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Abstract Warning systems are increasingly applied to reduce
damage caused by different magnitudes of rockslides and rock-
falls. In an integrated risk-management approach, the optimal risk
mitigation strategy is identified by comparing the achieved effec-
tiveness and cost; estimating the reliability of the warning system
is the basis for such considerations. Here, we calculate the reli-
ability and effectiveness of the warning system installed in
Preonzo prior to a major rockfall in May 2012. BReliability^ is
defined as the ability of the warning system to forecast the hazard
event and to prevent damage. To be cost-effective, the warning
system should forecast an event with a limited number of false
alarms to avoid unnecessary costs for intervention measures. The
analysis shows that to be reliable, warning systems should be
designed as fail-safe constructions. They should incorporate com-
ponents with low failure probabilities, high redundancy, have low
warning thresholds, and additional control systems. In addition,
the experts operating the warning system should have limited risk
tolerance. In an additional hypothetical probabilistic analysis, we
investigate the effect of the risk attitude of the decision makers and
of the number of sensors on the probability of detecting the event
and initiating a timely evacuation, as well as on the related inter-
vention cost. The analysis demonstrates that quantitative assess-
ments can support the identification of optimal warning system
designs and decision criteria.

Keywords Rockfall . Inverse velocity . Warning
system . Reliability . Effectiveness

Introduction
Mountain regions are prone to gravitationally driven natural haz-
ard processes. Mid- (>104 m3) and high-magnitude (>106 m3)
rockfalls and rockslides can cause much damage due to on-site
and off-site effects such as inundation, dam failure, and subse-
quent debris flow activity in released debris (Hewitt et al. 2008). In
some areas, especially those affected by melting permafrost and
rapid deglaciation, there is increasing evidence for rising frequen-
cies of rock slope failure (Ravanel and Deline 2011; Huggel et al.
2012; Krautblatter et al. 2013). Out of 38 recorded landslide disas-
ters (1000–1999 AD) that have each caused more than 1000 casu-
alties worldwide, 75 % were due to massive high-magnitude rock
slope failure (Evans 2006). But also, mid-magnitude rockfalls pose
a great risk to densely populated alpine areas. This is because of
their sudden release, fast propagation, long and (often unpredict-
able) runout, and impact energy far beyond the retention capacity
of most rockfall nets or other protection measures (Zimmer et al.
2012). They often result in total destruction of buildings and infra-
structure as has recently been demonstrated by a 3000-m3 rockfall on
the major Gotthard Railway (Switzerland) on June 5, 2012, which
caused one casualty and closed the railway line for more than a
month.

To protect individuals and mobile objects close to potential
release areas, warning systems are increasingly applied as a risk

mitigation measure. They can generate timely information and
allow at-risk people to act and to reduce their impacts (UNISDR
2007). Warning systems are especially useful when the capacity of
structural rockfall protection measures is likely to be exceeded;
they are typically associated with low life cycle cost, a high flexi-
bility, and with minimal impact on the environment (Hattenberger
and Wöllik 2008). Modern warning systems for forecasting mid-
and high-magnitude rockfall events consist of technical compo-
nents, models, and human decision making (Ganerød et al. 2008;
Sturny and Bründl 2014). They make use of typical velocity pat-
terns of rockfall processes for detecting events.

To this end, displacements are monitored, often with total
stations and extensometers. In the operation of rockfall warning
systems (RWS), two phases can be distinguished, which are related
to the progress of a rockfall failure. In the first phase, to which we
refer to as Bdetachment phase,^ warning systems constantly mon-
itor movement patterns of the unstable rock mass to send warning
information instantaneously when a predefined threshold is
exceeded. Higher-magnitude rock slope failures characteristically
evolve slowly, typically weeks to several years, until a critical level
of detachment is developed. Failing slopes show early signs of
deformations such as tension cracks, movement, and increasing
rockfall activity (Hungr and Evans 2004). This progressive failure
includes daily fluctuations and depends on temperature, rain,
snow melt, and long-term stress–strain behavior of slopes which
control fracture propagation. Rainfall, earthquakes and snow
melting, weathering, and aging can be important triggers or driv-
ing factors that weaken the rock mass during the first phase
(Lacasse et al. 2008). Rainfall and snow melt directly influence
the pore water pressure, which can be a major driver for rock
displacement and the final failure (Loew et al. 2012). To include
these contributing factors in decision procedures associated with
warning systems, they are often equipped with rain gauges and
sensor measuring pore water pressures.

In the second phase, which we refer to as the Bacceleration
phase", the final failure occurs after an acceleration in which rock
bridges are destroyed, often preceded by subcritical fracture prop-
agation and stress corrosion, especially in a brittle rock mass
(Petley et al. 2005a, b; Petley and Petley 2006). In this acceleration
phase, experts should analyze sensor data and apply models to
forecast the event time and execute appropriate intervention mea-
sures. The time of failure can be forecasted using measured veloc-
ity (Fukuzono 1990). Figure 1 illustrates how the inverse velocity
(1/v) is plotted against time in a linear 1/v model to obtain an event
forecast (Saito 1969; Hashimoto et al. 1982).

Many authors emphasize the applicability of the linear 1/v
model, especially for brittle rock slope failures, i.e., forming of a
rupture surface and first time failure in cohesive materials whereas
asymptotic trends can be often observed in pre-existing shear
surfaces or ductile deformations in the basal region (Petley and
Petley 2006). Successful forecasts of a mid-magnitude icefall
(1*105 m3) and a hazardous rockfall (3000–5000 m3) in the early
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1990s are described by Wegmann et al. (2003). Krähenbühl (2006)
presents an application of the 1/v model to forecast two successive
rockfall events (40,000 and 200,000 m3) in the alpine region of
Switzerland. Accurate forecasts could also be made for three major
rockfall events (1, 2, and 18 million m3), which occurred in two
open pit gold mines in northeastern Nevada (Rose and Hungr
2007); the largest event was even forecasted 3 months prior to
the event.

