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Abstract 25 

Beech (Fagus sylvatica L.) forests covering relief rich terrain often provide direct 26 

protection for humans and their assets against rockfall. However, the efficacy in 27 

protecting against such hazards may abruptly and substantially change after 28 

disturbances such as fires, wind-throws, avalanches and insect outbreaks. To date, 29 

little knowledge exists on the mid-term protective capacity against rockfall of fire-30 

injured beech stands. We selected 39 beech stands in the Southern European Alps that 31 

burnt with different severities over the last 40 years. We inventoried all living and 32 

dead trees in each stand and subsequently applied the rockfall model Rockfor.net to 33 

assess the protective capacity of fire-injured forests against falling rocks with volumes 34 

of 0.05, 0.2 and 1 m3. We tested forested slopes with mean gradients of 27°, 30°, and 35 

35° and lengths of 75 and 150 m. 36 

Burnt beech forests hit by low severity fires provide nearly similar protective capacity 37 

as unburnt forests, because only thin fire-injured trees die while intermediate-sized 38 

and tall trees mostly survive. The protective capacity of moderate to high severity 39 

sites is significantly reduced, especially between 10 and 30 years after the fire. In 40 

those cases, silvicultural or technical measures may be necessary. Beside the 41 

installation of rockfall nets or dams, small-scale felling of dying trees and the 42 

placement of stems in oblique direction to the slope can mitigate the reduction of 43 

protection provided by the forest. 44 

Keywords: forest fires, stand structure, burn severity, Rockfor.net 45 
46 
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 3 

1 Introduction 48 

In mountain regions forests often provide a direct protection for humans and for their 49 

assets against natural hazards (Dorren et al. 2005a; Brang et al. 2006). In comparison 50 

to man-built structures the protective effect of forests is naturally re-growing and 51 

relatively cost-efficient (Olschewski et al. 2012). In case of rockfall events, standing 52 

and lying trees act as barriers against falling rocks (Motta and Haudemand 2000) and 53 

the understory vegetation increases the surface uneveness that also may contribute to 54 

the energy dissipative capacity of a forest stand (Dorren et al. 2004b; Brauner et al. 55 

2005). Whether the protection provided by a particular forest stand is effective or not 56 

is mainly determined by: (1) terrain characteristics and the total length of the forested 57 

part of a slope between the rockfall release area and the area to be protected, (2) the 58 

size and kinetic energy of the falling rock, and (3) the basal area of the forest and 59 

dendrometrical characteristics that reduce or adsorb the impact energy of falling rocks 60 

(Dorren et al. 2015). 61 

Since forests are dynamic ecosystems, their protective capacity changes constantly. In 62 

particular, natural disturbances such as forest fires, wind-throws, insect and pest 63 

outbreaks and snow avalanches have the potential to abruptly and substantially reduce 64 

the protective capacity of the concerned stands. Their influence on the protective 65 

capacity highly depends on (1) the intensity and scale of the disturbance, (2) the 66 

resistance and resilience of the disturbed stand, and (3) on the post-disturbance 67 

management (Bebi et al. 2015). For instance, insect outbreaks or low intensity wind-68 

throw causes dispersed tree damages that increases light- and nutrient availability to 69 

favour the pre-regeneration (Kupferschmid Albisetti 2003; Collet et al. 2008; Kramer 70 

et al. 2014). In case of an immediately and comprehensive loss of living trees after the 71 

disturbance event, remnant dead wood may significantly decrease terrain patency and 72 
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 4 

may thus at least partly compensate for this loss. However, slow succession rates after 73 

a disturbance event and relatively fast decay of dead wood may result in a time 74 

window of temporarily reduced protection against natural hazards (Bebi et al. 2015).  75 

Fire affects both the pre-fire regeneration and the dead wood structure (Wohlgemuth 76 

et al. 2010), which may additionally reduce the protective capacity of burnt forests 77 

with respect to wind-throw areas. Unfortunately, to date little is known about fire 78 

resistance and post-fire resilience of different forest types with potentially important 79 

protection functions. This is particularly true for European beech (Fagus sylvatica L.) 80 

forests, an often used tree species in the protection against rockfall (Perzl 2009; 81 

Schmidt 2005). In the Swiss Alps, beech forests hold a share of 16% on the overall 82 

protection forests against rockfall (Brändli and Huber 2015).  83 

However, recent studies demonstrated that fire-injured beeches generally collapse 84 

within first 20 years post-fire due to a lack in protection from heating by its thin bark 85 

and subsequent infections by wood decaying fungi (Maringer et al. subm. a). Within 86 

the same period, seed germination and seedlings emergence is enhanced by 87 

progressive canopy opening and by the removal of thick litter layers (Ascoli et al. 88 

2015; Maringer et al. subm.). Both processes highly depend on the fire severity (i.e. 89 

immediate effect of fire; cf. Morgan et al., 2014). In case of very severe fires, most 90 

beeches die within the first few post-fire seasons. Due to the immediate collapse of 91 

seed providing trees, seed production and seedlings emergence may be hindered. 92 

Additionally, fast growing early post-fire colonizers like shrubs and ferns tend to 93 

build dense layers inhibiting additionally seedlings emergence (Maringer et al. 94 

subm.). Contrasting, after low severe fires only a few individuals (and usually small 95 

trees) are critically injured with marginal consequences to the stand dynamic. Fires of 96 

intermediate severity cause a progressive dieback of the stand according to the 97 
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proportion of the bole injured and the proliferation of decaying fungi (Conedera et al. 98 

2007; Conedera et al. 2010; Maringer et al. subm. a). Here the probabilities of 99 

successful seed germination and seedlings emergence are highest, especially when a 100 

mast year immediately follows the fire event (Ascoli et al. 2015). Those post-fire 101 

processes in beech forests show that there might be a lack in the forest protective 102 

capacity; particularly in moderate and high fire severity stands. It is thus crucial for 103 

foresters to know about the post disturbance processes and their influence in order to 104 

prevent the related risks. 105 

Based on the assumption that the energy release by moving rocks is compensated by 106 

either rock-soil contact (Zinggeler et al. 1991), rock-tree contact (Berger and Dorren 107 

