
Introduction

Intensification in agriculture, tourism, fragmentation and

periodic water shortages are among the main threats to tem-

perate zone wetlands today. Hence, conservation of such

natural and semi-natural habitats is a high priority issue in

European environmental policy. The most wide-ranging leg-

islations are the recent European Union Habitats Directive

(92/43/EEC) and Water Framework Directive (WFD;

2000160/EC) which include provisions for enhancing eco-

system health and prevention of further deterioration of

aquatic ecosystems, including wetlands (Large et al. 2007).

At the national level, Switzerland has adopted an even more

rigorous initiative for enhanced site protection and/or resto-

ration of mire ecosystems. According to a federal decree

from 1987, Swiss mires of national importance, as defined in

national inventories, have to be maintained in their present

size and quality. The definition comprises all wetlands with

the exception of floodplains and fen woodland. It is the duty

of the cantons to implement compulsory mire conservation

programs including appropriate agricultural practices in

semi-natural wetlands.

The question arises whether the inducedmanagement ac-

tivities actually meet the objectives of conservation legisla-

tion and justify the high level of public and private expendi-

ture involved. In Europe and North America, large

agri-environment schemes spend billions of dollars, but re-

cent efforts to document their effectiveness have been patchy

or have produced mixed results (Bunce et al. 2008). Hence,
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Abstract:As conservation of sensitive habitats is a high priority issue in European environmental policy, there is considerable

interest in mapping and monitoring specific habitats of high conservation value. In this study, we discuss the potential of the

Swiss mire monitoring program to monitor small area habitats in sufficient detail. The monitoring scheme combines nation-

wide probability sampling and predictive habitat mapping based on a field data sample. Thus, it is designed to identify spatio-

temporal changes at the stand level and to derive hard statistics for the sub-national level. For feasibility reasons, the thematic

focus is on semi-quantitative mean indicator values derived from vegetation records. These measures provide robust estimates

of essential floristic site conditions. Regression models based on CIR aerial photographs are applied to continuously map

respective measures across the sample mires. The present study explores the required investment of data for model-based

mapping. Exemplary mapping results are presented and validated within a reference mire. Repeated tests show that about one

hundred field records are needed to guarantee optimal prediction accuracy and reliable error estimates for all target variables.

The corresponding 95% error quantiles in a test data set are below 0.7. To evaluate the benefit of high resolution orthophotos

(30 cm resolution), the model prediction is compared with results obtained from coarsened images. Although the original CIR

images produce the best model performance, the models based on resolutions comparable to modern satellite images still show

considerable potential to assess larger areas where the use of digital aerial photographs is limited. The resulting spatially-ex-

plicit in-depth information can resolve the common thematic limitations of stand-alone remote sensing applications in conser-

vation monitoring. As the method is applicable consistently across a range of habitat types, we argue that it has the potential

to become a standard method for operational monitoring of priority habitats in European nature conservation.

Abbreviations: ASTER – Advanced Spaceborne Thermal Emission and Reflection Radiometer, CIR – Colour infrared, DSM

– digital surface model, DTM – digital terrain model, NIR – Near infrared, VHSR – Very high spatial resolution, VHR – Very

high resolution.



there is an ongoing debate on the ecological benefits of such

programs (Kleijn et al. 2006, Field et al. 2007) .

Therefore, monitoring the efficacy of management ac-

tivities is strongly recommended to be an integral component

of the design and implementation of any nature conservation

program (Christensen et al. 1996,Woodward et al. 1999, Vos

et al. 2000, Nichols and Williams 2006, Pereira and Cooper

2006). Monitoring is defined as ‘intermittent recording of the

condition of a feature of interest to detect or measure compli-

ance with a predetermined standard’ (Hellawell 1991). Ac-

cording to Legg and Nagy (2006), the main tasks of monitor-

ing nature conservation are: to inform the conservationist

when the system is departing from the desired state, to meas-

ure the success of management actions, and to detect the ef-

fects of perturbations and disturbances. When the objectives

of the study are well defined, conservation monitoring be-

comes an essential tool for identifying changes in ecosystems

with implications for applied research and management

(Yoccoz et al. 2001). As the Swiss mire monitoring program

is designed as a screening and verification procedure, its

character is operational rather than investigative (Ferreira et

al. 2007).