In contrast to these successful forecasts, a number of cata-
strophic events have occurred where prediction has failed. An
infamous example is the Vajont landslide (270 million m3) in
1963, which triggered a 245-m-high flood wave in a water reservoir
that consequently overtopped the dam and killed almost 2000
people in villages downstream (Kilburn and Petley 2003). Event
analyses demonstrated the difficulty in forecasting the Vajont
landslide with the 1/v model and confirmed that the final failure
depends on the characteristics of the rock slope failure (brittle,
ductile) and on the type of movement. Although clear accelerations
were monitored over years at Vajont, they were misinterpreted, and
the failure occurred more rapid than expected in a period of 45 s.
Experts assumed that velocities would slow down following a
nonlinear trend as two previous, smaller events did (Kilburn and
Petley 2003; Petley and Petley 2006). Even 50 years after the
events, there is still uncertainty as to why the velocity patterns
changed during the multiple deformation phases from 1960 to
1963 (Barla and Paronuzzi 2013).

Accurate event forecasts are still a major challenge. Finding the
balance between an early and safe evacuation and cost caused by
unnecessary intervention measures remains a critical task for
decision makers, who can be landslide experts, politicians, or a
combination of both. To support decision makers in selecting an
optimal risk mitigation strategy, the effectiveness and cost of
alternative measures should be quantified and compared.
However, existing frameworks for evaluating the effectiveness of
mitigation measures focus on structural measures such as dams,
rockfall nets, and galleries (Fell et al. 2005; Penning-Rowsell et al.
2005; Romang et al. 2011; SafeLand 2012). The effectiveness of
rockfall warning systems and warning systems for other types of
natural hazard has so far not been considered systematically or
quantitatively. This study aims to address this by quantitatively
analyzing the reliability and effectiveness of a rockfall warning
system installed for slowly evolving mid- and high-magnitude
rockfalls. First, we assess the reliability of the warning system

installed in Preonzo, Switzerland, to detect a past rockfall event
on May 15, 2012. The reliability is expressed as the probability that
an evacuation is set up timely before the event, and the analysis is
conducted for both the detachment and the acceleration phase.
Second, we investigate the influence of human decision-making
and the number of sensors on the system effectiveness and the
intervention cost using hypothetical predictive analysis.

Evaluation criteria for warning systems
Warning systems are part of an integrated risk management aimed
at increasing the preparedness for potential risks created by nat-
ural hazards and improving the capability to respond to and
recover from an event. To compare preventive warning systems
with alternative risk mitigation measures and to identify an opti-
mal risk mitigation strategy, the effect on risk reduction and
related cost should ultimately be considered in cost-benefit anal-
yses (Penning-Rowsell et al. 2005; Safe Land 2012; Špačková and
Straub 2015). For warning systems, these evaluation criteria should
address specific needs. Where the cost associated with the hazard
consequence is explicitly quantified, a cost-effectiveness analysis
can be carried out in which the cost of mitigation measures is
compared against their effectiveness.

The effectiveness of a warning system is a function of the
reduction in risk it achieves. The effectiveness ES can be defined
through the relative risk reduction achieved with the warning
system (Sättele et al. 2015). With R being the overall risk without
the warning system and R(S) the risk with the warning system
installed, the effectiveness is as follows:

ES ¼ 1−
R Sð Þ

R
ð1Þ

The risk Rij associated with an exposed object i and a hazard
scenario j can be calculated as follows (e.g., (Fuchs 2006; Bründl
et al. 2009)):

Ri j ¼ pj � pei j � vi j � Ai ð2Þ

Here, pj is the probability of occurrence of a scenario j, peij
is the exposure probability of object i in scenario j, vij is the
vulnerability of object i in scenario j and Ai is the value of
object i. The overall risk R is calculated by summing over all
exposed objects i and hazard scenarios j:

R ¼
X
j¼1

nscenX
i¼1

nob j

Ri j ð3Þ

Warning systems reduce the risk primarily by decreasing the
exposure probability peij of persons and mobile objects i in a
hazard scenario j. Therefore, this paper addresses two questions:
(i) How can the reduced exposure probability achieved with a
rockfall warning system be quantified? (ii) And how can a rockfall
warning system be optimized to minimize peij with minimal cost?

Reliability analysis has been identified as an accurate basis for a
comprehensive system evaluation of structural risk mitigation
measures (Margreth and Romang 2010; Balbi et al. 2014) and can
be applied to determine the exposure probability peij of warning
systems (Sättele et al. 2015). The reliability of a system is defined as

Fig. 1 Sketch of a 1/v model to predict the event date of brittle rock slope failure
based on a measured kinematic time series
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its ability to fulfill the designated performance over a certain time
(IEEE 2010). RWS for high- and mid-magnitude rockfalls are
reliable if they detect dangerous events in time and lead to mea-
sures that reduce the exposure probability peij. The reliability of a
rockfall warning system can be quantified through the probability
of detection, i.e., the probability that a warning system detects a
hazardous event and adequate measures are taken and the prob-
ability of false alarms, i.e., the probability that measures are taken
when they were unnecessary. A large number of false alarms can
reduce the effectiveness, because frequent false alarms reduce the
probability that people comply to an issued warning (Breznitz
1989; Sättele et al. 2015). In addition, the available lead time and
the consequences of missed events must be taken into account as
it contributes to the effectiveness (Paté-Cornell 1986; Schröter et al.
2008; Busslinger 2009; UNEP 2012). A missed event means that an
alarm is not given in time, as it happened in Vajont in 1963, when
the destructive rockfall occurred before persons at risk were
evacuated.

