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Measured shear rates in large dry and wet snow avalanches
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ABSTRACT. We present estimates of internal shear rates of real-scale avalanches that are based on
velocity measurements. Optical velocity sensors installed on the instrument pylon at the Swiss Vallée de
la Sionne test site are used to measure flow velocities at different flow heights of three large dry and wet
snow avalanches. Possible sources of error in the correlation analysis of the time-lagged reflectivity
signals measured by optical sensors are identified for real-size avalanches. These include spurious
velocities due to noise and elongated peaks. An appropriate choice of the correlation length is essential
for obtaining good velocity estimates. Placing restrictions on the maximum possible accelerations in the
flow improves the analysis of the measured data. Coherent signals are found only in the dense flowing
cores. We observe the evolution of shear rates at different depths between the front and tail of the
flowing avalanche. At the front, large shear rates are found throughout the depth; at the tail, plug flows
overriding highly sheared layers near the bottom of the flow are observed. The measured velocities
change strongly with height above the ground and fluctuations around the measured mean velocity can
be identified. We find that the dense flows are laminar, undergoing a transition from supercritical to
subcritical flow behaviour from the head to the tail. Furthermore, we provide real-scale experimental
evidence that the mean shear rate and the magnitude of velocity fluctuations increase with the mean
discharge.

INTRODUCTION
Experimental investigation of real-scale avalanches is essen-
tial to advance and validate theories of avalanche motion
(Issler, 2003). Starting with the pioneering work of Schaerer
and Salway (1980) andGubler (1987), real-scale experiments
have been used to study large dry–mixed avalanches
(Rammer and others, 1998; Rammer, 2004; McElwaine and
Turnbull, 2005), snow-cover entrainment and mass balance
(Sovilla and others, 2006), avalanche impact pressures
(Schaerer and Salway, 1980; Schaer and Issler, 2001; Sovilla
and others, 2008a), the effect of catching dams (Lied and
others, 2002, 2004; Baillifard, 2007) and front velocities
(Rammer, 2004; Rammer and others, 2007).
In this paper, we discuss the possibilities and limitations

of using optical velocity sensors to capture internal velocity
profiles of real-scale avalanches. The distribution of internal
flow velocities is particularly important in avalanche science,
since it provides insight into the constitutive relations
governing the distribution of shear in the avalanche body.
Measured velocity profiles and shear rates not only reflect
the rheology of flowing snow, but also the interaction of the
flowwith the ground layer, thus providing information on the
basal boundary conditions of real-scale avalanches.
Optical measurements of velocity and shear rates in

flowing avalanches were pioneered by Nishimura and others
(1993) and Dent and others (1998). Improvements of the
initial design were made by Tiefenbacher and Kern (2004).
However, until now, reliable measurements have been
restricted to small-scale avalanches at the Revolving Door
site, Montana, USA (Dent and others, 1998) and small-scale
snow-chute experiments in Switzerland (Kern and others,
2004) and France (Bouchet and others, 2003).
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Optical velocity measurements on large-scale avalanches
are difficult since the behaviour of the avalanche – its
speed, density, flow height and even flow direction –
cannot be controlled. In such conditions, data obtained
from optical sensors must be carefully scrutinized to avoid
erroneous interpretation. The accuracy of optical velocity
measurements, which exploit the correlation of time-lagged
signals, is subject to fundamental constraints (McElwaine
and Tiefenbacher, 2003). Furthermore, ambiguities in the
obtained velocity data are caused by the confined spatio-
temporal resolution of the measurement devices and by
residual electronic noise. These sources of error are closely
related to the specific sensor set-up. Eliminating them
requires data processing with close regard to experimental
conditions for each event.
We present optical-sensor velocity measurements of three

large snow avalanches at the Swiss Vallée de la Sionne test
site. Two of the avalanches were large dry snow avalanches;
the third was a large wet snow avalanche. Possible sources
of error encountered in the data analysis are identified and
discussed. At the present stage of our understanding, it
is impossible to derive general relationships governing the
shearing of avalanching snow from the measurements. We
attempt to demonstrate how optical velocity measurements
may contribute to solving this problem.

METHODS
The Vallée de la Sionne test site
Natural and artificially released avalanches can be investi-
gated at the real-scale test site in the Vallée de la Sionne
(VdlS), canton Valais, Switzerland. The avalanche track is
∼2700m long with a vertical drop of 1300m. A 20m high
mast is situated at the start of the run-out zone of the track. It is
instrumented with measurement devices for impact pressure,
flow velocity, density, flow height and air pressure (in the
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Fig. 1. Optical velocity sensor mounted in flow wedges on the
mast at the VdlS test site. Streamwise spacing of the two reflectivity
sensors d = 0.03m. The flow direction is from right to left along
the line between the two sensors.

powder part of avalanches). Flow heights and the vertical
flow structure are recorded by FMCW (frequency-modulated
continuous wave) radars mounted flush to the track surface
at three locations along the avalanche track.
Near the mast, two additional obstacles are instrumented

with pressure gauges to study avalanche impact pressures
(Sovilla and others, 2008a,b). On the counter-slope, a
manned measurement bunker houses the data-acquisition
system and Doppler radars to track the avalanche (front)
velocity. For a detailed description of the site, see Issler
(1999, 2003) and Sovilla and others (2006, 2008a,b).
Typically, two or three artificially released avalanches can be
recorded each winter, depending on the snow and weather
situation. However, there have been winters in which no
avalanches could be released. Continuous and pulsed radar
velocity measurements and optical velocity measurements
have proven to yield consistent results (Gauer and others,
2007; Rammer and others, 2007). The number of velocity
sensors on the mast was recently increased, allowing better
resolution of velocity profiles in the shear layer and improved
localization of sliding/shear layers.