2007), or both, process orientated models are able to assess the protective capacity of 108 

a concerned stand. In the present study we employed the rockfall model Rockfor.net 109 

(Berger and Dorren 2007) for quantifying the protective capacity of burnt beech 110 

forests. The model was originally developed to quickly quantify the protective 111 

capacity of different structured forest stands and has been often applied in the 112 

European Alps (Berger and Dorren 2007; Wehrli et al. 2006; Kajdiž et al. 2015). We 113 

used a dataset of 39 burnt beech stands differing in terms of years post-fire (2 to 40 114 

years) and burn severity (burn severity refers to the long-term fire effects; cf. Morgan 115 

et al. 2014). In particular, we evaluated the conditions (rock size, forested slope 116 

length, slope inclination, burn severity) and post-fire phases under which deficits may 117 

be expected in the protective capacity against rockfall.  118 

2 Materials and methods  119 

2.1 Study area  120 

The study was conducted in the Southern European Alps across the neighboring 121 
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 6 

regions of Canton Ticino (Switzerland) and Piedmont (Italy). The area is 122 

characterized by a marked elevation gradient ranging from the Lake Maggiore (197 m 123 

a.s.l.) to the Adula Peak (3402 m a.s.l.) in Ticino and to Punta Nordend (4609 m a.s.l.) 124 

in Piedmont, respectively. The geology is characterized by the tectonics of the Alps 125 

with granit and gneiss dominating the bedrock (Pfiffner 2015). Due to the relief rich 126 

terrain, rockfalls are one of the major natural hazards threatening mountain 127 

settlements and roads in both regions (Regione Autonoma Valle d’Aosta - Regione 128 

Piemonte 2011; Ambrosi and Thüring 2005). 129 

The regional climate can be described as warm and humid showing a high annual 130 

precipitation gradient ranging from 778 mm in Piedmont (climate station Susa: 131 

07°3`0``E, 45°08`0``N) to 1897 mm in Ticino (climate station Locarno Monti: 132 

08°47`43``E, 46°10`12``N) (ARPA 2015; MeteoSwiss 2015). More than half of the 133 

annual precipitation falls during the transition seasons (April-May and September-134 

November), and in winter (December-March) precipitation is particularly low (162 135 

mm for Piedmont, 316 mm for Ticino). Winters are generally mild with mean January 136 

temperatures around 3.5°C, and summers are warm with mean July temperatures 137 

around 21.7°C. In summer, periods without rain may last up to thirty consecutive days 138 

(Isotta et al. 2014), whereas in winter a katabatic warm and dry wind from the 139 

northern Alps (north foehn) drops the relatively humidity below 20% in average on 40 140 

days yr-1 (Spinedi and Isotta 2005). These north-foehn winds dry the fine fuel of the 141 

forest understory and increase the fire danger. Forest fires are mostly of human origin 142 

and consist of surface fires in the understory of the deciduous forests. Those fires 143 

usually start from the urban-forest interface (Conedera et al. 2015) and spread into the 144 

higher elevated beech belt (900-1500m a.s.l.) mostly during prolonged dry conditions 145 

(Pezzatti et al. 2009). Fire in the region of Piedmont yearly affects 1.7% of the beech 146 
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protection forests (Regione Autonoma Valle d`Aosta – Regione Piemonte 2011). 147 

2.2 Selection of fire sites and data collection 148 

Fire perimeters with less than 40 years were selected from the forest fire databases of 149 

Switzerland (Pezzatti et al. 2010) and of the State Forestry Corps of Italy (Inventorio 150 

nazionale delle foreste e dei serbatoi di Carbonio (INFC 2005), Corpo Forestale dello 151 

stato – ispettorato generale). They were overlaid with local vegetation (Ceschi 2006; 152 

Camerano et al. 2004) and geological maps in a geographical information system 153 

(ArcGIS version 10.0; © ESRI) to identify fires in beech stands on crystalline 154 

bedrock. First field observation took place in 2011 to indicate potential study sites: (i) 155 

larger than 0.25 ha, (ii) with no signs of pre-fire pasture or post-fire artificial 156 

plantation, (iii) and dominated by beech (> 95%) before the fire event. From the 157 

initial 94 potential sites, 36 satisfied all of the selection criteria and were retained for 158 

the field survey in the years 2012 and 2013 (Appendix 1). 159 

Depending on the area burnt, we placed one to three transects, spaced 50 m apart in 160 

elevation, from the unburnt to the burnt beech forests (Figure 1). Circular plots of 200 161 

m2 were placed regularly with 30 m distances in between starting in 10 m distance to 162 

the burn edge and following the contour lines. Whenever possible, a minimum of one 163 

control plot was placed in the unburnt beech forests at 20 m distance to the burn edge.  164 

 165 

[Fig. 1 Sampling design in a burnt and unburnt beech forests with regularly placed 166 

circular 200 m2 plots placed 30 m apart along horizontal transects (figure left). Each 167 

plot is further characterized in terms of burn severity as a function of the portion of 168 

dead and living beeches (photographs)] 169 
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Data collection followed guidelines of the Swiss National Forest Inventory (NFI; 171 

Keller 2005) with specific focus on stand stability parameters (Herold and Ulmer 172 

2001). Therefore, general plot characteristics were surveyed like slope [°], aspect, 173 

elevation [m a.s.l.], mircorelief (plane, convex, depression), as well as the cover of 174 

inhibitors for emerging regeneration such as common bracken (Pteridium aquilinum 175 