A reliability analysis for warning systems must address both the
technical reliability and the inherent reliability of the system
(Sättele et al. 2015). The technical reliability accounts for failures
of technical system components due to aging and external causes
such as lightning and destruction. It considers the configuration of
components within the system and addresses redundancies as
well as dependencies of the system components. It results in
the probability of technical system failure. The inherent reli-
ability of a warning system describes the general ability of the
system to detect an event. It is primarily a function of the
warning thresholds, the model forecast accuracy of models,
and human decision-making.

The technical and inherent reliability of a rockfall warning
system should be analyzed separately for the detachment and
acceleration phase of rockfall processes. During the detachment
phase, the technical reliability remains constant and can be
modeled using classical methods such as fault, event or decision
tree analysis, and failure mode and effect analysis (Stewart and
Melchers 1997). Here, we model this technical reliability of warn-
ing systems with Bayesian networks (BN), which are increasingly
applied to probabilistically model probabilities of systems failures
(Bensi et al. 2012) and natural risks (Aguilera et al. 2011) such as
rockfall hazard rating (Straub 2005). The Bayesian network is a
probabilistic graphical modeling tool, in which nodes represent
random variables and arcs describe the stochastic dependencies
among the nodes (Jensen and Nielsen 2007). The inherent reliabil-
ity during the detachment phase depends initially on the warning
thresholds, the measured sensor data, and their positioning in the
field. All these aspects can also be modeled in the Bayesian net-
work (see BInherent reliability^ section).

In the acceleration phase, the technical reliability of the system
is no longer constant, but decreases over time, because sensors
reach their mechanical limits or are likely to be destroyed by the
failure. Additionally, power support and communication lines may
be interrupted on purpose to prevent additional consequences
in case of a direct hit. Thus, the power supply of the rockfall
warning system becomes less reliable close to the event. We
propose to address these increasing failure probabilities of
technical failures through inhomogeneous Poisson processes
(see BTechnical reliability^ section). The inherent reliability during
the acceleration phase addresses the ability of the warning system

and the decision makers to implement an evacuation before the
event. The forecast ability depends on the ability of the 1/v model
to forecast the event time and on the risk tolerance of the decision
maker. To assess the inherent reliability achieved with the rockfall
warning system, event forecasts are calculated and summarized
graphically (see BInherent reliability^ section).

The Preonzo rock slide warning system

Description of the event in May 2012
An unstable rock mass which threatens the community of Preonzo
(Switzerland) has been recognized for decades. Slope failures oc-
curred in the 18th century followed by temporary stabilization. A
new tension crack was discovered by residents in 1989. Since 1991,
the movement has been increasing significantly, and in May 2002,
about 150,000 m3 of the rock mass failed in the southern area of
the Alpe di Rioscioro. This event, together with a minor event in
May 2010, did not cause loss or damage to the downslope factories
and roads (Willenberg et al. 2009; Loew et al. 2012).

Here, we investigate the latest event, which took place on
May 15, 2012. The entire spring period of 2012 was characterized
by unusually high displacement rates. At the beginning of May,
local authorities were informed about critical displacements from
the geologist operating the warning system. Immediately, a crisis
team was established comprising local authorities, safety officers,
and geologists operating the rockfall warning system. After several
days of heavy rainfall, the velocity of the rock mass increased
significantly, and on May 6, the crisis team evacuated people from
the underlying factories and closed the nearest road. On May 8,
the rain stopped, the velocity decreased, and intervention mea-
sures were discontinued to avoid losses from business inter-
ruption. On May 12, the velocity increased again, and a second
evacuation was initiated. In the early morning of May 15,
approximately 300,000 m3 detached from the rock face.
Fortunately, the rock mass stopped on the slope and did not
damage any infrastructure or injure any person.

Components of the Preonzo rockfall warning system
Between 1999 and May 2012, a rockfall warning system was installed
at the Preonzo site. The system was operated and maintained by the
local geologists responsible for natural hazard management in the
Canton Ticino. From 1999 onward, five extensometers continuously
measured the rock movements to detect accelerations and to auto-
matically generate warning information. To increase the system
reliability, an automated total station with 14 reflectors was set up
in summer 2010 (Loew et al. 2012). The configuration of the Preonzo
warning system has three units for monitoring, data interpretation,
and information dissemination (Sättele et al. 2012).

The monitoring unit incorporated two main sensor technolo-
gies. In the tension crack of the northern section, five extensom-
eters monitored the displacement (Fig. 2a). The extensometer
measurements (every 15–60 min) were controlled by a remote data
logger. Sensors and the logger communicated via protected cable
connections. The power supply was provided by a battery and was
recharged by a solar panel. In addition to the extensometers, an
automated total station measured the distances to 14 reflectors on
the front face of the slope (Fig. 2b). The total station in the valley
was connected to a computer that initiated measurements every
20 min. Power was provided by the power network, and the system

Landslides 13 & (2016) 739



was located in a heated cabin, built on a concrete foundation to
minimize movement. In addition, a rain gauge was installed close
to the tension cracks.

The data interpretation unit included two main decision levels:
one in the detachment and one in the acceleration phase. During
the detachment phase, warnings were automatically generated
when predefined warning thresholds were exceeded; in the accel-
eration phase, the crisis team analyzed the data to decide on
intervention measures. To generate automated warning informa-
tion, three threshold levels were defined for each extensometer in
the tension crack (3 mm/day, 5 mm/day, and 5 mm/h) and one
threshold for the total station (50 mm/day). The threshold for the
total station was higher, because measured displacements were
generally higher at the front face. Whenever a threshold for an
extensometer was exceeded, the remote data logger issued warning
information via the mobile network to the geologists.
Independently, the computer connected to the total station in the
valley issued a warning if the threshold was exceeded. While data
from the remote data logger was transmitted via mobile network,
data from the total station was sent via cable connection.
Whenever the system operators received automated warning in-
formation, they analyzed sensor data to decide on further re-
sponses. The rain gauge serves as additional information source
and decision add but is not associated with a threshold. All data
were collected, processed, and visualized on a central server, and
the event date was forecasted by the application of the 1/v model.
The final decision about an evacuation was made by the crisis
team and was based on the calculated forecasts. The warning
system included a control system, which observed the availability
of individual sensors, the status of the remote batteries, and the
availability of the mobile network at regular intervals. Consequently,
system failures could be detected intermediately to implement alter-
native temporary risk mitigation measures.