Optical velocity measurements
Optical velocity sensors are placed 1.25, 1.4, 1.55, 1.7, 2,
3, 4 and 5m vertically above the ground, flush with the
side walls of wedges at the hillside face of the measurement
mast (Fig. 1). In what follows, we refer to these vertical
heights above the ground by the variable z, treating them
as flow-normal heights. That is, z = 2m denotes a flow-
normal height z = 2m · cos θ, where θ = 18◦ is the slope
inclination at the location of the mast. This convention
has been used in previous studies of height dependencies
of measures obtained from the VdlS measurement mast
(Rammer and others, 2007; Sovilla and others, 2008a,b). For
reasons of comparability with previous work, we follow the
same convention in this contribution. Furthermore, we use
the variable h for flow-normal depths.
Sensors are mounted in wedges to ensure proper contact

of the flow with the sensors. The hillside angle of the
wedges is 30◦, resulting in a mean flow deflection of 15◦

on frontal impact. The wedges were designed to minimize

flow disturbances around the blunt mast. Placing the sensors
directly at the side wall of the mast did not lead to satisfactory
results since the flow detached from the mast side walls as
snow particles were thrown to the side at the instant of impact
at the hillside face of the mast. Although we initially had
suspected that an oblique-shock-like flow structure could
develop due to the deflection of the avalanche flow at the
wedges, similar to the effect outlined by Gray and others
(2003) and by Hákonardóttir and Hogg (2005), the wedge
construction solved the problem of flow detachment.
The principle of optical velocity measurement requires

that the structure of the avalanche flow does not change
significantly during the travel of the flow over short distances
(Taylor hypothesis). Recording the reflectivity of the passing
flow at two points, A and B, with a flow-wise spacing, d ,
results in two similar time series, A(t ) and B(t ), which, at a
time ts, have a time lag τ (ts). That is, A(ts) ≈ B(ts +τ (ts )). From
this, the velocity u(ts) of the passing flow can be estimated
to be u(ts) = d/τ (ts). Figure 1 shows an optical velocity
sensor mounted on the mast at the VdlS test site, consisting of
two reflectivity sensors placed along a flow-parallel line with
d = 0.03m.
The optical velocity sensors have been improved and

adapted to laboratory-scale, to snow-chute and to real-scale
avalanche experiments at VdlS (Kern and others, 2004;
Tiefenbacher and Kern, 2004). A discussion of the measure-
ment accuracy is given by McElwaine and Tiefenbacher
(2003). The compatibility of optical velocity measurements
with Doppler-radar-based velocity measurements was estab-
lished in a recent study (Rammer and others, 2007). The
data analysis procedure will not be repeated in detail here.
Instead, we provide a short account of possible problems
arising in the analysis of optical velocity sensor data from
field experiments which can also be distorted by residual
electronic noise.
To determine the time lag between the two sensor signals,

A(t ) and B(t ), of the two reflectivity sensors with a streamwise
spacing, d , the correlation integral

C (ts)(τ ) =

ts+T/2∫
ts−T/2

dtA(t ) B(t + τ ) (1)

is computed for a range of time lags, |τ | < T/2, where T is
the integration length. For the time lag τmax with ∂τC (τmax) =
0 and ∂2τC (τmax) < 0, C (τ ) is maximal and therefore τmax
may be assumed to be the time the flow needs to travel the
distance, d , between the reflectivity sensors. Accordingly,
the flow velocity can be assumed to be u = d/τmax.

Sources of error
In recent analyses of velocity sensor signals, we obtained the
velocity time series directly from the correlation function,
Equation (1), in some cases employing adjacent averaging of
the velocity time series to enhance their readability. This is
a reasonable approach to estimate the order of magnitude
of velocities (Sovilla and others, 2008a,b) or to compare
different velocity measurement techniques (Rammer and
others, 2007). However, for a detailed analysis of the internal
velocity structure, that is, to extract information regarding
the rheological behaviour of the flow, it is necessary to be
aware of principal constraints and inherent ambiguities in
the measurements.
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Spurious velocities due to noise
It is important to note that by determining the velocity as
sketched above, we interpret the reflectivity time series as
representations of the spatial pattern of the flow passing
the flow-wise displaced sensors and relate the time lag,
τ , obtained from the correlation integral, Equation (1), to
the time the flow pattern needs to travel the flow-wise
distance, d . A major source of error in the determination
of the flow velocity is that the correlation integral, C (τ ),
may have multiple maxima that are not necessarily related
to the passing flow structure. Accordingly, the choice of the
’wrong’ τmax may result in a misleading flow velocity, as
shown in Figure 2. We demonstrate this effect by a very
simple example.
Consider two identical, periodic signals with overlaid

(periodic) distortion which, for reasons of simplicity, is
assumed to be a harmonic of the signal:

A(t ) = B(t ) = a eiωt + b eimωt , m = 2, 3, . . . , (2)

where a and b < a are the amplitudes and ω and mω are
the frequencies of the signal and the distortion, respectively.
For simplicity, we set ts = 0 and assume the signal to extend
from −∞ to +∞. The correlation integral then is

C (τ ) =

T/2∫
−T/2

dt
(
a eiωt + b eimωt

)(
a eiω(t+τ ) + b eimω(t+τ )

)

=

T/2∫
−T/2

dt a2 eiω(2t+τ ) + ab eiω[(m+1)t+mτ ]

+ab eiω[(m+1)t+τ ] + b2 eimω(2t+τ ). (3)

Consider the first term in the second line of Equation (3),
which describes the (auto)correlation of the signal and, as
a� b, normally dominates the correlation integral (we may
replace T/2 with T � 2π/ω without loss of generality):

C (ts=0)a (τ ) =

T∫
−T

dt a2 eiω(2t+τ )

= a2eiωτ

[
e2iωt

2iω

]T
−T

= − ia
2eiωτ

2ω
2i sin(2ωT ). (4)

Now consider the real parts of Ca(τ ) and its derivatives:

R(Ca(τ )) = a2

ω
cos(ωτ ) sin(2ωT ),

R(∂τCa(τ )) = −a2 sin(ωτ ) sin(2ωT ),

R(∂2τCa(τ )) = −a2ω cos(ωτ ) sin(2ωT ). (5)

Demanding R(∂τCa(τmax)) = 0 and R(∂2τCa(τmax)) < 0,
maxima of R(Ca(τ )) are present for τmax = 2πk/ω, where
k = 0, 1, . . . . If a � b, maxima related to correlations
of the signal and the noise (second and third terms in
Equation (3)) or to noise–noise correlation (fourth term) will
be negligible. This situation, however, dramatically changes
if the signal–noise ratio decreases. In the extreme case
a/b → 0, the signal even disappears and the correlation