[L.] KUHN), common broom (Cytisus scoparius [L.] LINK), purple moor grass 176 

(Molinia arundinacea SCHANK), as well as the surface roughness in the form of 177 

deposited rocks (see Brauner et al. 2005). The coverages of common bracken, 178 

common broom and purple moor grass were summed up per plot (hereafter referred to 179 

as cover of early post-fire colonizers).  180 

We inventoried all trees with diameter to breast height (DBH) ≥ 8 cm and omitted 181 

smaller trees because of their negligible role in the protective effectiveness (Wehrli et 182 

al. 2006). Each standing tree was identified down to the species level (Wagner et al. 183 

2010) and the following characteristics were recorded: vitality, i.e., tree being alive or 184 

dead (snags and dead standing tree with crown portions but without visible green 185 

foliage, hereafter referred to as snags), DBH (at 1.30 m to the nearest cm), tree height 186 

(to the nearest meter), and the percentage of crown volume killed. The latter was 187 

visually estimated by the volumetric proportion of crown killed compared to the space 188 

occupied by the pre-fire crown volume (Hood et al., 2007). Data collection further 189 

included lying dead trees (hereafter referred to as logs) of which the average diameter 190 

and the length were recorded. For both snags and logs, the wood decay stage was 191 

recorded in four classes: (1) cambium still fresh, (2) knife penetrates low, cambium 192 

disappeared, (3) knife penetrates into the fiber direction, but not transversely or (4) 193 

knife penetrates in both directions. Lying branches and brushwood originated from 194 

falling crowns of dead trees with a decay stage below 4 were assessed after the 195 
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method of Brown (1974). Pieces in the 200 m2-plots were recorded in different 196 

diameter classes (1: 2.5-5 cm, 2: >5-7.5 cm, 3: >7.5-15 cm, 4: >15-30 cm) along the 197 

four cardinal directions. The obtained volume was then scaled up to standard hectare 198 

values (m3 ha-1). 199 

In regions with such a relief rich terrain fires burn very heterogeneously. Therefore 200 

each plot was categorized in low, moderate and high burn severity. In accordance 201 

with a parallel study by Maringer et al. (subm.), we assessed burn severity by 202 

calculating the ratio of post-fire and pre-fire basal area of living trees. For fire sites 203 

older than 10 years, pre-fire conditions were assessed exclusively from the control 204 

plots, because of fast decaying dead wood. Whereas in burnt sites younger than 10 205 

years, the number of visible dead trees in burnt plots determined the pre-fire stand 206 

characteristics. Based on this assumption, we defined low burn severity in plots with 207 

less than 5% crown volume loss and less than 20% basal area loss. High burn severity 208 

was indicated by extensive crown loss (> 50%) and basal area killed (> 60%), and all 209 

plots with intermediate losses— in terms of crown and basal area— were assigned to 210 

the moderate severity class. 211 

2.3 Analysis methods 212 

2.3.1 The Rockfor.net model 213 

We employed the Rockfor.net model developed by Berger and Dorren (2007) for 214 

simulating the temporal trends in the protective capacity against rockfall in fire-215 

injured beech stands.  216 

The underlying idea of the model is to compare the theoretical basal area required for 217 

absorbing the kinetic energy of downhill moving rocks (Grequired) and the available 218 

basal area of a particular forest stand (Gavailable). Therefore, the model regards all 219 
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standing trees distributed in a forest as virtual tree lines parallel to the contour lines. 220 

All trees have the same species composition and diameters (weighting of the tree 221 

species see Dorren and Berger 2005), representing the mean values in the original 222 

forest stand. The model starts by calculating the total kinetic energy developed by a 223 

rock falling down the slope. Then it calculates the energy dissipative capacity of each 224 

tree line. The number of trees required to dissipate all kinetic energy are subsequently 225 

converted in a required basal area (Grequired) using the mean DBH. In the last step the 226 

Rockfor.net model quantifies the protective effect of a forest stand by comparing the 227 

required theoretical Grequired with the available Gavailable (see Berger and Dorren 2007 228 

for more details). 229 

In the Rockfor.net model we considered also the contribution of logs, assuming that 230 

their capacity of absorbing kinetic energy is proportional to the ratio between log-231 

diameter and rock size. Olmedo-Manich (2015) demonstrated that deposited tree logs 232 

with rock/log diameter ratios between 0.8 and 1.55 favour optimal energy loss. In this 233 

study we assumed that energy dissipation efficiency is linearly related to the rock/log 234 

diameter ratio. The amount of lying logs was estimated in terms of volume (in m3 ha-235 

1) in the field. In our tool, this volume was converted into a total log length per 236 

hectare and finally into the number of potential logs impacts per hectare. Here we 237 

assumed that an efficient rock-log contact, meaning with a rock/log diameter ratio of 238 

1 or smaller, is required every 10 m on a slope length of 100 m to stop 100% of the 239 

rocks by logs (see also Dorren et al 2015). The following equation was used to 240 

calculate the percentage of rocks stopped by logs (%Rstopped): 241 

%𝑅𝑠𝑡𝑜𝑝𝑝𝑒𝑑 = 𝐸𝑓𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡  ×  𝑉𝑜𝑙𝐿𝑜𝑔 ÷ (𝜋 × (
𝐷𝑡

2

2
)) ÷ 100𝑚 ÷ 10 × 100% eq. 242 

(1) 243 

 244 

Where, 245 
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Effcontact = rock-log contact efficiency = min[1, Dt / Db] 246 

Dt = tree diameter ( in m) 247 

Db = rock diameter (in m) 248 

VolLog = volume of lying logs (in m3 ha-1) 249 

 250 

The contribution of lying branches and brushwood to rockfall energy dissipation is 251 

hard to quantify in a model such as the Rockfor.net and was therefore neglected. 252 

Therefore, temporal changes of their volumes were only graphically visualized (see 253 