The information dissemination unit of the Preonzo warning sys-
tem consisted of intervention plans, which summarized mitigation
measures and responsibilities. The intervention was planned and
coordinated by the crisis team to protect the underlying factories

and roads. The evacuation of the factories could be initiated through
activation of acoustic signals and was organizationally led by the
police, who were also responsible for closing the roads below.

Quantifying the reliability of the Preonzo warning system
This section describes the reliability analysis of the warning system
installed before and during the event in 2012, considering both the
technical and the inherent reliability. The reliability analysis is
presented separately for the detachment and acceleration phase.
In each phase, factors that determine the system reliability are
described, selected methods used to assess the reliability are pre-
sented, and main results are summarized.

System reliability during the detachment phase
During the detachment phase, the warning system monitored the
displacement to alert local geologists about relevant accelerations.
Whether or not the geologists received timely information
depended on the reliability of the technical system configuration
and on the predefined warning thresholds.

Technical reliability
Accurate automated warning information can be generated only
when technical system components work properly. In Preonzo, the
warning system is equipped with a control system that sends
information when system components fail. In this situation, ex-
perts are alerted to assess the situation on-site. Due to this fail-safe
system configuration, technical failure of the system will not lead
to events being missed. Nevertheless, to avoid high cost due to
unnecessary interventions because of frequent alarms, the techni-
cal reliability is relevant and should be maximized.

The Bayesian network (BN) to model the technical reliability of
the Preonzo warning system consists of two different types of
nodes (Fig. 3). Grey nodes describe the causal chain from mea-
sured sensor data to the warning provided to system operators.
The conditional probability tables of the gray nodes define the
logical relations between the different nodes and are here modeled

Fig. 2 a Positioning of the five extensometers in the tension cracks and b 14 reflectors in the front face which were regularly monitored by an automated total station
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deterministically. As an example, the node Bwarning issued^ in-
corporates both serial connections (BAND^) and parallel connec-
tions (BOR^). Figure 4a exemplarily depicts an OR connection and
the associated conditional probability table. Here, only one single
sensor has to indicate an event (state 1) to issue a warning.
Figure 4b represents an exemplarily AND connection with the
associated conditional probability table. Here, both the logger
and the battery have to work to issue a warning.

White nodes in the Bayesian network specify the failure prob-
abilities of system components. These depend on internal failure
causes and external factors. Most components are installed in
rough alpine terrain, and they are exposed to external failure
sources such as lightning, animals, and extreme weather.
Assuming that failures occur randomly through time, failure prob-
abilities of individual technical system components at time t (the
unavailability) can be calculated as follows (Straub 2012):

Pr F tð Þð Þ≈ λ� E Tr½ � ð4Þ

where λ is the failure rate of the system component and E[Tr] is
the expected time it takes to detect and repair a failure. This

approximation is valid for small values of λ, i.e., for λ≪ 1
E Tr½ � .

The failure rate λ of a system component includes both the
internal failure rate λIF and the rate of failures caused by external
influences λEF:

λ ¼ λIF þ λEF ð5Þ

The failure probabilities for components of the Preonzo system
were adapted from results of a similar case study (Sättele et al. 2015)
and are estimated for individual components as Pr(F(t))∼5×10−4.
Only the failure probability of the mobile network is significantly
higher at 1.2×10−2 according to a study conducted by the Swiss
Federal Office for Civil Protection (FOCP 2013).

The analysis shows that the technical reliability achieved with
the Preonzo system is high, due to multiple and redundant sensor
units. The system is equipped with two sensor technologies that
both incorporate redundant sensors. The limiting factor for the
technical reliability is the availability of the mobile network, which
has no redundancy. This results in an unavailability of the techni-
cal system of Pr(Fs(t)=1.2×10

−2. Despite this relatively high prob-
ability of system failure, this is not critical due to the fail-safe

Fig. 4 Illustrative example to represent the relations between the nodes of a Bayesian network: a BOR^ connection and associated conditional probability table; b BAND^
connection and associated conditional probability table

Fig. 3 Bayesian network to model the technical reliability in the detachment phase. The monitoring unit incorporates 5 extensometers and 14 reflectors and the data
interpretation components to initiate and transfer warnings
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configuration, in which decision makers are alerted if the alarm
system has a technical malfunction.

Inherent reliability
The inherent reliability of a warning system is its ability to inter-
pret the measured sensor data, to distinguish between noise and
real displacement, and to inform system operators before the
event occurs. During the detachment phase, the relationship be-
tween the probability of detection and the probability of false
alarms is determined by the predefined warning thresholds. To
achieve a large probability of detection, thresholds for the Preonzo
warning system are intentionally set low (see BComponents of the
Preonzo rockfall warning system^ section). However, the warning
thresholds are high enough to avoid perpetual false alarms due to

displacement noise that arises from daily fluctuations, e.g., due to
temperature changes.

Existing movement records summarize the displacement rates
measured by the extensometers and the total station between
August 2010 and May 2012. Dilatations measured by extensometers
positioned in the northern section are higher (extensometers 3–5)
than those measured by similar sensors in the southern section
(Fig. 5). A few hours before the event, extensometers 4 and 5 reached
their technical limits and failed. The reflectors show similar displace-
ment characteristics to the extensometers (Fig. 6). Reflectors 1–6 and
8, 9 were mounted in the northern sector and showed large displace-
ment rates. The remaining reflectors (7, 11–14) were installed in the
southern section and did not indicate any discernable acceleration.
Reflector 10 had already failed in the summer of 2011.