Fig. 2. Raw reflectivity signals, A(t ) and B(t ), from a velocity sensor
at the Vdls mast (sampled with 20 kHz) and velocities (squares)
computed directly from the time lag where the correlation integral
with T = 0.4 s is maximal. (Note that each of the two reflectivity
sensors that make up a velocity sensor is connected to an individual
amplifier. Due to rough environmental conditions, these amplifiers
are subject to varying drifts and offsets that can result in signals of
similar fluctuation structure but varying and different amplitudes.
For this reason, the reflectivity data have to be pre-processed before
performing a correlation analysis: for each correlation time window,
we subtract the mean over the correlation time window from the
data and scale these fluctuations by their standard deviation over
the correlation window (Tiefenbacher and Kern, 2004). However,
in this figure, we plot the raw sensor signals to demonstrate the
collapse of the signal–noise ratio which is not visible in time series
of scaled fluctuations.)

integral, Equation (3), collapses to the fourth term, that is to
the noise–noise correlation:

Cb(τ ) =

T∫
−T

dt b2 eimω(2t+τ )

= − ib
2eimωτ

2mω
2i sin(2mωT ). (6)

Similar to the signal–signal correlation, we find

R(Cb(τ )) = b2

mω
cos(mωτ ) sin(2mωT ),

R(∂τCb(τ )) = −b2 sin(mωτ ) sin(2mωT ),

R(∂2τCb(τ )) = −b2mω cos(mωτ ) sin(2mωT ), (7)

which, by the conditions R(∂τCb(τmax)) = 0 and
R(∂2τCb(τmax)) < 0, yields maxima at τmax = 2πk/mω.
Recall that the noise is assumed to be of higher frequency
than the signal (mth harmonic). Consequently, in the case of
A(t ) and B(t ) being the signals of the reflectivity sensors of our
set-up, falsely interpreting the noise–noise correlation time
lags as related to passing flow pattern results in velocities m
times as high as the velocities derived from the signal–signal
correlation.
In our measurements, the structure of the reflectivity

signals is not as simple as the simple periodic and it
would rather have to be described in terms of its Fourier or
wavelet spectra. However, if modes of the signal and noise
spectra behave in a similar way, as outlined above, then
unrealistically high spurious velocities can be encountered.
This is important as some noise may persist even after
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A(t)
B(t)
u(t)

Fig. 3. Example of disjoint signal packages with a duration shorter
than the integration length, T = 0.4 s, of the correlation function,
causing apparently constant velocity (grey dots).

filtering. This noise was observed to be periodic, probably
due to unintended inductivities in the amplifier electronics.
Note that in the case of missing reflectivity signals, even
periodic bit-noise will lead to false velocities.
Figure 2 shows such a situation. Once the reflectivity signal

decays, the correlation analysis yields unrealistically high
velocities, as soon as the integration length of the correlation
integral does not extend over parts of the signals with a
high signal–noise ratio. The example shown in Figure 2,
T/2 = 0.2 s, reveals that the ’true’ velocity persists for 0.2 s
after the signal–noise ratio has collapsed. The apparent decay
of the signal is due to the transient behaviour of the signal
amplifiers.
The above considerations can only be applied if signal

and noise can clearly be distinguished, which might not be
the case for fast dilute flows where both the amplitudes and
timescale of noise and signal may be of the same order of
magnitude.

Correlation lengths
Finding the correct maxima is closely related to the task of
choosing an appropriate length of the correlation integral. For
slow flows, the integration length must capture a part of the
real flow structure long enough to ensure that a maximum
related to the flow structure (i.e. related to long-timescale
structures in the reflectivity time series) is found. High-
frequency noise can disrupt the search for maxima before
a maximum related to the flow structure is found. For a flow
with mean velocity, u, consisting of particles with a typical
size, r̄ , and a flow-wise spacing, d , of the two reflectivity
sensors, A and B, the integration length, T , of the correlation
integral must satisfy

T
2

≥ d + r̄
u

(8)

to ensure overlap of the signals and to avoid capturing
noise maxima. This is especially important for slow flows of
coarse snow lumps. Typical slow-flow conditions for snow
avalanches in VdlS are u ≈ 1m s−1, d = 0.03m and
r̄ = 0.05m, requiring T ≥ 0.15 s.

Maximum acceleration
Erratic high or low velocities may also occur in time
series obtained by the correlation procedure, due to non-
similarities of the signals (caused by slightly different lighting
angles of the passing crystalline snow structures). These
erratic values can be excluded by a simple argument:
correlation integrals are evaluated at discrete times, ts =
nΔt , n = 0, 1, . . . , yielding a discrete velocity time series.
The local acceleration,

aeff =
u
(
t (n)s

) − u(t (n+1)s
)

Δt
, (9)

within a dense avalanche flow between two time points,
t (n)s = nΔt and t (n+1)s = (n + 1)Δt , must not exceed an
upper bound, amax. Given the fact that typical velocity fluc-
tuations even in turbulent flows are an order of magnitude
smaller than the mean flow velocity, ū, amax = ū/(αΔt ),
1 < α < 10 may be estimated to be a fair limit on the
possible local accelerations in the flow. The argument of
constrained acceleration makes use of the fact that quasi-
discontinuities in the particle velocities, such as encountered
in dilute flows of hard-sphere granular media, are very un-
likely to occur in the dense flows considered here.

Elongated peaks
Determination of the velocity by the correlation integral
(Equation (1)) at a time ts involves signal information
contained in the time interval [ts − T/2, ts + T/2], leading
to an inherent averaging of the signal. This may produce
apparently constant velocities over the time interval, if the
signals are disjoint, as in the dilute-flow regime, where the
flow passing the sensor is no longer quasi-laminar so that
only short coherent signals, according to mean-flow-parallel
eddy components of the turbulent flow or to dilute snow
particles, are encountered by the sensors. Figure 3 shows an
example of such a short-duration coherent signal peak.
The integration length, T , typically exceeds the time-

step, Δts, between the discrete times where the velocity is
computed. A frequent choice for low- to medium-velocity
flows is Δts = 0.01 s and T = 0.4 s. Isolated signal peaks,
extending over a short time interval, Δtp < T , which is
centered at tp, therefore dominate the correlation function
as long as [tp−Δtp/2, tp +Δtp/2]∩ [ts−T/2, ts +T/2] 	= 0,
leading to the same time lag, τ , for all ts matching this
condition. Disjoint signal peaks are therefore ’smeared out’,
leading to apparently constant velocities over time intervals
of the order of magnitude of the integration length of the
correlation integral.