At the level of the European Union Habitats Directive

(92/43/EEC), reporting is still based on individual national

programs without standardised protocols. As a result, there

are no consistent figures on habitat loss and the state of the

habitats for European priority habitats. Most of the available

maps are derived from satellite imagery and are not suffi-

ciently detailed for strategic policy making (Bunce et al.

2008). Thus, operational monitoring of European priority

habitats addressing habitat extent as well as conservation

state is urgently needed.

However, reduced financial resources and the inevitable

trade-off between biological details and data availability

readily provokes the use of direct or indirect attributes de-

rived from remotely sensed data. In fact, recent advances in

earth observation techniques have reduced the perceived

mismatch between information obtained from stand-alone

remote sensing systems and in-depth information of tradi-

tional field work. Nevertheless, satellite imagery still has to

be supported by field measurements to provide meaningful

ecological information (Kerr and Ostrovsky 2003, Turner et

al. 2003, Kerr and Deguise 2004, Fassnacht et al. 2006). Recent

case studies on small areamonitoring of spatially heterogeneous

wetland habitats corroborate its ongoing dependence on ancil-

lary field observations (Weiers et al. 2004,Bock et al. 2005,Bel-

luco et al. 2006, Langanke et al. 2007).

The study presented here outlines the potential of the

Swiss mire monitoring program to solve the stated survey

problem of remote sensing data in operational conservation

monitoring. The monitoring design combines nation-wide

probability sampling and predictive habitat mapping based

on a field data sample to identify subtle spatio-temporal

changes at the stand level and to derive hard statistics for the

sub-national level. The latter is especially needed for the de-

velopment of strategic conservation policies.

To capture essential attributes of the state of a mire eco-

system the primary monitoring focus is on floristic condi-

tions at the stand level. These are specified by quasi-metric

mean indicator values derived from vegetation records col-

lected in the field (Ellenberg 1974, Landolt 1977, Ellenberg

et al. 1992). As floristic habitat gradients of interest are con-

tinuous in nature, these measures are more likely to capture

subtle shifts within heterogeneous semi-natural ecosystems

than simplified vegetation classes or habitat types. Ellenberg

indicator values have been used to analyse e.g., national-

scale vegetation change across Britain (Smart et al. 2003), air

pollution effects on Swedish boreal forests (Grandin 2004),

soil eutrophication and acidification in German forest eco-

systems (Seidling 2005), environmental changes in wetland

sites with a view to their management (Large et al. 2007) or

bog slide (Feldmeyer-Christe and Küchler 2002).

To provide estimates over the whole area of observation,

regression models based on CIR aerial photographs are em-

ployed for continuous mapping of respective floristic gradi-

ents within all sample mires. Such empirical models are an

important tool for relating field-measured biophysical vari-

ables to remote sensing data (Pietroniro and Leconte 2005,

Fassnacht et al. 2006). Recent studies have used such models

to map forest attributes over large areas (Cohen et al. 2003,

McRoberts 2006) or to estimate hydrological state parame-

ters within wetlands (Pietroniro and Leconte 2005). Few

authors have used variables derived from species composi-

tion to continuously map floristic conditions across complex

stands (Küchler et al. 2004, Schmidtlein 2005, Schmidtlein

et al. 2007). One article presents how to use respective model

estimates for spatio-temporal change detection (Küchler et

al. 2007).

As budgets are tight in most conservation monitoring

studies, survey efficiency is crucial especially for obtaining

costly ground truth and VHSR remotely sensed data. In this

paper, we test the sample size needs for predictive mapping

of mean indicator values with pre-defined minimum accu-

racy. To assess the minimum spatial resolution of remotely

sensed data that still allows for the presented stand levelmap-

ping, CIR orthophotos (30 cm resolution) are compared to

simulated satellite images in terms of predictive power in re-

gression models. For that we use coarsened CIR imagery

with ground resolutions of 5 m and 15 m.