Fig. 6 Displacements measured by the reflectors 1–14 installed at the front face of the slope between August 2010 and May 2012. Reflectors positioned in the northern
section (1–7, 9) indicate higher acceleration before the event

Fig. 5 Displacements measured by the extensometers 1–5 in the tension cracks between August 2010 and May 2012. Extensometers positioned in the northern section
(3–5) indicate higher acceleration before the event
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In Fig. 7, the sensor data measured by extensometer 5 from
January to May 2012 is compared to the lowest warning level. The
lowest warning threshold (1 mm/day) was regularly exceeded by
those sensors installed in the northern section from the beginning
of March onward. Starting in early April, the warning threshold was
constantly exceeded, and system operators started to analyze the
sensor data at more frequent intervals independent of the automated
warning information. The two upper thresholds (3 and 5mm/h) were
reached several days before the event. Other extensometers in the
northern section showed similar results. The only warning level
defined for the reflectors (50 mm/day) was also exceeded before
the event by those reflectors installed in the northern section.

The influence of warning thresholds on the system reliability
can be modeled within the Bayesian network, by making the
conditional probability of the nodes Bevent indicated^ dependent
on the threshold. Such an approach was followed in Sättele et al.
(2015). However, during the detachment phase, a low threshold can
generally be chosen, which leads to a probability of detection of
one. This is because the effect of false alarms is less relevant in this
phase, as the warning information is sent to system operators and
not directly to endangered people. System operators should be
interested in receiving information from every unexceptional dis-
placement. In combination with the fail-safe configuration of the
technical system components, the overall probability of identifying
an event in the detachment phase is very close to one. The high
reliability of the Preonzo warning system also leads to a reason-
ably small number of false alarms to system operators.

System reliability during the acceleration phase
During the acceleration phase, specialists analyze the sensor data
to forecast the failure time and support the crisis team in planning
appropriate response. The system reliability in this phase is a
function of increasing failure probabilities of technical system
components, the forecast accuracy of the 1/v model, and human
decision-making.

Technical reliability
The technical reliability in the acceleration phase influences the warning
system’s ability to support the crisis team in reaching an accurate event
forecast. The forecast of the event time depends directly on the availability
and quality of the measured sensor data. Power interruptions due to
safety reasons or sensor failures due to largemovements in the surround-
ing area occur more frequently close to the event. The effect of increasing
system failure probabilities on the forecast accuracy should therefore be
considered in warning system technical reliability analyses. In the north-
ern section of the Preonzo rock face, the majority of sensors failed in the
hours before the event (Fig. 8). Three out of five extensometers and all
reflectors positioned in the fast moving slope were destroyed.

To quantify the accelerating destruction of sensors in Preonzo
before the event 2012, a function describing the probability of
failure was fitted to the observed number of sensors that failed
in the northern section (extensometer 1–5; reflectors 1–6 and 8, 9, 10).
The failure probability Pf for the Δt days to the event in Preonzo is
modeled as follows:

P f Δtð Þ ¼ pbasic þ pend � exp −b� Δtð Þ ð6Þ

where the basic failure probability of technical system components
pbasic is 5.0 ×10−4 (section BTechnical reliability^). To obtain values
for pend and b, a likelihood function describing the observed
number of failures is established. The probability of nF failures
out of n sensors on a given day is described through the binomial
distribution as follows:

Pr N F ¼ nFð Þ ¼ n
nF

� �
P f Δtð ÞnF � 1−P f Δtð Þ� �n−n F

� � ð7Þ

The parameters b and pend are found by maximizing the log-
likelihood function, which is defined as follows:

lnL pend; b
� 	 ¼ X44

t¼1

lnPr N F ¼ nF tð Þ



pend; b

� �
ð8Þ

where nF(t) are the observed failures on days 1–44 before the event. By
maximizing Eq. 7, maximum likelihood estimates for pend and b are
calculated as pend= 0.689 and b= 0.510. In Fig. 9, the percentage of
sensors that failed in the northern section and the calculated failure
probabilities using Eq. 6 for days 1–44 before the event are summarized.

Inherent reliability
The inherent reliability in the acceleration phase is a function of the
available sensor data, the accuracy of the 1/v model, and the expert’s
ability to forecast the event based on these data. The decision to
evacuate depends on the risk tolerance of the crises team. Due to the
dependence on the available sensor data, the inherent reliability is
related to the technical reliability of the rockfall warning system. An
increasing number of sensor failures reduces the forecast ability.

Fig. 8 Failures of sensors before the event on May 15, 2012. Many sensors are destroyed shortly before the event due to the fast moving slope

Fig. 7 Velocities measured by extensometer 5. The velocities temporarily exceeded
the lowest warning threshold in March and then constantly from beginning of April
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To assess the inherent reliability of the Preonzo system, we apply a
linear 1/v model using measured sensor data to obtain event fore-
casts. The inverse velocity at time t is calculated as follows:

1
v tð Þ ¼ a þ b � t ð9Þ

a and b are the modeled parameters and t is the time (in days). To
avoid a large scatter generated by small velocity values deteriorat-
ing the accuracy of the forecast, the parameters are fitted to the
measured velocity rather than to its inverse. Specifically, a least-
squares fit of a and b to measured values of v(t) is carried out
through the following relationship:

v tð Þ ¼ 1
a þ b � t

ð10Þ

Figure 10a exemplarily illustrates the velocities measured by
extensometer 1 in the 10 days before May 14 and the model fit.