Figures 3-4). 254 

In sum, the Rockfor.net model requires as input parameters both site and forest stand 255 

characteristics. Required site characteristics are cliff height (m), length of both the 256 

forested and unforested slope on the trajectory of a fallen rock, and mean slope 257 

inclination (°). Species composition, DBHs and densities of standing trees (including 258 

snags) as well as diameter and length of the logs (wood decomposition rate below 4) 259 

are required as stand characteristics.  260 

2.3.2 Input data preparation and scenario specification 261 

Data preparation followed the new rockfall protection guidelines of the 262 

“Sustainability and success monitoring in the protection forests of Switzerland 263 

(NaiS)” (see Frehner et al. 2005 and Dorren et al. 2015). Tree diameters were grouped 264 

in four DBH-classes (8-12 cm, 12-24 cm, 24-36 cm, and ≥ 36 cm) separately for 265 

living and dead standing trees and standardized to number of stems per hectare. Trees 266 

with large DBH values diameter most effectively dissipate the kinetic energy of 267 

falling rocks, especially those of large rocks, whereas small trees significantly 268 

increase the probability of rock—tree contacts due to the (generally) large stem 269 

densities. Therefore, the required basal area (Grequired) to stop a falling rock within a 270 

specific forested slope is weighted for the DBH-classes according to the rock size 271 
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(Dorren et al. 2015). Moreover, to account for the differences in capacity of different 272 

tree types to dissipate the kinetic energy of falling rocks, Rockfor.net converted the 273 

proportions of the presence of 5 different tree ‘types’ in each stand into a mean energy 274 

dissipative capacity per study site. The following 5 tree ‘types’ were taken into 275 

account: beech, Norway spruce (Picea abies [L.] Karst.), silver fir (Abies alba Mill.), 276 

other broadleaves, and other conifers (cf. Dorren and Berger 2005).  277 

Further we used standardized rock sizes, mean slope gradients, cliff heights and 278 

lengths of forested slopes. We defined standard rock volumes (0.05 m3, 0.2 m3, and 1 279 

m3, which corresponds to the rock diameters 0.37 m, 0.58 m and 1 m; Table 1) as 280 

traditionally used in NaiS (Frehner et al. 2005, Dorren et al. 2015). In order to 281 

simulate realistic field conditions, two options of horizontal distances (75 m, 150 m) 282 

have been defined in which a rock had to be stopped from the bottom of a cliff to the 283 

downslope forest edge. Finally, three different slope gradients were considered 284 

representing the 1st (27°) and 3rd quantile (35°), as well as at the mean (30°) of the 285 

slope distribution from the surveyed plots (Table 1). Slope inclination was 286 

standardized after testing the statistical non-significance between tree stem densities 287 

and slopes using a mixed effect model (Appendix 2).  288 

The estimation of the protective effect as calculated by the Rockfor.net model 289 

represents the probability of a rock to be stopped in the stand, which is expressed in 290 

the following categories: ≥ 90% very good protection, 75 - 90% good protection, 50 - 291 

75% adequate protection, 25 - 50% moderate protection, and < 25% inadequate 292 

protection. Whether or not the level of protection provided by a forest stand is 293 

sufficient, can only be determined by means of a risk analysis in which the effective 294 

risk reduction of the forest is quantified and is therefore out of the scope of the 295 

present paper. 296 
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 297 

Table 1: Scenario specification for the Rockfor.net model 298 
Input parameters Scenario specification 

Cliff height (m) 20 

NFS1 (m) 0 

Rock density (kg m-3) 2800 

Forested slope length (m) 75 150 

Mean slope inclination (°) 27 30 35 27 30 35 

Mean rock volume (m3) 0.05 0.05 0.05 0.05 0.05 0.05 

 0.2 0.2 0.2 0.2 0.2 0.2 

 1 1 1 1 1 1 

1 NFS: Non forested slope length between the foot of the cliff and the upper forest limit 299 

2.3.3 Analysis of the modeled results 300 

The protective capacity for each scenario was given as the sum of rocks stopped by 301 

standing trees (living and dead) and for logs at the plot-level. The result was set to 302 

100% in case the sum exceeded the 100% mark. In order to assess the temporal post-303 

fire evolution of the protective capacity, the results were plotted against the time since 304 

burning and visualized using standard loess-smoothing curves (Chambers and Hastie 305 

1992) separately for low, moderate and high severity sites. The corresponding unburnt 306 

forests served as reference. Significant temporal trends in those smoothing curves 307 

were detected by employing linear regression models with protective capacity as 308 

response variable and the number of post-fire years as explanatory variable. Since the 309 

protective capacity is expressed as percentage (probability), the data was log-310 

transformed (𝑦` = log (
𝑦

1−𝑦
)) and the numbers of post-fire years were included as 311 

linear and quadratic term. Additionally, Mann-Whitney-Wilcox tests were applied in 312 
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each of the calculated scenario for detecting significant differences in distributions of 313 

the forest protective capacity in different burn severity sites and the corresponding 314 

unburnt forests.  315 

All analyses of the modeled results and the regression models were performed using 316 

R, the free software environment for statistical computing (R Development Core 317 

Team 2014). Negative binomial logistic regression models were fitted and validated 318 

using the glmmADMB package (Bolker et al.). Graphical outputs are mainly based on 319 

packages lattice (Deepayan 2008) and ggplot2 (Wickham and Chang 2015). 320 

3 Results 321 

3.1 Forest characteristics and development after fire 322 

We assessed a total number of 189 plots in burnt and 27 plots in unburnt (control 323 

plots) beech dominated forests. Most of the burnt plots were classified as moderate 324 

(44.2%) and high (40.3%) (burn) severity sites, whereas only the remaining 15.5% 325 

were considered as low burn severity sites. Elevation of the fire sites and the 326 

corresponding unburnt forests ranged from 700 to 1486 m a.s.l. with mean slope 327 

inclinations of 30 ± 0.34°. 328 

Beech grew frequently in the burnt forests, with percentages ranging from 20.75% to 329 