Material and methods

National sampling design

The nation-wide monitoring project was established in

1996 to reveal as early as possible any discrepancies between

conservation goals and real developments. It has to be a prac-

tical instrument to provide the people in charge with scien-

tific results in order to assess and readapt, if necessary, their

earlier policies. Considering the spatial heterogeneity and

small size of most of the Swiss mire remnantsmonitoring has

to focus on the stand level. To provide valid data for the

whole country, a stratified random sample was drawn from
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the entire variety of managed and unmanaged mire ecosys-

tems listed in the federalmire inventories (Grünig et al. 1986,

Broggi 1990). The sampling takes into account the geo-

graphic region, the altitudinal belt, the type (bog or fen) and

the size of each mire. The resulting selection comprises 103

mire sites and 21 partial replacement objects for the second

survey update (Fig. 1) whereas 18 additional mires serve as

reference. The reference sites are investigated in more detail

to assess the causes of possible changes.

Study area

Themire site chosen for exemplarymodel demonstration

in this study is one of the reference objects. “Gross Moos” is

located in Schwändital on the northern slope of the Swiss

Alps at an altitude of about 1250 m (Fig. 1). It is a percolated

sloping bog of about 16 ha. Heavy degradation resulted from

draining ditches and grazing. Since the mire became pro-

tected, great efforts have been made to restore the site. Cattle

were gradually kept away from the site and a big ditch in the

centre was filled up with sawdust to raise the ground water

level.

Field survey based on local sampling

Data collection consists of image segmentation and field

sampling.

Image segmentation is realized by visual photographic

interpretation of overlapping pairs of analogue CIR aerial

photos with a scale of 1:5000 under a stereoscope. Vegeta-

tion patches which meet specific criteria of homogeneity in

terms of colour, texture and structure, are delineated.

Field survey is restricted to a limited number of the ho-

mogeneous vegetation patches, selected by local stratified

random sampling (Fig. 2). To update sample repre-

sentativeness, sampling within the mire object is repeated at

each survey by partial replacement. Field work consists of

taking a full record of vascular plants and bryophytes. The

vegetation relevés include abundance data for vascular plants

and mosses and cover estimations for trees, Sphagnum spe-

cies in total, bare peat and open water. For predicting indica-

tor values, we use basic presence/absence data as thesemeas-

ures show the best model results. Within the reference mire

“Gross Moos”, the entire area under observation was re-

corded in 1996 for in-depth monitoring of given restoration

activities. Additionally, a sample of 283 records was drawn

in 2001.

Monitoring status quo. Between 1996 and 2007, 32,000

vegetation relevés were taken in the course of the Swiss mire

monitoring program. The time span between surveys is five

years. The second survey started in 2003 and will end in

2008. Then spatio-temporal changes in Swiss mire habitats

will be investigated.

Continuous mapping of floristic conditions at the stand

level

Target variables. Our study focuses on the spatio-temporal

variation of mean indicator values derived from presence/ab-

sence vegetation data recorded in the field. Indicator values

characterise the realized optima (Hutchinson 1957) of organ-

isms along multiple environmental gradients in their natural

surrounding. As these indicator values take into account

physiological limitations and competition of other organ-
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isms, they can be considered plant functional response. Their

definition along an ordinal scale is mainly based on field ex-

perience. The indicator values assigned to vascular plants by

Ellenberg for Central Europe (Ellenberg 1974, Ellenberg et

al. 1992) and adopted by Landolt for Switzerland (Landolt

1977) are most common. Landolt indicator values are de-

fined for light, continentality, temperature, moisture, soil re-

action, nitrogen, salt tolerance, humosity and dispersity.

When geo-chemical and geo-physical measurements of

environmental variables are not available, the system of indi-

cator values is considered to be a practicable way to indi-

rectly quantify stand level conditions by averaging the indi-

cator values of all species within a surface. Such mean

indicator values describe the realized niche of a species as-

semblage. Communities generally integrate the individual

overlapping resource requirements and ecological tolerances

that emerge from competitive processes as well as historical

and other stochastic effects. Consequently, the optimum in

the multidimensional ecological space is more uniform for

communities than for their species (Zimmermann and

Kienast 1999). Therefore, using the overall balance of spe-

cies increases the chance to derive accurate mean indicator

values for the underlying site factors (Bunce et al. 2008).