To obtain a forecast of the event time, the inverse velocities 1/v are
calculated according to Eq. 8 for dates t in the future. The event
date forecasted with the 1/v model is the day where the inverse
velocity (1/v) cuts the x-axis. In Fig. 10b, the inverse velocity
corresponding to Fig. 10a is shown. On May 14, the forecast of
the event with extensometer 1 is made for May 16, 1 day later than
the event actually happened.

Following the approach illustrated above for extensometer 1
and data available before May 15, event forecasts were made for
every sensor and each day between April 1 and May 14. Figure 11a
displays the forecasted event dates using data from different sen-
sors installed in the northern section as a function of the date on
which the prediction is made. In April, the forecasts made by
different sensors vary significantly, but they become more aligned
by the end of April. In this final phase, the predictions based on
extensometer data show larger scatter than those based on reflec-
tor data. On May 14, the majority of sensors provided velocity data
that indicated a hazardous event for the next day. Extensometers 1
and 2 are located further south, where the measured displacements
were less significant. They forecast the event with a delay of 1 day.
Nevertheless, 10 out of 12 sensors lead to an accurate event
forecast.

The inherent reliability in the phase of acceleration depends on
the decision of the crises team, who analyze the displacement rates
with respect to quantities of rain that has fallen and is expected to
fall. To understand the human impact on the inherent reliability,
the forecasted number of days to the event is plotted for days
between April 1 and May 14 (Fig. 11b) for all five extensometers and
reflectors showing large displacement rates in the northern section
(reflectors 1–5 and 8, 9). There are several days in April on which
extensometers 3–5 and all those northern reflectors forecast the
event for the following day. Here, different experts may reach
different decisions. In May, the forecasts vary less, and the influ-
ence of human decision-making becomes less important. It can be
assumed that even decision makers with different risk tolerances
would come to the same decision in this period (which is the one
that was actually taken by the crisis team in Preonzo).

Hypothetical analysis: optimizing warning systems
To compare the effectiveness and the cost for varying designs of
the Preonzo system, the probability of detection achieved with the

Fig. 10 a Velocity recorded by extensometer 1 from May 4 to May 14 and fitted function; b 1/v versus time using data from extensometer 1. On May 14, the 1/v model
forecasts the event to occur on May 16, which is 1 day later than the observed event
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Fig. 9 During the acceleration phase, an increasing number of sensors fail just
before the event. The bars (left axis) show the observed percentage of sensors
that fail; the line (right axis) depicts the failure probabilities according to Eq. 6
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system and the expected cost arising from the intervention mea-
sures are estimated in a hypothetical analysis. Since the actual
decision on intervention measures is based on expert assessments,
which can include more information than only sensor data, e.g.,
rain measurements, the analysis is simplified and likely to under-
estimate the true capacities of the warning system.

To assess the effect of sensor numbers on the reliability, we vary
their amount between 5 and 50 in the hypothetical analysis. To
investigate the effect of human decision-making, we specify two
decision makers with different risk types. A risk averse and a risk
tolerant decision maker are associated with different evacuation
criteria (Table 1). A technical evacuation criterion determines the
minimum numbers of sensors that must be available for a forecast.

Whenever fewer sensors are functioning, the crisis team initiates
an evacuation and the closure of the road. The inherent evacuation
criterion defines the minimum proportion of sensors that must
forecast a failure for the next day in order to initiate an evacuation
and road closure.

Using a Monte Carlo analysis, we estimate the probability of
detection and intervention cost for the specified risk averse and
tolerant decision maker and modified numbers of sensors. In the
Monte Carlo analysis, the investigated Preonzo rockfall event is
randomized, as is the response of the individual sensors. We use
nS=10,000 random realizations (run) of the process. For each run,
it is checked if and when evacuations would be initiated, based on
technical and inherent evacuation criteria. In each run, the number

Fig. 11 a Daily forecasted event date calculated with the 1/v model for the sensors in the northern section between April 1 and May 14; b forecasted number of days to
the event calculated with the 1/v model for sensors in the northern section on every day between April 1 and May 14
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of functioning sensors for all days between April 1 and May 14 is
simulated and compared to the minimal required number to inves-
tigate whether the technical evaluation criterion is fulfilled. The
number of functioning sensors on each day is simulated based on
the binomial distribution (Eq. 5) with parameters determined fol-
lowing section BTechnical reliability.^

To assess whether the inherent evacuation criteria is fulfilled,
the percentage of simulated positive event forecasts for the next
day is compared to the specified percentage. The number of
available event forecasts on each day depends on the remaining
number of sensors. The forecasts for the group of sensors are
modeled by a probability distribution, in which no distinction is
made between individual sensors (i.e., they are considered as
statistically identical and independent). To obtain probability
distributions for daily forecasts between April 1 and May 14,
Lognormal distributions are fitted to sensor forecasts calculated
for extensometers 1–5 and reflectors 1–5, 8, and 9 (Fig. 11b).
Figure 12 illustrates the empirical and the fitted cumulative
distribution functions of the forecasted days to event calculated
on April 18 and May 14. The fitted distributions are applied in
the Monte Carlo analysis to randomly generate forecasts for
each day. The percentage of sensors that forecast an event for
the next day is calculated and compared to the percentage
defined by the inherent evacuation criterion.

Intervention costs arise whenever an evacuation is initiated.
This cost is primarily estimated from interruptions of business
processes in the subjacent factories at 100,000 CHF/ day based on
the information of local experts. If the technical evacuation crite-
rion is fulfilled, a 5-day evacuation is necessary to install a

replacement system. In this time, a temporary monitoring system
(e.g., interferometric radar) must be installed to decide if the
access for installation to the area is safe. Total intervention costs
are estimated at 800,000 CHF, with 500,000 CHF at this due to the
5 days of evacuation, and the remaining 300,000 CHF are the
investment cost for the replacement system, including cost for
temporarily monitoring measures. Separate costs occurring to
different stakeholders are not considered. If the inherent evacua-
tion criterion is fulfilled, a 2-day evacuation is initiated, and the
corresponding cost is 200,000 CHF.