Smoothing
The nature of the correlation procedure implies an inherent
averaging of the reflectivity signals over the integration
interval of the correlation function. However, even under
these conditions, additional smoothing of the final velocity
time series by adjacent averaging may be useful to improve
the readability of the velocity time series. However, the
smoothing interval, Δtsm, must not exceed the timescale
for the passing of structures with a scale of interest, ri, i.e.
Δtsm ≤ ri/ū. Figure 4 shows a velocity time series of a dense,
slow avalanche (avalanche No. 8448; see below) that did not
detach from the sensors and passed the error checks so that
only a few points of noise velocity had to be eliminated. The
time series has been smoothed by adjacent averaging over
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Fig. 4. Example of a velocity time series of an avalanche passing a
sensor at the mast, 3m above the ground (black squares). Data are
smoothed over a time interval of 2 s (continuous curve). Only a few
data points related to erroneous velocities were rejected (grey dots,
e.g. at t = 50 and 60 s).

a time window, Δtsm = 2 s, setting the scale of interest to
ri ≥ 3–6m.

Mechanical sources of error
The signals recorded by the velocity sensors can be damped
by snow frozen at the sensors. This effect can even inhibit any
signal detection. The signals can also be significantly blurred
by detachment of the flow passing the sensors. Furthermore,
movements due to settling of the snow cover as it is overrun
by the avalanche or the vibrations of the mast during an
avalanche may produce misleading signals from sensors
situated in the overrun snow cover.

MEASURED AVALANCHES
In this section, we outline the characteristics and weather
conditions of the three avalanche events used in this analysis.
Weather data were collected by an automatic weather station
located at the ridge of Crêta Besse, directly above the release
zone of the VdlS avalanche path.

Avalanche No. 7226, 21 January 2005
On 21 January 2005 at 1500h, an avalanche was released
naturally from the release zone ’Crêta Besse II’. (For a
situation map of Crêta Besse II, see Issler (1999) or Sovilla
and others (2008b).) Moderate snowfall over several days
had added ∼15 cm of new snow to the ∼1m thick snow
cover in the release zone. Temperatures at release were
measured to be about −4◦C after a significant temperature
rise from −14◦C, which also affected the snow cover: snow-
surface temperatures had been rising from −25 to −4◦C.
At the time of the release, there was a moderate westerly
wind with a mean velocity of ∼10m s−1 and maxima
of up to 20m s−1. The temperatures in the run-out zone
were ∼0◦C. The measurement system was automatically
triggered by geophones, and the recorded data indicate a
dry, dense flowing avalanche that may be characterized
by two parts: a high-speed phase in which velocity vari-
ations and considerable shear were present, and a low-speed
flow (’tail’).

b

a

Fig. 5. Velocity time series of avalanche No. 7226. (a) Extracted from
lower sensors (at 1.25, 1.4, 1.55 and 1.7 m above ground level).
Grey squares indicate data which were rejected due to partial flow
detachment of the dense flow and due to the maximum acceleration
argument. (b) Extracted from higher sensors (at 2, 3, 4 and 5m above
ground level). Blurred signals indicate dilute flow. (Note that the
offset of our time base compared to that of the corresponding plots
in Sovilla and others (2008a) is −64 s, i.e. our t = 0 corresponds to
their t = 64 s.)

Figure 5 shows time series of flow velocities above and
below 2m elevation from the ground. Velocities recorded
in flow heights >2m are related to the dilute component
of the fast, dry flow part of the avalanche. The fact that non-
zero velocities were recorded at all sensors indicates that the
basal sliding/shear layer of the avalanche was situated below
the lowest sensor at z = 1.25m. Note the considerable flow
height despite the small amount of new snow. It appears
that the fracture of the releasing snow slab occurred in
lower layers of the old snow cover and was related to the
temperature rise in the release zone. The considerable flow
height might also be due to erosion and entrainment of snow.
However, as no photogrammetric data could be collected for
this naturally released avalanche, both explanations remain
speculative.

Avalanche No. 816, 6 March 2006
Between 2 and 4 March 2006, a heavy snowfall (120 cm
of new snow) was accompanied by a strong increase
in temperature (∼12◦C). The snowline retreated up to
>2000ma.s.l. On 5March, the temperature rapidly dropped
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Fig. 6. Velocity time series of avalanche No. 816. Blurred signals
indicate partial detachment of flow from the optical sensors and
turbulent motion; grey squares indicate rejected data. Reasons for
rejecting are indicated for several of the rejected data points.

from −4 to −16◦C in the release zone. The weather cleared
and an avalanche was released artificially by explosives at
1000 h on 6 March.
The released avalanche was of mixed dry type (i.e. a

dry dense avalanche with a significant powder cloud) and
exhibited shear and velocity variations in time. Figure 6
shows a plot of velocity time series from the velocity sensors
at levels ≤2, 3, 4 and 5m above the ground. The signals are
blurred, indicating that the flow has detached from the mast
and/or the avalanche impacted the measuring pylon from the
side.

Avalanche No. 8448, 1 March 2007
After a period of cloudy weather with relatively high
temperatures around the freezing point, snowfall started
around midday on 1 March 2007, accumulating 0.6–0.7m
of new snow on the existing 2–3m thick snow cover in the
release area. The snowfall lasted until the early morning of
2 March. During the snowfall, there was a moderate wind

Fig. 7. Velocity time series of avalanche No. 8448. The delayed
onset of the signal at z = 2m indicates erosional processes.

from westerly directions with speeds up to 10m s−1. The
temperature was about−4◦C in the release zone, and around
or slightly above 0◦C in the run-out zone. After ∼0.4m
of new snow had accumulated, an avalanche was released
spontaneously at 2119 h. The avalanche exhibited typical
wet, dense, slow-flow and steady-flow behaviour. The basal
shear/sliding layer could clearly be identified and, due to the
relatively steady flow behaviour (Fig. 7), a velocity profile
based on a 40 s time average could be extracted from the
velocity time series.