In this study, the calculation of the mean indicator values

is carried out by the 10% trimmed mean. Instead of using

original Landolt values directly, we adapt these for Swiss

mire ecosystems. The habitat-specific re-calibration is ac-

complished by the means of weighted averaging of 10.000

vegetation records from the monitoring program. The new

values are refined and scaled continuously from 0 to 6. Thus,

we do not solve the problem of non-equidistance measures,

but it was demonstrated that such re-recalibration based on

empiric data enhances the accuracy of derived predictive

maps within Swiss mire ecosystems (Feldmeyer-Christe et

al. 2007).

Empirical modelling.We use linear regression models based

on remotely sensed data for predicting continuous mean in-

dicator values within the whole mire area. The modelling

chosen for this study relies on ordinary least squares regres-

sion and is calibrated by mean indicator values derived from

the field samples.

To provide sensitive predictor variables for reliablemod-

elling, we derive various attributes from VHR remotely

sensed data. Table 1 lists the corresponding processing algo-

rithms, the estimates calculated to retrieve the information at

the polygon level and their ecological relevance. Spectral and

textural characteristics are extracted from CIR orthoimages

of 30 cm ground resolution to capture vegetation composi-

tion at a fine scale.High resolution surfacemodelswith a grid

spacing of 50 cm, generated by automated image matching,

and broad-scale terrain models of 25 m ground resolution are

used to reflect vegetation structure and vegetation response

to topographical gradients (Moore et al. 1991, Dirnböck et al.

2002). The up-scaling of the fine-grained remotely sensed in-

formation to the spatial modelling units – the patches – is car-

ried out by calculating summary statistics such as relative

proportions, arithmetic mean, median and variance values

for each polygon. Thus, we generate spectral, spectral-tex-

tural, topographical and topographical-textural variables, re-

sulting in about 130 variables describing each polygon.

In order to satisfy linearity conditions, the following

types of predictor variables are transformed: variances are re-

placed by their square root before entering the model, pro-

portions are transformed by computing the arc sine of the

square root (Zar 1986, Schlittgen 2000).
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Since model performance decreases when the number of

observations (i.e., calibration data) does notmarkedly exceed

the number of predictor variables due to overfitting effects

(Draper and Smith 1998, Harrell 2001), the number of pre-

dictor variables has to be minimised. The commonly used

method to reduce the number of predictor variables is step-

wise model selection (Miller 1984, Miller 1990, Draper and

Smith 1998). In this study, we apply an equivalent procedure

termed composite linear modelling to avoid possible loss of

predictive power due to variable dropping. The method was

designed to optimally trade interpretation, prediction and

sample size needs in the given case of surplus noisy and

multi-collinear predictors. It consists of two steps: (1) fitting

individual sub-models to thematically coherent groups of

predictor variables, (2) fitting a final model to the fitted val-

ues resulting from the sub-models. Both modelling steps are

applied to the same response variable. Thus, the sub-models

produce a reduced number of thematically well-defined pre-

dictors which replace the original inputs in the regression

(Küchler et al. 2004).

The spatial dependence of the model residuals is used to

further improve the results. Ordinary kriging (Cressie 1993)

is applied to the residuals of the calibration data to estimate

the theoretical residuals of the predicted polygons. The re-

sulting values are added to the predictions of the regression

model. The kriging parameters are determined by fitting a

spherical variogram, starting with a robust empirical

variogram estimation (Cressie and Hawkins 1980, Miller

2005).

Model accuracy is tested by comparing predictions with

control observations which are not used for calibration. Thus,

model validation relies on reference mire objects where ex-

tensive field survey was done. Model performance is quanti-

fied by calculating correlation values between predictions

and corresponding observed control data. To reflect the ab-

solute degree of error we compute the 95% quantiles and the

error median (= 50% quantile). To evaluate the effect of sam-

ple size, we quantify model performance for soil reaction us-

ing 200 and 70 field records.

Exploring minimum demands on data investments. Cost-ef-

ficiency is essential for any long-term monitoring projects

and in particular for in-depth habitat monitoring, where

costly field data and VHSR imagery are involved. For this

purpose we explore the dependence of mapping accuracy on

the resolution of the data sources employed.