In this analysis, the probability of detection is the probability
that the evacuation and road closure are in place on May 15, the
day of the actual event.

Figure 13a displays the probability of detection calculated for
the different risk types as a function of the number of initially
installed sensors. For the more risk-averse decision maker, the
probability of detection is close to one, only slightly depending
on the number of sensors. More risk-tolerant decision makers
achieve a probability of detection between 0.65 and 0.85 which
reaches its minimum at 11 sensors. Figure 13b displays the expected
intervention cost calculated for both risk types as a function of the
sensors. As expected, the risk-averse decision maker creates higher
expected intervention cost, especially with a small number of
sensors. In this case, large costs for evacuation and replacement
systems are generated. With a highly redundant sensor unit
(around 30 sensors), the expected cost for the risk-averse decision
maker reaches their minimum at 400,000 CHF. The expected cost
for intervention incurred by the risk-tolerant decision maker
reaches minimal costs (215,000 CHF) at 20. For larger number of

Fig. 12 The empirical (observed) and the fitted cumulative probability distribution function of the forecasted days to the event for the group of sensors. The observed
sensor forecasts are those shown in Fig. 11b. a On April 18, the probability of an event on the next day is estimated as 0.034 and for an event in 5 days as 0.43; b on
May 14, the probability of an event to occur within the next day is estimated as 0.65 and for the second day 0.99

Table 1 Definition of risk types based on different evacuation criteria

Risk type Technical evacuation criterion,
evacuate when:

Inherent evacuation criterion, evacuate when:

Risk averse Less risk tolerant decision makers Less than 6 sensors are functioning 20 % of the sensors forecast the event for the
next day

Risk tolerant More risk tolerant decision makers Less than 3 sensors are functioning 50 % of the sensors forecast the event for the
next day
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sensors, the expected cost increases slightly up to a maximum of
236,000 CHF. This sum does not include the cost for installing the
initial sensors. A comprehensive cost analysis should also consider
the acquisition cost of the warning system, which increases with a
rising number of sensors, to determine the optimal number of
sensors.

The intervention on the day of the event, May 15, can be
because the event was correctly forecasted (inherent reliability)
or because the failure of multiple sensors triggered an intervention
(technical failures). In Figs. 14 and 15, the probabilities of detection
and expected intervention costs obtained with the inherent evac-
uation criterion and the technical evacuation criterion are shown
individually for both risk tolerance profiles. To this end, both
evacuation criteria are checked daily, independent of whether or
not the other criterion has been fulfilled and an evacuation may
already be in place. For this reason, the sum of the two individual
probabilities of detection may be greater than one. The quality of

the inherent forecasts during the time of reinstalling the system
after technical failures may be poor, since only few sensors are left
during that period. If no more sensors are available 1 day before
the event occurred, zero forecasts can be made and the probability
of detection associated with the inherent evacuation criteria
becomes zero.

The probability of detection achieved due to technical failures
decreases with the increase of sensors (Fig. 14). Evacuations due to
an insufficient number of sensors are less likely to occur when the
decision maker has a high-risk tolerance. For the risk-averse deci-
sion maker, an interesting peak is formed around 7 sensors. For
minimal numbers of sensors (5–6), an evacuation because of
technical failures is low, because the warning system got already
substituted before the event. For 7–9 sensors, the probability that
the system fails during the event is maximal and so is the proba-
bility of detection achieved with the technical evacuation criterion.
The probability of detection because of an accurate event forecast

Fig. 13 a The probability of detection as a function of the decision maker’s risk-taking profile and the number of initially installed sensors. The probability of detection is
the probability of an evacuation being in place on the day of the event; b the expected cost for intervention (evacuation, road closure) as a function of the decision maker
and the number of initially installed sensors

Fig. 14 The probabilities of detection achieved with the inherent and technical
evacuation criteria are individually shown for both risk-averse and risk-tolerant
decision makers

Fig. 15 Expected intervention cost achieved with the inherent and technical
evacuation criteria are individually shown for both risk-averse and risk-tolerant
decision makers

Landslides 13 & (2016) 747



increases with increasing number of sensors and is close to 1 for
systems with at least 20 sensors for the risk-averse decision maker.
The probability of detection achieved by the more risk tolerant
person never exceeds the probability of detection reached by the
risk-averse decision maker and never exceeds 0.84.

In Fig 15, the expected intervention cost created through
the evacuation criteria are separately illustrated for both risk
tolerance profiles. The expected cost due to the technical
evacuation criterion decreases, when the number of initial
sensors increases, because system failures become less likely.
The risk-averse type generates immense cost from fewer sen-
sors. The expected intervention cost generated by event fore-
casts becomes constant for more than 10 sensors and are
higher for the risk-averse decision maker.

To understand how the intervention costs arise, the probability
of an evacuation being mandated due to sensor forecasts (inherent
evacuation criterion) is illustrated in Fig. 16 for the last 44 days
before the event, with 10 sensors (a) and 30 sensors (b). The risk-
tolerant person would evacuate on 3 days with a significant prob-
ability, namely on days 8, 9, and 1 before the event. When com-
paring Fig. 16a with Fig. 16b, it is clear that the forecast accuracy
increases with more sensors. The probability of the risk-tolerant
person proposing an evacuation due to sensor signals on the day
of the event is 0.59 with 10 sensors and 0.76 with 30 sensors. The
probability of wrongly initiating an evacuation on days 8 and 9
stays between 0.37 and 0.35 when increasing the number of sensors
from 10 to 30. The same tendencies are observed for the risk-
averse decision makers, whose evacuation probabilities are signif-
icantly higher. With 30 sensors instead of 10, the probability of
detection increases from 0.91 to 0.99.