100% (Appendix 1). The overall average tree height was 10.3 ± 0.11 m, and 330 

approximately 2 m higher when referring to living trees only. Average tree density 331 

was 227.6 ± 14.4 stems ha-1 with a decreasing tendency from low (360.5 stems ha-1) 332 

to high (235.7 stems ha-1) burn severity sites. Temporal patterns in tree densities 333 

(DBH ≥ 8 cm) followed a parabolic course, showing denser stands in early and late 334 

post-fire stages and a minimum between 10 and 20 years post-fire (Figure 2). 335 

In low severity sites younger than 15 years post-fire, tree densities were only slightly 336 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 15 

lower than in the unburnt forests (Figure 2). Whereas the average basal area at the 337 

minimum (around 16-20 years post-fire) was only 1.5-times less than the ones 338 

recorded at the early (≤ 9 years) and late (> 32 years) post-fire stages. Only few thin 339 

(DBH < 12 cm) trees died, and densities of intermediate-sized (DBH 12-36 cm) and 340 

large (DBH > 36 cm) trees remained constant throughout the post-fire period of 40 341 

years. 342 

In moderate severity sites, tree densities decreased by half of the densities recorded 343 

for early and late post-fire stages, whereas the basal area depression lasted for 20 344 

years between 10 and 32 years post-fire (Figure 2). Intermediate-sized trees 345 

dominated within the first decade post-fire while their densities rapidly decreased 346 

with a minimum by about 10 to 32 years post-fire. Thin and intermediate-sized trees 347 

increased in densities 32 years post-fire, and tall trees were present throughout the 348 

whole observation period.  349 

In comparison to low and moderate burn severity, tree densities in high severity sites 350 

rapidly decreased throughout all DBH classes within the first decade post-fire and 351 

dropped by a factor of 2.3 from 10 to 20 years post-fire (Figure 2). After 20 years 352 

post-fire, the new regeneration characterized by thin (DBH < 24 cm in particular) 353 

trees increased and their densities doubled with each post-fire age class, peaking after 354 

32 years post-fire.  355 

 356 

[Fig. 2 Tree densities (DBH ≥ 8 cm) for living and dead (shaded bars) trees in 357 

different DBH-classes (grey color gradient) for low, moderate and high (burn) 358 

severity sites and the corresponding unburnt beech forests, grouped by years post-fire] 359 

3.2 Surface unevenness  360 

Most burnt plots were located on a plane (46%) surface followed by small depressions 361 
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(31%), and convex (23%) microrelief. The average coverage of rocks in a burnt plot 362 

was 2%, ranging from zero to maximum 30%. Early post-fire colonizers grew 363 

frequently after fires of moderate and high burn severity. They reached average 364 

coverages of 28% in moderate and 56% in high severity sites (Figure 3). Over the 365 

years post-fire, they increased in coverage within the first decade post-fire and peaked 366 

(~30%) by around 20 years post-fire in moderate severity sites. In high severity sites 367 

they reached a maximum coverage (~ 60%) after 30 years post-fire. This contrasts to 368 

plots burnt of low burn severity, where early post-fire colonizers never exceeded 369 

25%. There was no clear temporal tendency, which was similar to the pattern of early 370 

post-fire colonizers in the unburnt plots. Here coverages tended to be close to zero.  371 

 372 

[Fig. 3 Temporal trends for the cover of early post-fire colonizers (sum of Pteridium 373 

aquilinum, Cytisus scoparius, Molinia arundinacea) visualized by loess-smoothing 374 

curves (black dotted lines) including confidence intervals (grey) for the different burn 375 

severity classes and the corresponding unburnt forests] 376 

 377 

Pattern in the volume of lying dead branches and brushwood were similar in the 378 

different burn severity sites with peaks at around 15 years post-fire (Figure 4). 379 

Afterwards volumes steadily decreased reaching similar values recorded for the 380 

unburnt forests. When considering different burn severities, the volume of lying 381 

branches and brushwood scored highest average values (106 m3) in high severity sites; 382 

here it was 1.5-times higher than in moderate (75 m3) and low (60 m3) severity sites, 383 

respectively. Contrastingly, no clear temporal trend was detected in the unburnt 384 

forests where volumes of lying branches and brushwood never exceeded 25 m3 ha-1. 385 

 386 
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[Fig. 4 Temporal trends in the volumes [m3 ha-1] of lying dead branches and 387 

brushwood visualized by loess-smoothing curves (black dotted lines) including 388 

confidence intervals (grey) for the different burn severity classes and the 389 

corresponding unburnt forests] 390 

3.3 Temporal trends in the protective capacity of forests 391 

The Rockfor.net model results highlight the mid-term (first 40 years post-fire) 392 

evolution of the protective capacity of burnt beech stands as a function of different 393 

burn severities, rock sizes, forested slope lengths, and slope inclinations. The average 394 

protective capacity aggregated over the years post-fire decreased with increasing rock 395 

size, slope inclination, and shortness of the forested slope length (Table 2). The 396 

protective capacity of low severity sites did not significantly differ from the unburnt 397 

forests for most of the scenarios. However, for moderate and high burn severity sites 398 

the protective capacity significantly differed from the unburnt forests in more than 399 

