of S. grossum, and that gene

flow can be restored between isolated populations. In

situations where gene flow is predicted to decrease due

to landscape change and no feasible mitigating measures

exist, conservationists could resort to translocation of

individuals from one population to another in order to

restore genetic variation within populations (e.g., Heber

et al. 2013). However, conservation scientists and

practitioners should also be aware of the role that

genetic isolation plays in adaptive evolution. Local

adaptation of populations could be important for a

species’ long-term survival in a changing environment.

Although gene flow may spread adaptively beneficial

alleles, local adaptation can also be counteracted by

gene flow (Lenormand 2002). Furthermore, gene flow

between locally adapted populations may lead to

‘‘migrational meltdown’’ or outbreeding depression,

which can reduce the fitness of populations (Crispo et

al. 2011).

Despite the many scientific studies focusing on

conservation and landscape genetics (Jenkins et al.

2010, Storfer et al. 2010), few conservation practitioners

have started considering genetics in the management of

protected areas and species (Frankham 2010, Segel-

bacher et al. 2010, Braunisch et al. 2012). Previous

landscape-genetic studies have mainly focused on

identifying gene flow facilitating or inhibiting landscape

elements (Storfer et al. 2010), leaving it up to

conservation practitioners to interpret and weigh this

knowledge and make qualitative assessments of the

severity of landscape changes on gene flow. By using

cross-validated landscape-genetic models to predict gene

flow changes, we produced quantitative estimates of this

severity, enabling practitioners to rank potential land-

scape change scenarios according to their anticipated

impact on gene flow. Such models not only provide a

tool to avoid landscape change that can lead to severe

decreases in gene flow among populations, but also

assist in finding management strategies that mitigate the
negative effects of inevitable landscape change (e.g., by

establishing new dispersal corridors or new popula-

tions). Although we demonstrated our approach on a

single species, we believe that such landscape-genetic
models could be particularly useful in multispecies

conservation projects. Building models for several

endangered or rare species in an area and overlaying
these species-specific models will allow landscape

planners to select areas for development that are

predicted to be least damaging to overall gene flow.

With the rapid development of cheaper and faster
genetic sequencing technologies (Segelbacher et al. 2010,

Glenn 2011), such multispecies genetic data sets will

become more widely available in the near future.
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derer Berücksichtigung der Mahd. Articulata 12:1–18.

Manel, S., F. Berthoud, E. Bellemain, M. Gaudeul, G. Luikart,
J. E. Swenson, L. P. Waits, P. Taberlet. and Intrabiodiv
Consortium. 2007. A new individual-based spatial approach
for identifying genetic discontinuities in natural populations.
Molecular Ecology 16:2031–2043.

Manel, S., M. K. Schwartz, G. Luikart, and P. Taberlet. 2003.
Landscape genetics: combining landscape ecology and
population genetics. Trends in Ecology and Evolution
18:189–197.

Mantel, N. 1967. Detection of disease clustering and a
generalized regression approach. Cancer Research 27:209–
220.

Marzelli, M. 1995. Grasshopper colonisation of a restoration
area, focusing on the Large Marsh Grasshopper (Mecoste-
thus grossus). Pages 37–48 in K. M. Urbanska and K.
Grodzinska, editors. Restoration ecology in Europe. Geobo-
tanical Institute ETH, Zurich, Switzerland.

MAARTEN J. VAN STRIEN ET AL.338 Ecological Applications
Vol. 24, No. 2



McGarigal, K., S. A. Cushman, and E. Ene. 2012. FRAG-
STATS v4: spatial pattern analysis program for categorical
and continuous maps. University of Massachusetts, Amherst,
USA.

McRae, B. H. 2006. Isolation by resistance. Evolution 60:1551–
1561.

Molinaro, A. M., R. Simon, and R. M. Pfeiffer. 2005.
Prediction error estimation: a comparison of resampling
methods. Bioinformatics 21:3301–3307.

Monnerat, C., P. Thorens, T. Walter, and Y. Gonseth. 2007.
Rote Liste Heuschrecken. BAFU, Bern, Switzerland.

Pavlacky, D. C., A. W. Goldizen, P. J. Prentis, J. A. Nicholls,
and A. J. Lowe. 2009. A landscape genetics approach for
quantifying the relative influence of historic and contempo-
rary habitat heterogeneity on the genetic connectivity of a
rainforest bird. Molecular Ecology 18:2945–2960.

Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin,
and A. Estoup. 2004. GENECLASS2: a software for genetic
assignment and first-generation migrant detection. Journal of
Heredity 95:536–539.

R Development Core Team. 2012. R: a language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Riitters, K. H., R. V. O’Neill, C. T. Hunsaker, J. D. Wickham,
D. H. Yankee, S. P. Timmins, K. B. Jones, and B. L.
Jackson. 1995. A factor analysis of landscape pattern and
structure metrics. Landscape Ecology 10:23–39.

Rodrı́guez, J. P., L. Brotons, J. Bustamante, and J. Seoane.
2007. The application of predictive modelling of species
distribution to biodiversity conservation. Diversity and
Distributions 13:243–251.

Rousset, F. 2000. Genetic differentiation between individuals.
Journal of Evolutionary Biology 13:58–62.

SAEFL. 1998. National report of Switzerland for the conven-
tion of biological diversity. Hintermann and Weber, Mon-
treux, Switzerland.

Schumaker, N. H. 1996. Using landscape indices to predict
habitat connectivity. Ecology 77:1210–1225.

Segelbacher, G., S. A. Cushman, B. K. Epperson, M. J. Fortin,
O. Francois, O. J. Hardy, R. Holderegger, P. Taberlet, L. P.

Waits, and S. Manel. 2010. Applications of landscape
genetics in conservation biology: concepts and challenges.
Conservation Genetics 11:375–385.

Selkoe, K. A., and R. J. Toonen. 2006. Microsatellites for
ecologists: a practical guide to using and evaluating
microsatellite markers. Ecology Letters 9:615–629.

Shao, J. 1993. Linear model selection by cross-validation.
Journal of the American Statistical Association 88:486–494.

Short Bull, R. A., S. A. Cushman, R. Mace, T. Chilton, K. C.
Kendall, E. L. Landguth, M. K. Schwartz, K. McKelvey,
F. W. Allendorf, and G. Luikart. 2011. Why replication is
important in landscape genetics: American black bear in the
Rocky Mountains. Molecular Ecology 20:1092–1107.
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