Discussion
The effectiveness of warning systems was quantified as a function
of the achieved risk reduction. Rockfall warning systems for mid-
and high-magnitude events reduce the exposure probability of
people to a hazardous event if the event is detected in time for
intervention measures to be implemented. This effect can be
calculated directly from the system reliability, which can be quan-
tified by the probability of detection and the probability of false

alarms. For the quantification of warning systems, the effect of
false alarms can be neglected, because the events are rare and the
warning information is sent to system operators. In other cases,
especially when the information is issued directly to endangered
people, the effect of false alarms can decrease the compliance to
the alarm (Sättele et al. 2015).

Within the Preonzo case study, we conducted a comprehensive
reliability analysis, which demonstrated the importance of
assessing the technical and the inherent reliability for the displace-
ment and the acceleration phase individually. During the detach-
ment phase, the technical reliability depends on failure
probabilities of components and their configuration in the system.
In a similar case study, the failure probabilities of individual
technical system components of a debris flow alarm system were
analyzed in detail (Sättele et al. 2015). In that study, internal failure
rates λIF were derived from specified mean time to failure and for
repairable parts for mean time between failure values, with
λIF∼5.0×10−5/day. The rates of external failure λIE were obtained
from repair records and expert estimates as λEF∼4.5×10−4/day. The
mean repair time to detect and to repair was estimated as
E[Tr]=1 day for systems equipped with a control system. For the
current study, we adopted these values to simplify the reliability
analysis. We could show that a high reliability can be achieved with
redundancies and is limited through dependencies, e.g., data
transmission is not redundant. To obtain more accurate reliabil-
ities, failure probabilities should be determined for each compo-
nent and field-site individually. The inherent reliability depends
on the position of the sensors in the field and warning thresholds.
Sensors located in the southern section showed lower displace-
ments (extensometers 1–2) or no movement (reflectors 10–14) and
did not exceed the thresholds.

The reliability analysis in the acceleration phase is more com-
plex, because failure probabilities of components increase signifi-
cantly before the event, and because of the data quality, the
forecast accuracy of the model and the risk tolerance of decision
makers influence the reliability. For Preonzo, forecasts could be
made with an increasing accuracy toward the actual event.
Nevertheless, some sensors (Ext. 4 and 5) underestimated the
acceleration and forecasted the event with a delay. As in the

Fig. 16 Probability of evacuation due to sensor forecasts (inherent evacuation criteria) calculated for 10 (a) and 30 (b) initial sensors and different risk-taking profile types
for 44 days before the event
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detachment phase, the positioning of the sensors was a crucial
factor for the forecast accuracy. The reliability was high because of
the multiple and redundant sensor unit. In our simulation, the
days with high probability of evacuation coincide with days on
which evacuations were actually initiated by the crisis team in
Preonzo.

A rockfall warning system can be designed as a fail-safe system.
This implies that even if the technical system fails, damage is
prevented because an evacuation is initiated. But, such a fail-safe
design can create a large intervention cost. We modeled the effect
of the initial number of sensors and human decision-making on
the effectiveness and cost in the hypothetical analysis. The behav-
ior of the experts was replicated through simple rule-driven deci-
sions, specified in evacuation criteria. Such an approach is novel
and facilitates the quantitative assessment of warning systems that
are expert-driven systems. The hypothetical analysis demonstrated
that the forecast accuracy increases with the number of initial
sensors and becomes maximal for risk-averse decision makers.
These less risk-tolerant decision makers will create larger cost for
intervention with a small number of sensors but achieve accept-
able cost with a highly redundant sensor configuration.

Findings from the case study and the hypothetical analysis can
be used to develop a method for quantifying the effectiveness of
warning systems and will support practitioners in designing and
operating cost-efficient systems. The technical and the inherent
probability during the detachment phase can be modeled with
Bayesian networks, similarly to the reliability of warning systems
installed for processes that are triggered rapidly such as debris
flows. A cost-effective warning system includes redundant sensor
units with multiple measuring techniques. Sensors have a maximal
coverage to ensure that precursors are detected early. They should
be redundant to maintain high forecast accuracy when the number
of failure increases close to the event. To detect system failures, an
independently operated control system is in place. The warning
thresholds in the detachment phase are low to detect significant
changes, but high enough to avoid constant false alarms due to
daily fluctuations, etc.

The quantification of rockfall warning systems in the detach-
ment phase remains a major challenge. We showed an approach to
model human decision-making by simple evacuation rules, but
predictive models describing the forecast accuracy of the 1/v model
or similar models are not available. We used the Preonzo event
data from May 15 to model the forecast accuracy retrospectively.
To assist decision makers in identifying an optimal risk mitigation
strategy, the forecast accuracy of 1/v model must be investigated in
the future. Such investigations should quantify the model accuracy
with respect to the movement patterns, material characteristics,
and the positioning of the sensors in the field.

Conclusion
The reliability of rockfall warning systems is quantifiable and
capable of distinguishing between the detachment and accelera-
tion phase of the rockfall process. The reliability analysis con-
firmed that the Preonzo rockfall warning system as installed
detected the rockfall event in May 2012 and was highly reliable.
We showed that with Bayesian networks, one can assess the sys-
tem’s ability to generate automated warning during the detach-
ment phase. A highly reliable system includes redundant and
multiple sensor technologies, an area-wide sensor positioning,

low warning thresholds in combination with a control system.
During the acceleration phase, a maximal probability of evacua-
tion on the day of the event is achieved with a sufficient number of
sensors and conservative decision makers. Both factors have a
considerable effect on the system effectiveness and on the related
intervention cost. The effect of human decision-making could be
modeled with rule-driven decision criteria. Those and other find-
ings will be used to develop a generic framework approach that
allows the quantification of the reliability and the effectiveness
achieved with early warning system for natural hazards.
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