We let the reliability of modelled error estimates be the

main criterion to determine the minimum sample size re-

quired for mapping. We fit models using a varying number

of training data sets and compare the modelled 95% predic-

tion intervals to the corresponding observed error quantiles

in a test data set. The prediction intervals are calculated at the

centre of the predictor variable data range. The minimum

sample size is further constrained to ensure model accuracies

that comply with the given monitoring tasks.

To evaluate the benefit of the employed CIR aerial im-

ages (grid spacing of 30 cm), they are compared with images

with ground resolutions of 5 m and 15 m, again in terms of

resulting model accuracy. As real satellite images were not

available for the reference mire, we use coarsened CIR im-

ages to mimic the resolution of satellite images. These im-

ages are derived from the high resolution CIR orthophoto by

pixel aggregation. Thus, the cells of the reduced-resolution

images contain the mean values of the merged cells. The re-

sulting coarse image of 15 m ground resolution approxi-

mately conforms to ASTER satellite data with respect to col-

our bands and ground resolution.

From the predictor variables mentioned above, we

choose only those which can be derived from the spectral

data sources. Thusmodelling based on simulated satellite im-

ages cannot include topographical variables derived from

fine-scale surface models. This precise surface information

is generated from high resolution aerial photographs by auto-

mated stereo matching and is not available with common sat-

ellite images.

Model comparison is hindered by missing values, as the

satellite-based models fail to predict small surfaces. Predic-

tions are not available for 31 and 408 surfaces, respectively

(see Fig. 6). To ensure meaningful model comparison, we

use loess regression (Cleveland and Devlin 1988) to locally

interpolate the missing values, before the model validation is

performed.

Results

Mean indicator variables are sampled and continuously

mapped across the entire mire site. Exemplary model results

(Fig. 3) are presented for the reference mire Gross Moos,

where field data cover the whole area. In this step, 200 field

records are used as calibration data to predict the distribution

of eight indicator variables for the whole area under observa-

tion (1030 surfaces). The resulting predictivemaps depict the

varying patterns of essential floristic gradients at the stand

level. Model validation (Table 2) proves high model accu-

racy, showing correlation values above 0.7 for all indicator

types except continentality. The 95% quantiles vary between

0.1 and 0.7 and the medians do not exceed 0.24.

To reflect the effect of the training data size, we model

mean soil reaction first with 200 and then with 70 field re-
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cords and compare the results. Fig. 4 depicts the mapping re-

sults. The key figures indicate that model accuracy of the sec-

ond model is lower but predictions still yield valuable results

(r = 0.74, med = 0.26, Q95 = 0.85).

Obviously, model performance depends on the number

of survey records used for model calibration. To determine

the number of field records necessary to ensure satisfactory

model performance, model validation is repeatedly calcu-

lated for a rising number of calibration data. Fig. 5 shows the

corresponding decline of the 95% quantiles with four indica-

tor variables. The performance is depicted for actual errors

observed by model validation and those predicted by the

model. To gain optimal model predictions for all indicator

values, the sample size has to be chosen in a range where the
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individual error curves flatten to their minimum. Thus, we

see that at least 100 field records are required to guarantee

high prediction quality. To additionally assure reliable error

estimates, the curves of the predicted errors have to match

those of the observed ones. As this is true for the stated sam-

ple size, the resulting error estimates are to be considered un-

biased. The corresponding 95% error quantiles of 0.7 and be-

low are supposed to satisfy the given monitoring

requirements.

To estimate the benefit from high resolution aerial pho-

tographs, corresponding predictions are compared to models

based on simulated satellite images. Results show that im-

ages of lower resolution produce lower model accuracy (Fig.

6). But predictions based on satellite images of 5 m ground

resolution still produce useful results (r = 0.59, med = 0.13,

Q95 = 0.41). Even the coarse image of 15 m ground resolu-

tion detects the main environmental gradients, though ex-

treme values are systematically smoothed (r = 0.43, med =

0.15, Q95 = 0.45).

Discussion

The present study explores the potential of semi-quanti-

tative averaged indicator values and aerial photographs to

monitor habitat qualities with regard to investment needs and

pre-defined accuracy standards.