half (67%) of the scenarios (Table 2).  400 

  401 
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Table 2: Mean protection capacity [%] for the different scenario specifications grouped by low, 402 
moderate and high burn severity and the corresponding unburnt forests. Similarities (Mann-403 
Whitney-Wilcox tests) in the protection capacity between unburnt and burnt forests of different 404 
severities are shown in the superscript. 405 
 406 
Forested slope length  75 m   150 m  
Mean slope gradient 27° 30° 35° 27° 30° 35° 
rock size burn severity Mean protective capacity [%] 
0.05 m3 unburnt 97 95 91 95 95 95 
 low 96 (ns) 92 (ns) 87 (ns) 92 (ns) 92 (ns) 92 (ns) 
 moderate 89 (ns) 85 (*) 76 (**) 88 (*) 87 (*) 87 (*) 
 high 73 (*) 68 (**) 61 (**) 74 (*) 73 (**) 69 (**) 
0.2 m3 unburnt 94 84 69 95 94 89 
 low 87 (*) 83 (ns) 71 (ns) 94 (ns) 91 (ns) 84 (ns) 
 moderate 77 (**) 66 (ns) 57 (*) 89 (ns) 85 (*) 71 (*) 
 high 55 (***) 49 (**) 40 (***) 73 (*) 67 (**) 53 (*) 
1 m3 unburnt 62 48 30 94 75 58 
 low 61 (ns) 54 (ns) 37 (ns) 93 (ns) 76 (ns) 56 (ns) 
 moderate 47 (**) 37 (ns) 28 (ns) 86 (ns) 59 (*) 39 (*) 
 high 33 (***) 28 (**) 23 (ns) 65 (**)  41 (***) 29 (**) 
Signif. codes:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘•’ 0.1 ‘ns’ 1 407 
 408 

Low and moderate severity sites yielded a protective capacity above 50% (more than 409 

adequate) for small and intermediate-sized rocks regardless of the forested slope 410 

length (Figure 5-6). Only in scenarios with rocks of 0.2 m3, slope inclination ≥ 30° 411 

and forested slopes length shorter than 75 m the protective capacity decreased below 412 

50%, mostly between 20 and 30 years post-fire (Figure 6 a). In similar scenarios, the 413 

protective capacity in high severity sites ranged between ~10% (inadequate) and 45%, 414 

and was at a minimum in scenarios combining intermediate-sized rocks with steep 415 

and short forested slopes (Figure 6 a).  416 

For scenarios with rocks of 1 m3 and 150 m forested slopes, the protective capacity of 417 

the forests was above 50% (adequate protection) for the unburnt and low severe burnt 418 

forests without any clear temporal trend (Figure 7 b). In case of shorter forested 419 

slopes, the protective capacity of those forest types ranged only between 25% 420 

(satisfying) and 75% (adequate) (Figure 7 a). Contrastingly, the protective capacity in 421 

moderate and high severity sites younger than 15 years post-fire rapidly decreased 422 
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below 50%, reaching its minimum (~10% that is inadequate) around 20 years post-423 

fire.  424 

The linear regression models applied to detect temporal trends in the protective 425 

capacity of the burnt and unburnt forests showed significant correlations between the 426 

protective effect and the linear and quadratic term of the number of post-fire years for 427 

most of the moderate and high burn severity scenarios. Such a significant correlation 428 

was missing for low severity sites and the unburnt forests (Appendix 3).  429 

[Fig. 5 Temporal trends in the protective effect [%] of beech stands hit by low, 430 
moderate and high burn severity and the corresponding unburnt beech forests against 431 
small rocks [0.05 m3], 75 m (a) and 150 m (b) forested slopes 432 

Fig. 6 Temporal trends in the protective effect [%] of beech stands hit by low, 433 
moderate and high burn severity and the corresponding unburnt beech forests against 434 
intermediate-sized rocks [0.2 m3], 75 m (a) and 150 m (b) forested slopes 435 

Fig. 7 Temporal trends in the protective effect [%] of beech stands hit by low, 436 
moderate and high burn severity and the corresponding unburnt beech forests against 437 
large rocks [1 m3], 75 m (a) and 150 m (b) forested slopes] 438 

 439 

4 Discussion 440 

The protective effect of forest stands against rockfall highly depends on species 441 

composition, stand structure, and sustainability of the forest regeneration capacity 442 

(Motta and Haudemand 2000; Dorren et al. 2004a; Dorren and Berger 2005). 443 

Disturbances such as forest fires abruptly and substantially change the forest 444 

structures, which may temporarily affect the protective capacity of the concerned 445 

forest stand (e.g. Dorren et al. 2004a).  446 

Our results show that in beech dominated stands, episodic surface fires cause little 447 

changes in the tree species composition. Beech directly re-grows (Maringer et al. 448 

subm.) after single fire events, resulting in stable and locally adapted forests on the 449 

long-term (Dorren et al. 2004a; Rigling and Schaffer 2015).  450 

However, the post-fire vertical and horizontal stand structures, as well as the amount 451 
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and timing of regeneration, depends strongly on the burn severity. The forest structure 452 

in low severity sites is mostly comparable to those of the unburnt forests (Keyser et 453 

al. 2008). The small, fire related changes in tree density, canopy layer, and 454 

regeneration dynamics do no seem to affect the overall protective effect. This 455 

contrasts to moderate and high severity sites, where significant structural changes 456 

occur after fire, what may cause failures in the protective effectiveness against 457 

rockfall depending on the forested slope length, the mean slope gradient and the rock 458 

size. Structural changes in moderate severity sites are mostly due to the dieback of 459 

small and intermediate-sized trees, which goes in line with post-fire observations in 460 

conifer stands (Keyser et al. 2008). Surviving tall beeches maintain to some extent the 461 

protective capacity (Volkwein et al. 2011) and provide at the same time seeds for new 462 

regeneration (Ascoli et al. 2015). The gradual canopy opening of the dominant tree 463 

layer leads to emerging beech regeneration, so that the forest protective effect 464 

increases again after 20 years post-fire. In the long-term, the mixture of surviving tall 465 

and emerging small and intermediate-sized trees results in a multi-layer stand 466 

structure that may better meet the protective function standards than mono-layered 467 

stands (Dorren et al. 2005b; O`Hara 2006). Nevertheless, the temporary deficit in the 468 

protective effectiveness of the forests seem to occur between 10 and 35 years post-469 

fire, especially in case of forested slopes limited in length.  470 

Tree mortality in high severity sites happens immediately and concerns all tree sizes. 471 