MEASURED SHEAR RATES
The optical velocity measurements were used to determine
the shear rates of the flow. For simplicity, we assume the
avalanche to be a (locally) steady simple shear flow u =
u(z)êx , where x denotes the downstream and z the flow-
normal direction, and write the shear rate as

γ = ∂zu(z). (10)

We write u(z) as u(z) = ū(z) + δu where ū(z) = 〈u(z)〉t is
the time average over an averaging interval Δtav:

〈· · · 〉t = 1
Δtav

t+Δtav/2∫
t−Δtav/2

· · · dt ′ . (11)

We denote the standard deviation of u(z) by δu(z) =√
〈(u(z)− ū(z))2〉t . As we use time series that have passed

the outlined error checks, we neglect the influence of
residual measurement errors and interpret the standard
deviation, δu(z), as a measure of the magnitude of actual
velocity variations around the mean.
To estimate mean shear rates, we define depth averaging

as

〈· · · 〉 = 1
hs − hb

hs∫
hb

· · · dz, (12)

where hb and hs are the estimated flow-normal elevations of
the running surface (’base’) and the surface of the considered
shear zone, respectively.
The velocity variations, δu, impose an uncertainty, δγ̇=[√
(δu(hs))2 + (δu(hb))2

]
/
(
hs − hb

)
, on the estimates of the

mean shear rate, γ̇= 〈γ〉= (
u(hs)− u(hb)

)
/
(
hs − hb

)
. In

what follows, we give estimates of the mean shear rates in
the form γ̇ = 〈γ〉 ± δγ̇.
We use the terms ’sliding surface’ or ’running surface’ to

describe the surface of discontinuous transition between the
non-moving and moving snow at the base of the avalanche.
That is, at this surface the avalanche has a non-zero slip
velocity, denoted by u0. Below this surface there is no
movement of snow. This terminology is required to compare
the measurements with flow models, which usually assume
a sliding surface. If the avalanche has no slip velocity, but
a gradual increase in velocity, we term the layer at which
u0 = 0 the ’basal interface’. The region of increasing velocity
above the running surface or the basal interface is termed
’shear layer’. Usually this region is characterized by the
largest shear rates within the flow. The height of the shear
layer is defined by a sudden decrease in the shear rates,
observed in the measurements. Regions of low shear rate,
compared with the shear layer, are termed ’plug flows’.
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Note that generating velocity profiles and averaged quant-
ities requires time windows in which the velocity data match
the quality criteria jointly for all sensors. This constraint is
reflected in the fact that we could generate fewer velocity
profiles near the front than towards the transitional and tail
regions of the avalanches.

Avalanche No. 7226
Three time intervals could be found within the measure-
ments which passed the stringent data-analysis requirements
outlined above: [10 s, 12 s] (front), [44.8 s, 44.9 s] (tail with
dense shear flow) and [55 s, 57 s] (tail with plug flow). In
these intervals the velocity time series exhibit approximately
steady velocities modulated by velocity fluctuations. All
sensors provided non-zero velocity values, indicating that
the running surface was located below the level of the low-
est velocity sensor, at z =1.25m above the ground. Using
data from pressure sensors mounted at the mast (Sovilla and
others, 2008a) in the time interval [10 s, 12 s], the running
surface was located ∼0.6–0.7m above the ground. Figure 8
depicts the three measured velocity profiles.
From the time series (Fig. 5), the front part of the

avalanche can be characterized as a flowing avalanche with
a powder/suspension cloud. The change from coherent to
scattered signals between 1.7 and 2m above the ground
appears to be related to the transition between the dense
flow part and the powder cloud. Using pressure data, Sovilla
and others (2008a) located this transition at flow heights z >
2.5m, which is consistent with the velocity measurements.
The presence of velocity profile inversions with lower

velocities immediately above the transition might indicate
the passage of large-scale eddy-like structures at the surface
of the flowing avalanche. As the avalanche passes the mast,
the overall velocity decreases. The dense flow undergoes
a transition from a highly sheared front to a slow-moving,
dense plug-flow behaviour at the tail.
Dense flows are characterized by a more-or-less coherent

structure of the raw signal and of the derived velocity time
series. In the time series of the lower sensors, these coherent
parts were disrupted by sequences of disjoint time series
with strong fluctuations, that did not match the maximum
acceleration condition. As this effect occurred on all lower
heights z ≤ 2m, we interpret it as a detachment of the flow
from the sensors rather than as a transition to a different flow
regime. However, as the impact pressure (Sovilla and others,
2008a, fig. 9) drops at these times, one also could interpret
this as a transient dilute-flow phase extending from lower
(z ≤ 2m) to higher (z > 2m) flow heights. Note that we did
not apply the maximum acceleration argument for the higher
flow layers as they were dilute at all times. We confine our
discussion to the coherent and dense flow parts.
In the time interval [10 s, 12 s], coherent reflectivity signals

yield approximately constant velocities with weak, small-
scale fluctuations for flow depths z ≤ 2m (Fig. 8). Assuming
the flow reaches down to the ground, z = 0, the mean shear
rate, γ̇, for the lowest layer z < 1.25m is ∼17.7±1.3 s−1.
Locating the basal surface at z = 0.6 m, the mean basal
shear rate is twice as high, γ̇ = 34.1± 2.5 s−1.
The mean shear rate between 1.7 and 2m is about γ̇ =

24.9±7.0s−1 and decreases to γ̇ = 13.7±5.3s−1 between
1.25 and 1.7m. This observation differs from that of Sovilla
and others (2008a) in the time interval [5 s, 7 s] (their [69 s,
71 s]), who did not observe an increase of the shear rate
with z. This is due to the fact that the shapes of velocity

Fig. 8. Velocity profiles and shear rates in avalanche No. 7226.
Three time periods could be analysed: behind the front (10.0 s
≤ t ≤12.0 s), dense shear flow (44.8 s ≤ t ≤44.9 s) and plug-flow
tail (55.0 s≤ t ≤57.0 s). The mean shear rates decrease from front to
tail. (Lines are just eye-guides and do not imply interpolation. Error
bars indicate the standard deviation of velocity variations. Note that
the data allow no decision on whether the avalanche was sliding
at the base or whether there was a thin shear layer above the base
without sliding.)

profiles vary in the avalanche flow and cannot be considered
steady on longer timescales, especially for time intervals
shortly after the passage of the avalanche front. Averaging
time intervals must be chosen to correspond to a timescale
on which the flow may be estimated to be locally steady.
For the dense flow phase in the time interval [44.8 s, 44.9 s]

(Fig. 8), the shear rates lay in the range 1≤ γ̇ ≤3.5 s−1 and
decrease with height above the ground. Meaningful signals
above z > 3m could not be obtained. This might be due
to the decelerating snow–air suspension above the flowing
avalanche.
In the time interval [55 s, 57 s], which is related to the tail of

the avalanche, a plug-flow velocity profile is present (Fig. 8).
The measured shear rates are 0 ≤ γ̇ ≤ 1 s−1. Coherent
velocity measurements are obtained up to z = 3m. The
underlying sliding/shear layer must be situated below the
lowest velocity sensor at z = 1.25m. The strongly scattered
velocity signal at the 4 and 5m sensorsmight again be caused
by decelerated remainders of the suspension layer of the
avalanche.