Adequate monitoring design

Various authors criticise that most conservation monitor-

ing programs fail to meet their stated objectives (Yoccoz et

al. 2001, Legg and Nagy 2006, Field et al. 2007). To achieve

high monitoring quality, the approach presented in this study

is based on a two-fold stratified random sampling design and

repeated recording of semi-quantitative measures of habitat

conditions. The latter implies signed rank tests to be applied

to infer hard statistics about changes at a strategic sub-na-

tional level. To provide this information to land managers at

the local scale in spatial detail, predictive mapping of respec-

tive gradients at the stand level is applied in all 124 sample

habitats and some additional reference mires, where conser-

vation or restoration measures have been taken. Küchler et

al. (2007) use resulting model estimates for valid change de-

tection.

Limitations of stand-alone remote sensing applications

Plant communities constitute the primary component of

terrestrial ecosystem structure and functioning. Hence, they
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are considered essential in determining ecosystem quality

and condition (e.g., conservation status) (Bunce et al. 2008).

Remote sensing can provide corresponding broad spatial and

multi-temporal information. Although there have been con-

siderable advances in sensor technology, vegetationmapping

and wetland monitoring have remained a difficult task. Most

studies using remotely sensed data discriminate at the level

of major physiognomic categories. However, on the herba-

ceous and grass level, there have been few successful map-

ping results, e.g., for salt-marsh vegetation (Schmidt et al.

2004, Toyra and Pietroniro 2005, Belluco et al. 2006). As a

consequence, there is still no operational application tomoni-

tor complex ecosystems such as European priority habitats

(Bunce et al. 2008). Due to the lack of field data, recent case

studies assessing single habitats in the context of Natura

2000 were thematically limited to crude vegetation types or

structural indicators of vague ecological meaning (Weiers et

al. 2004, Bock et al. 2005, Keramitsoglou et al. 2006, Lan-

ganke et al. 2007).

Choice of ancillary field information

The approach of linking floristic field information to aer-

ial photographs is demonstrated by the Swiss mire monitor-

ing program. Instead of using qualitative categories of plant

communities, Landolt plant indicator values (Landolt 1977)

are employed as a derived measure of habitat quality. While

there is a substantial body of literature discussing the limita-

tions of indicator values (for an overview see Diekmann

2003 and Schmidtlein 2005) and the way how to use them in

statistical analysis (ter Braak and Looman 1986, Jongman et

al. 1995), semi-quantitative mean indicator values are still

considered as a sound measure to describe floristic condi-

tions on the stand level (Graf 1996, Diekmann and Dupre

1997, Hawkes et al. 1997, Ertsen et al. 1998, Diekmann

2003, Gegout et al. 2003, Rosenthal 2003, Large et al. 2007).

However, mean indicator values do not reflect momentary

habitat conditions, but lifespan growth conditions of individ-

ual species (Schmidtlein 2003). Hence, a time lag has to be

considered for the detection of subtle changes. As Ellenberg

indicator values were developed for Central Europe, local ex-

perience on the ecological amplitude of plant species may be

needed for extending the monitoring approach to other parts

of Europe.

Sample and indicator robustness

To obtain reliable monitoring results, common sources

of error immanent in conservation monitoring have to be

considered (Yoccoz et al. 2001). Inference error usually oc-

curs with weak sample representativeness. The present study

takes this type of error into account by establishing a twofold

stratified random sampling scheme based on proper model

structures at the regional and at the local level. In general,

ground truthing is faced with effects such as researcher im-

pact, especially on wetlands (Wolski et al. 2004), observer

bias (Kercher et al. 2003), relocation problems, border ef-

fects or simple overlooking and species misidentification

(Scott and Hallam 2003). Another source of inaccuracy is the

varying detectability or seasonality of biotic monitoring ob-

jects (MacKenzie and Kendall 2002, Royle and Nichols

2003, Schmidt 2003, Kery and Schmid 2004). All these as-

pects inevitably affect the quality of the field data. We argue,

that most of these errors are minimised by monitoring robust

mean indicator values. As these values reflect the realized

optima of a species assemblage within a stand, single species

or fine-scale spatial irregularities do not affect the resulting

observation significantly. Additionally, operating on quasi-

metric indicator variables avoids statistical limitations of

count data analysis and simplification errors intrinsic to clas-

sifications, such as vegetation classes.