This is similar to crown fires in conifer stands (Keyser et al. 2008; Brown et al. 2013) 472 

and to wind-throw areas, where most trees die immediately after the disturbance 473 

event. In those areas, standing and lying dead trees mostly maintain the forest 474 

protective effect (Frey and Thee 2002; Schönenberger et al. 2005; Bebi et al. 2015), 475 

although their resistance decreases with time, as shown by tensile tests (Frey and 476 
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Thee 2002; Bebi et al. 2012; Bebi et al. 2015). The dead wood quantity and quality 477 

might be also lower in fire sites than in wind-throw areas (Wohlgemuth et al. 2010; 478 

Priewasser et al. 2013), especially in case of tree species such as beech displaying a 479 

rapid decaying wood (Maringer et al. subm. a). As shown by our results, the amount 480 

of dead wood consistently decreases from 15 years post-fire on, contributing little in 481 

the long-term to the forest protective capacity (Frey and Thee 2002). Such a loss in 482 

protective capacity has to be compensated by the upcoming regeneration, which 483 

might be delayed due to a lack of seed providing trees and/or a thick layer of 484 

competing, fast growing early post-fire colonizers. The latter are able to prevent 485 

immediate post-fire beech regeneration (Herranz et al. 1996; Ascoli et al. 2013; 486 

Maringer et al. subm.), inhibiting the forest re-growth for several decades (Koop and 487 

Hilgen 1987). At the same time our results indicate significantly increase in the 488 

coverage of early post-fire colonizer and lying dead branches, which may contribute 489 

to some extent to the protective capacity against falling rocks with volumes smaller 490 

than 0.2 m3 in the first 20 years post-fire. However, to date their effective contribution 491 

is hard to quantify in process-orientated models. 492 

5 Conclusion and practical consequences for forest managers 493 

In this paper we analyze the temporal trends in the forest protection capacity against 494 

rockfall of burnt beech stands in the Southern Alps. Based on our results, standing or 495 

lying dead trees should in general be left at the burnt site because they contribute 496 

temporally to the forest protective effect and provide shade, moisture and nutrients to 497 

the emerging tree regeneration (Maringer et al. subm.). In particular, burnt beech 498 

forests hit by low severity fires provide nearly similar protective effects as unburnt 499 

forests. Hence, silvicultural measures are generally not necessary, whereby the 500 

protective capacity has to be assessed on an individual basis. 501 
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In case of moderate to high severe fires stands may experience a temporal deficit in 502 

their protective capacity between 10 to 30 years post-fire depending on the effective 503 

burn severity, the rock sizes, the length of the forested slopes and the mean slope 504 

gradient. The cumulative effect of dieback of pre-fire trees and slow re-growth of the 505 

regeneration may drop the protective capacity below 50%, especially in case of large 506 

falling rocks on steep slopes. Consequently, silvicultural and/or technical measures 507 

may be necessary in such critical scenarios depending on the risk for humans and 508 

their assets in relation to the cost-benefit ratio. Beside the installation of rockfall nets 509 

or walls, small-scale felling of standing dying trees and obliquely positioning of the 510 

resulting logs offers a possibility to mitigate the loss in protective capacity. However, 511 

directional felling has to be conducted within a particular time frame, because (i) the 512 

time-lag between salvage logging and a beech mast year affects the regeneration 513 

process, and (ii) beech wood decays relatively fast with progressive time (Ascoli et al. 514 

2013; Maringer et al., submit. a). As mentioned by Ascoli et al. (2013; 2015), salvage 515 

logging should be carried out the following winter after a beech mast year—because 516 

the success of beech regeneration highly depends on quantitative seed input—, and 517 

within the first five year post-fire to protect established beech saplings. Moreover, 518 

weed control combined with artificial beech seed dispersal could reduce the inter-519 

species competition and may accelerate the establishment of a new beech generation.  520 

We were not able to quantify the contribution of brushwood and coverage of early-521 

post-fire colonizers in the rockfall modeling. Hence further research is needed in 522 

order to quantify the dissipative energy of dense shrub vegetation and their 523 

implementation in process-based models.  524 

  525 
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Appendix 526 
Appendix 1: Investigated fire sites sorted by the date of fire. Further listed: slope [°], elevation 527 
(elev. [m a.sl.]), number of plots, mean stem density [stems ha-1], mean basal area [m2 ha-1], 528 
species (F.s.= Fagus sylvatica, Broad. = other broadleaf species, P.a. = Picea abies, Conif. =other 529 
conifer species, species proportion of living trees [%], number of plots in the corresponding 530 
unburned forest (control). 531 
Location Site characteristics burnt forests characteristics control 
Municipal Date of 

fire 
Slope Elev. Nr. 