Avalanche No. 816
The measured velocity profiles for avalanche No. 816 (Fig. 9)
show the evolution from a fast-moving dry flowing avalanche
with suspension layer (front, time interval [2.1 s, 5.4 s]) to a
decelerating dense shear flow ([32.4 s, 33.15 s]) and, finally,
to a plug-like flow at the tail of the avalanche ([40.4 s,
42.5 s]).
For times ts < 5.4 s, velocity measurements were recorded

by all the sensors located >2m above the ground. Therefore
the running surface or basal interface at the front must
be located between the sensors at 2 and 1.7m. For times
ts > 20 s, the signals of sensors at 4 and 5m elevation decay
but signals are recorded by sensors located between 1.55
and 3m. This can be interpreted as indicating that the flow
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Fig. 9. Velocity profiles and shear rates in avalanche No. 816. Three
time periods could be analysed: front (2.1 s≤ t ≤5.4 s), decelerating
dense shear flow (32.4 s ≤ t ≤33.2 s) and tail (40.4 s ≤ t ≤42.5 s).
The mean shear rates decrease from front to tail. Error bars indicate
the standard deviation of velocity variations. Note that the running
surface indicated in the plot could also be a basal interface.

heights at the tail are decreasing. In addition, it appears that
the running surface is moving downwards. Note that the
eroded layer depth indicated in Figure 9 is the layer thought
to be eroded by the avalanche after the passing of the first
front at t ≥ 2.1 s. It is likely that significant erosion of the
uppermost snow layers occurred earlier at the first front of
the avalanche, i.e. for t < 2.1 s.
The velocity profile at the front (Fig. 9) is characterized

by shear rates of up to 20 s−1 between z = 2 and 4m.
There is a strong scatter in the velocity signals in this
region. Accordingly, the transition between dense flow and
suspension layer appears to be situated between 2 and 3m.
The basal interface/running surface is located near z = 1.7m
and thus the flow height of the dense avalanche is ∼1m.
For times t > 20 s, signals from the upper flow layers

decay, and, on decelerating, the avalanche shows a more
dense flow behaviour. In the time interval [32.4 s, 33.15 s],
the mean shear rate is γ̇ = 4.0 ± 0.1 s−1, whereas later in
the flow, there are only two confined shear layers, between
z = 1.4 and 1.55m and between z = 1.7 and 2m, with
shear rates γ̇ = 18.6± 1.8 and 7.6± 3.3 s−1, respectively.

Avalanche No. 8448
From the plot of the velocity time series (Fig. 7), we observe
that this avalanche exhibits a decelerating dense shear flow
behaviour at low mean flow velocity. Though not strongly
varying on a long timescale, on a short timescale of 2–5 s
the flow velocities vary considerably, indicating a surge- and
wave-like motion of the avalanche flow. We note the delayed
onset of the velocity signal at z = 2m, indicating erosion.
As the mean flow velocity only slightly decreases over a
long time period, we were able to extract a velocity profile
(Fig. 10) by averaging the time series over an extended time
period [40 s, 80 s].
The velocity profile of this slow-moving wet snow

avalanche (Fig. 10) indicates no flow at 1.7m height,
u(z =1.7m)=0ms−1, and u(z =2.0m)=2.3±0.3m s−1.
Therefore, the shear layer is located between 1.7 and 2m.

R

Fig. 10. Velocity profile and shear rates extracted from the velocity
time series of avalanche No. 8448 (see Fig. 7). One long time period
could be analysed at the tail (40.0 s≤ t ≤ 80.0 s). Error bars indicate
the standard deviation of velocity variations. Note that the running
surface indicated in the plot could also be a basal interface.

Large shear deformations are thus localized in this 0.3m
narrow near-base flow layer. The shear rate is at least γ̇ =
8.0±1.3s−1. This value is a lower bound for the actual shear
rate, as the spatial resolution of the velocity measurement is
Δz = 0.3m. A slip velocity, u0 = 2.3 ± 0.3m s−1, is also
consistent with the measurements. Above this high shear
layer (or sliding surface), the velocity increase between 2
and 4m is just 0.7m s−1, indicating a shear rate of only γ̇ =
0.38 ± 0.21 s−1. Between 4 and 5m, the shear rate is even
lower (γ̇ = 0.01 ± 0.29 s−1) and the motion characteristics
are close to those of a pure plug flow.
Snow-chute experiments with flow heights of∼0.5m have

revealed considerable slip velocity at the flow base and a
relatively narrow basal shear layer with shear of the order
of magnitude of γ̇ ≈ 50 s−1. It is not yet clear whether this
behaviour is due to the special conditions of the experimental
chute. Molten and refrozen shear planes are often found in
avalanche deposits (Kern and others, 2004), indicating that
a discrete sliding surface often exists. Such sliding surfaces
are thought to be mostly formed at the tail of the avalanche.
The velocity measurements of avalanche No. 8448 provide
some experimental evidence to support this idea.

MEAN SHEAR RATE, DISCHARGE AND
VARIATIONS FROM THE MEAN VELOCITY
In this section, we attempt to generally characterize the flow
behaviour and to find a relationship between the measured
mean shear rate and the mean flow discharge.
We study depth-averaged, or ’mean’, values because

the spatial resolution of the optical sensors does not
yet allow detailed z-dependent statements regarding the
flow rheology. Our motivation is to judge whether the
measurements provide consistent results from the head to
the tail of the avalanche.
As indicated above, the shear rates, γ̇(z), can be extracted

from the time-averaged velocity profiles, ū(z) = 〈u(z)〉t
(Equation (11)). Using the time-averaged velocities in the
dense layer between hb and hs, we can then find the mean
shear rate between the running surface and the surface of
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Table 1. Results of depth-averaging the velocity measurements