Mapping techniques

Mean indicator values show various links to reflectance

properties of vegetation and topographical characteristics

(Schmidtlein 2005). Thus the combination of both data

sources is likely to predict floristic gradients over the whole

area of observation. Continuous mapping can be easily

achieved by regression analysis. In traditional remote sens-

ing, most regression models rely on a single spectral vegeta-

tion index (Cohen et al. 2003). As regression suffers from

multicollinearity withmodernmultispectral data, other meth-

ods have to be employed for such data. Partial least squares

regression, for example, has been successfully used with hy-

perspectral imagery (Schmidtlein 2005, Cho et al. 2007). In

this study, we employ composite linear modelling to circum-

vent the problem of variable-reduction (Küchler et al. 2004).

A general drawback of such empirical models is that they

cannot be projected to sites other than where they were de-

veloped.

Appropriate VHR remote sensing images

Various authors investigated the impact of remotely

sensed data sources of diverse spectral and spatial resolution

on the mapping of priority habitats in nature conservation

(Toyra and Pietroniro 2005). Hyperspectral data contain

largely redundant information. Accordingly, spatial resolu-

tion might affect mapping accuracy more than spectral reso-

lution, as reduction experiments showed for mapping salt-

marsh vegetation (Belluco et al. 2006). In this study, we

demonstrate the benefit of aerial orthophotos for mapping

floristic gradients at the stand level. In fact, aerial photogra-

phy continues to be an important source for small area moni-

toring of wetland conservation and restoration (Shuman and

Ambrose 2003, Langanke et al. 2007, Waser et al. 2008).

This is due to its unrivalled spatial resolution and its capacity

to assess the vertical dimension of vegetation by the means

of stereo matching techniques (Fensham and Fairfax 2002).

On the other hand, acquisition or processing of digital or-

thophotos is time-consuming and costly. Problems also arise

from the radiometric correction of aerial photographs taken

from different flight series. Thus, we are faced with a declin-

ing quality of spectral information with composed orthopho-

tos covering broader areas. As satellite remote sensing pro-
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vides larger spatial views, they do not suffer from those limi-

tations. In this paper, coarsened images of respective ground

resolutions still prove high potential to map floristic gradi-

ents at the stand level resolution. Hence, satellite images

might be a promising data source to assess floristic habitat

qualities at the stand level and over larger areas.

Sample size requirements

Other authors examined the dependence of mapping

quality on the thematic resolution and amount of training

data used to calibrate the model (Bates et al. 2007, Marignani

et al. 2007). In this study, the chosen thematic resolution is

considered to be indispensable to meet the given monitoring

tasks. Thus, we explore the impact of sample size. With the

reference mire tested, at least 100 field records are required

to guarantee optimal prediction accuracy and reliable error

estimates. The resulting 95% error quantiles are below 0.7

for all indicator variables tested. The number of 100 relevés

constitutes a sample reduction of 90% compared to field

based methods surveying the entire reference mire. How-

ever, the required sample size depends on the size and het-

erogeneity of a site. As a general rule of thumb, cost-effec-

tiveness of field work increases with broad or less complex

sites. Hence, the optimal sample effort has to be determined

for all 124 sample mires individually.

Conclusion

The Swiss mire monitoring approach presented in this

study is designed to provide consistent figures on habitat loss

and habitat state for a small-sized priority habitat of nature

conservation. To capture habitat qualities in sufficient detail,

limited vegetation recording is indispensable, but costs are

supposed to be outweighed by the in-depth ecological infor-

mation it provides to calibrate VHR remote sensing data that

are per se ecologically meaningless. Monitoring results are

robust, readily applicable for management purposes and un-

derstandable to policy makers and land managers not famil-

iar with vegetation categories or plants. Thus, they have im-

plications on the strategic level of regional conservation

policy as well as on the implementation of local conservation

measures. Since such monitoring might be applicable across

a range of habitat types, we argue that it has the potential to

become a standard method for operational monitoring of pri-

ority habitats in nature conservation.
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