plots 
Mean 
stem 
density 

Mean 
basal 
area 

Species Species 
proportion 

Nr. 
plots 

Gordevio 09.03.73 24 1460 1 1900 10 F.s. 97 0 
       Broad. 3  
Moghegno 27.11.73 40 1100 3 883 38 F.s. 50 0 
       Broad. 50  
Arbedo 20.03.76 31 1300 13 912 36 F.s. 76 1 
       Broad. 22  
       P.a. 3  
Sparone 28.12.80 22 1100 16 753 27 F.s. 62 1 
       Broad.  37  
       Conif. 1  
Astano 01.01.81 22 1050 2 750 35 F.s. 70 0 
       Broad.  30  
Indemini 01.01.81 31 1200 12 613 13 F.s. 71 1 
       Broad. 29  
Intragna 04.01.87 27 1150 3 583 18 F.s. 100 0 
Aurigeno 01.08.89 35 900 2 1500 25 F.s. 84 1 
       Broad. 16  
Corio 15.02.90 19 1080 10 295 26 F.s. 60 2 
       Broad. 40  
Mugena 23.03.90 19 900 6 108 29 F.s. 100 1 
Novaggio 10.03.90 35 1300 2 225 8 Broad.  38 1 
       F.s. 62  
Rosazza  19.01.90 40 1000 5 460 49 F.s. 91 0 
       Broad. 9  
Pollegio 09.04.95 22 1200 3 117 22 F.s. 56 2 
       Broad. 44  
Tenero 21.04.96 37 950 3 200 15 Broad. 18 0 
       F.s. 82  
Arola 04.06.97 40 800 13 646 37 F.s. 66 0 
       Broad. 34  
Magadino 15.04.97 33 1200 24 427 28 F.s. 72 3 
       Conif. 2  
       Broad. 26  
Ronco s. A.  15.03.97 22 1300 6 417 23 F.s. 100 1 
Sonvico 03.04.97 24 1000 5 380 13 F.s. 49 2 
       Broad. 51  
Indimini 19.12.98 33 1300 1 100 30 F.s. 50 1 
Gordevio 24.04.02 24 1400 5 490 31 F.s.  100 4 
Maggia 11.03.98 14 1380 3 617 32 F.s. 100 1 
Bodio 17.03.99 33 1050 3 167 48 F.s. 62 1 
       Broad. 38  
Dissimo 05.04.99 40 1000 3 900 27 F.s. 97 1 
       Broad. 3  
Someo 05.08.99 27 1450 3 433 35 F.s. 100 1 
Varallo 10.08.99 29 1300 11 323 26 F.s. 96 1 
       Broad.  4  
Villadossola 15.03.01 37 1250 11 1009 27 F.s. 79 1 
       Broad. 21  
Cugnasco 02.04.02 22 700 4 575 21 Broad. 53 1 
       F.s. 47  
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Ronco s.A. 22.04.03 3 1300 2 350 35 F.s. 100 1 
Condove 01.03.08 19 1100 11 573 50 F.s. 98 1 
       Broad.  2  
Drugno 26.03.12 29 1100 12 963 20 F.s. 90 1 
       Broad. 10  
Giaglione 03.03.12 39 1300 8 994 44 F.s. 77 1 
       Conif. 21  
 532 
Appendix 2: Estimates and standard error of the mixed-effect model for stem densities modeled 533 
against slope inclination. 534 
 535 

Variable Estimate Standard error 

Intercept 5.9 <0.0001 

Slope 0.009 0.25 

random intercept Variance StdDev. 

 0.33 0.6 

 536 
 537 
Slopes of the plots were measured in degree and implemented as explanatory variable 538 

in a mixed effect model with negative binomial distribution (Bolker et al., 2013). 539 

Stem densities served as response variable, and because of the high intra-class 540 

correlation fire sites were implemented as random effect in the model. The result 541 

shows that slope inclination was not significant at the 0.05-level (Appendix 3), and 542 

thus it was possible to use standardized slope inclination in the Rockfor.net tool. 543 

Against this background, the 1st (26.7°) and 3rd quantile (35°) as well as the mean 544 

(29.7°) was used as standardized slope inclinations. 545 

  546 
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Appendix 3: Linear regression models for temporal trends in the years post-fire (AGE) of the 547 
protective capacity of burned beech stands differing in burn severity (low, moderate, high) and 548 
the corresponding unburned forests. Models were separately conducted for scenarios differing in 549 
rocks size (0.05 m3, 0.2 m3, 1 m3), forested slope length (75 m, 150 m) and slope inclination (27°, 550 
30°, 35°). The sign and significance level of the predictor are displayed. 551 

Scenario       
Rock size [m3] Forested 

slope length 
[m] 

Slope 
inclination 
[°] 

Burn 
severity 

Intercept AGE AGE2 

0.05 75 27 Unburned (+)*** ns ns 
   Low (+)** ns ns 
   Moderate (+) • ns ns 
   High (+)*** (-)** (+)** 
0.05 150 27 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate 

Moderate 

(+)*** (-)• (+)• 
   High (+)*** (-)*** (+)*** 
0.05 75 30 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)• (+)• 
   High (+)*** (-)*** (+)*** 
0.05 150 30 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)• (+)• 
   High (+)*** (-)*** (+)*** 
0.05 75 35 Unburned (+)** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)* (+)• 
   High (+)*** (-)*** (+)*** 
0.05 150 35 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)• (+)• 
   High (+)*** (-)*** (+)*** 
0.2 75 27 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)** (+)** 
   High (+)*** (-)*** (+)*** 
0.2 150 27 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)* (+)* 
   High (+)*** (-)*** (+)** 
0.2 75 30 Unburned (+)** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)*** (+)*** 
   High (+)*** (-)*** (+)*** 
0.2 150 30 Unburned (+)*** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)* (+)* 
   High (+)*** (-)*** (+)*** 
0.2 75 35 Unburned (+)*** (-)** (+)** 
   Low (+)* ns ns 
   Moderate (+)*** (-)** (+)* 
   High (+)*** (-)*** (+)*** 
0.2 150 35 Unburned (+)** ns ns 
   Low (+)*** ns ns 
   Moderate (+)*** (-)*** (+)** 
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   High (+)*** (-)*** (+)*** 
1 75 27 Unburned ns ns ns 
   Low ns ns ns 
   Moderate (+)** (-)* (+)• 
   High (+)*** (-)*** (+)*** 
1 150 27 Unburned (+)*** ns (-)* 
   Low (+)*** • ns 
   Moderate (+)*** (-)* (+)* 
   High (+)*** (-)*** (+)*** 
1 75 30 Unburned ns ns ns 
   Low ns ns ns 
   Moderate (+)* (-)** • 
   High (+)*** (-)*** (+)*** 
1 150 30 Unburned (+)*** (-)** (+)** 
   Low (+)* ns ns 
   Moderate (+)*** (-)** (+)** 
   High (+)*** (-)*** (+)*** 
1 75 35 Unburned ns (-)• ns 
   Low (+)** ns ns 
   Moderate (+)* (-)** (+)• 
   High (+)** (-)*** (+)*** 
1 150 35 Unburned ns ns ns 
   Low ns ns ns 
   Moderate (+)* (-)** (+)• 
   High (+)*** (-)*** (+)*** 
 552 
  553 
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Scenario: Stone 1 m3; Slope:  27° 30° 35°
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