Avalanche No. Δtav γ̇ 〈δu〉 〈ū〉 h Q Re Fr

s s−1 m s−1 m s−1 m m2 s−1

7226 [10, 12] 25.6± 0.8 0.94± 0.14 20.9± 1.5 1.3± 0.2 27.7± 2.0 103± 16 5.9± 0.4
7226 ∗ [44.8, 44.9] 3.6± 0.2 0.17± 0.11 5.9± 0.4 2.3± 0.2 13.5± 2.3 4.8± 0.8 1.3± 0.1
7226 [55, 57] 0.5± 0.1 0.13± 0.02 1.0± 0.2 2.3± 0.2 2.3± 0.4 0.14± 0.05 0.22± 0.04
816 † [2.1, 5.4] 14.7± 1.5 5.0± 0.9 37.5± 3.7 3.1± 0.3 118± 12 140± 30 6.9± 0.7
816 [32.4, 33.15] 4.0± 0.1 0.19± 0.03 5.4± 1.0 1.5± 0.2 8.2± 1.5 5.9± 2.3 1.4± 0.3
816 [40.4, 42.5] 1.5± 0.1 0.24± 0.06 2.0± 0.4 1.5± 0.2 3.1± 0.5 0.9± 0.3 0.5± 0.1
8448 [72, 74] 0.95± 0.05 0.09± 0.02 2.6± 0.2 3.1± 0.3 8.3± 0.5 0.7± 0.1 0.50± 0.05

∗This data point is not considered because Δtav is too short.
†This data point is not considered because the flow is almost entirely dilute.

the dense shear flow, γ̇= 〈γ(z)〉 ± δγ̇ (Equation (12)). The
results of the depth averaging of time-averaged profiles are
presented in Table 1.
As we do not have any information about the velocities

between the lowest sensor and the u=0 surface at hb, we
use a linear interpolation between u(hb)=0 and the velocity
at the lowest sensor position as a crude approximation for
estimating the mean quantities. As we cannot determine
whether there is basal slip, we assume u(hb)= 0 for all
cases. Raw estimates of the basal interface location, hb, are
indicated in Figures 8–10.
The time-averaging intervals of the velocity profiles are

confined to the intervals judged to provide meaningful results
according to our previous error considerations. For this
reason, the time-averaging intervals vary to some extent.
Meaningful comparisons, however, need to take into account
velocity profiles averaged over comparable time intervals,
Δtav. Accordingly, we have to exclude the velocity profile in
the middle part of avalanche No. 7226 which is a snapshot
over a very short time interval, [44.8 s, 44.9 s] (Table 1).
The averaging intervals of the other velocity profiles extend
over durations on the scale of seconds. We specifically
used Δtav = 2 s over the interval [72 s, 74 s] to compute
the time-averaged characteristics of avalanche No. 8448.
Furthermore, we do not include the initial part of avalanche
No. 816 ([2.1 s, 5.4 s]) as the flow was dilute over almost
the complete flow depth.
The time- and depth-averaged flow velocity allows us to

calculate the volumetric discharge, Q , per unit flow width
for the dense flowing part

Q = h〈ū〉, (13)

where h = hs − hb is the dense flow depth. (The location of
the dense flow surface, hs, was estimated from the structure
of the velocity time series: the upper boundary of the dense
flow is estimated to be located between the uppermost of the
sensors providing a coherent velocity signal and the lowest
of the sensors that produce a disjoint signal, indicating dilute
flow. That is, the transition between dense and dilute flow is
indicated by a significant rise in the standard deviations of
the time-averaged velocities (error bars in Figs 8–10). Note
that Sovilla and others (2008a) directly measured the dense
flow height, h, using flow height switches and estimate it
from pressure measurements. Their values are compatible
with those extracted from the velocity data in this study.)
Furthermore, we can estimate the Froude and Reynolds

numbers, Fr and Re. The Froude number is

Fr =
〈ū〉√
gh cos θ

, (14)

with g denoting gravitational acceleration, and θ=18◦ the
slope inclination at the mast location. To estimate the
Reynolds number of the dense flow, we note that avalanche
flows are obviously non-Newtonian and adopt the effective
viscosity approach, ηeff ≈ σs/γ̇, where σs is the shear stress
at the running/sliding surface (see Kern and others, 2004,
and references therein). Though the considered avalanche
flows are not steady, we grossly assume the basal friction
to be balanced by gravitational forces. As a further crude
approximation, we neglect normal forces imposed by the
dilute flow overriding the dense flow and then roughly
estimate Re as

Re ≈ ρh〈ū〉
(σs/γ̇)

≈ ρh〈ū〉
ρgh sin θ/(〈ū〉/h) =

〈ū〉2
gh sin θ

=
Fr2

tan θ
, (15)

where ρ is the bulk density of the flowing snow. Results
of the depth averaging and estimated quantities are given
in Table 1. Note that the estimates of Fr and Re implicitly
assume constant flow density. The relatively short averaging
intervals in which the flow was coherent and dense and
where the velocities over all flow heights were more-or-less
constant (at least did not change over orders of magnitude)
allow us to assume a constant mean density over these short
time intervals: we do not address the dilute flows but confine
ourselves to time intervals in the dense steady-flow regime.
Plotting the mean shear rate, γ̇, and the depth-averaged

standard deviation, 〈δu〉, of the velocity as functions of
the measured discharge, Q , we notice a general tendency
for both to increase with increasing discharge (Fig. 11).
From the plots we estimate γ̇ ∼Qα with α≈ 1.7±0.1
(Fig. 11a) and 〈δu〉∼Qβ with β ≈0.7±0.2 (Fig. 11b).
This indicates that the mean fluctuation magnitude is
approximately proportional to the ratio of the mean shear
rate and the discharge:

〈δu〉 ∼ γ̇Qβ−α ≈ a1γ̇/Q + a2, (16)

where a1 and a2 are constants. For these crude estimates,
we performed (linear) least-squares fits on the log–log plots
of the data, where the data points, yi , were weighted
by their uncertainties, δyi , using instrumental weighting,
wi ∼1/(δyi )2. Uncertainties of the scaling exponents are
given in terms of the width of the 90% confidence intervals
of the slope parameter of the linear fit.
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Fig. 11. (a) Mean shear rate, γ̇, as a function of the discharge, Q .
(b) Variation in velocity, 〈δu〉, as a function of discharge, Q . The
results show that both the mean shear rate and variations in velocity
increase with increasing discharge. Dotted curve: slope obtained by
linear fit on log–log plot of the data; dashed curves: 90% confidence
bands.

Figure 12 indicates an increase in the depth-averaged vari-
ation magnitude with the mean shear rate. Using the same
estimating procedure as for the discharge dependencies, we
can give a raw numerical estimate of this dependency:
〈δu〉 ∼ γ̇α with α = 0.5± 0.1.
These observations cover a broad variety of avalanche

behaviour ranging from dry-fast to wet-dense flow behaviour
at different stages of the flow (front, core and decelerating
tail). We here report these relations as the first quantitative
observations from real-scale avalanches and note that our
experimental set-up is able to produce consistent results.
We now characterize the observed avalanches by their

Froude numbers. The values listed in Table 1 show that Fr
decreases from front to tail for avalanches No. 7226 and
No. 816. For both avalanches, the front exhibits supercritical
flow behaviour (Fr > 1). The subcritical behaviour of the
tails (Fr < 1) indicates that there has been a transition from
supercritical to subcritical flow in addition to the transition
from shear to plug-flow behaviour. Note that the value of
Fr = 1.4 ± 0.3 for the averaging interval of [32.4 s, 33.15 s]
of avalanche No. 816 indicates a flow state close to the
transition from super- to subcritical. Avalanche No. 8448 is

〉
〈

〉〈

Fig. 12.Depth-averaged velocity variations as a function of themean
shear rate, γ̇. Dotted curve: slope obtained by linear fit on log–log
plot of the data; dashed curves: 90% confidence bands.

in the subcritical flow regime, exhibiting low shear except
in the narrow basal shear layer. (Though the Froude number
has been determined from the averaging interval [72 s, 74 s],
comparison with Figure 7 makes clear that Fr should not
vary significantly throughout the extended averaging interval
[40 s, 80 s].) For the avalanches considered in this study, our
observations indicate that shear flows tend to be supercritical
and that the plug flows occur preferentially in subcritical
flows.
The estimates for the Reynolds number in Table 1 give

Re < 170 2000, which suggests ’laminar’ flow behaviour
in the sense of the effective viscosity approach. Note that
this estimate could be misleading if the flow rheology
contains low-viscosity components that lead to much lower
effective viscosity and, accordingly, to Reynolds numbers in
the turbulent regime. The downslope component of gravity
would then have to be balanced by Reynolds stresses of a
highly turbulent flow. This could happen for Bingham-like
rheologies where the threshold stress is related to weak snow
cohesion and the shear stress above the threshold decreases
with the shear rate (Kern and others, 2004). However, we
judge this possibility to be unlikely for the avalanches under
consideration. In the laminar regime, though, in all flows
we observe significant velocity fluctuations that increase
with the mean velocity. As for the discharge relations, we
estimate the shape of the dependency by fitting the data in
Figure 13 and find that 〈δu〉 is roughly proportional to 〈ū〉2/3.
In the range of errors, this is compatible with the dependency
〈δu〉 ∼ γ̇Qβ−α ≈ a1γ̇/Q + a2, stated earlier.
We relate the generation mechanism of the velocity

variations to the roughness of the sliding surface or to
granular mechanical processes in the shear layer that
generate particle-velocity fluctuations, rather than to viscous
flow instabilities.
Our measurements provide evidence only for effects

taking place on a timescale of 1–2 s. Nevertheless, we believe
that our observations could be interpreted as a macro-
scale representation of microscale processes that are not
accessible with our present experimental set-up: results of
numerical granular flow experiments indicate that macro-
scale behaviour of particle-velocity fluctuations can be
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related to the statistics of microscale fluctuations (Kern and
others, 2005).

CONCLUSIONS
We have discussed the method of optical velocity measure-
ments with special regard to possible sources of error on an
elementary level and have outlined methods for improving
the reliability of results.
Non-intrusive measurements of internal avalanche velo-

cities (e.g. by nuclear magnetic resonance) are expensive,
require huge technical effort and are practically unrealistic.
For this reason, optical velocity measurements of the flow
passing a flow-parallel wall are, at present, the best available
method to measure real-scale avalanche velocity which
is economically feasible with reasonable technical effort.
When incoherent and spurious signals are removed from
the measurements, the velocity data can provide useful
information on the structure of the flow, even if the entire
signal cannot be analysed.
The evolution of velocity profiles from the head to the tail

of the avalanche could be obtained: the measured velocities
vary strongly with the height above the ground, indicating the
influence of the bottom boundary (running/sliding surface).
At the front of the avalanche and for high velocities,
the disturbance produced at the boundary is associated
with significant shear throughout the flow depth. As this
disturbance decays rather rapidly with distance from the bed
at the tail (i.e. plug flow on a thin shear layer or a sliding
surface), we suspect that the shear resistance or the internal
strength of the flowing snow undergoes a change along the
avalanche. This effect is most probably linked to a variable
rheology and should be investigated further.
We determined the mean deviation of the velocities

from the mean velocity at different flow heights, and
found the magnitude of the deviations to increase with the
mean velocities. The device errors are independent of the
magnitude of the measured velocities. Consequently, these
fluctuations cannot be due to the measurement equipment;
rather they are an inherent property of the flow.We conclude
that the magnitude of the fluctuations depends on the
discharge of the flow or the flow velocity. We characterized
the dense flows to be ’laminar’ in the framework of the
effective viscosity approach, the fast ones undergoing a
transition from supercritical to subcritical from the head to
the tail. The existence of velocity fluctuations in the laminar
flow regime hints at a fluctuation-generating mechanism
that is of a granular-mechanical rather than a continuum-
mechanical nature.
Our observations on the evolution of the Froude number at

different positions of the avalanche will have consequences
for the design of avalanche braking and retarding structures
such as mounds (Hákonardóttir and others, 2001, 2003) and
dams (Baillifard, 2007; Baillifard and others, 2007): design
procedures make extensive use of the decision whether the
flow is sub- or supercritical. In this respect, we suggest that
it is of enormous importance when designing avalanche-
retarding structures to estimate the masses involved in the
sub- and supercritical flow parts; it will be necessary to install
additional capacitive density sensors (Louge and others,
1997) to obtain this information.
Other results are less conclusive. We cannot make a

definite statement on whether an avalanche flows on a
discrete sliding surface with a slip velocity, or whether a shear

〉
〈

〉〈

Fig. 13. Depth-averaged velocity variations, 〈δu〉, as a function of
depth-averaged flow velocity, 〈ū〉.

layer exists at the bottom of the avalanche with some finite
height. We could not resolve this question with the spatial
resolution of the sensors. It is strongly recommended that the
distance between sensors is reduced in order to address this
and other problems.
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de digue d’ârret pour avalanches: demarche à suivre. Davos,
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