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Abstract

Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due

to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive

way of increasing dietary Se levels. We investigated a promising method of Se biofortifica-

tion of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains

low Se concentrations. We studied hydroponic Se uptake for 0–2500 ppb Se, potential

phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a

function of added Se species, concentrations and other nutrients supplied. We found that

rice germinating directly in a Se environment increased plant-Se by factor 2–16, but that

nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that sel-

enite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate

uptake resulted in accumulation of selenate in the higher part of the shoot, which is an

essential requirement for Se to be transported to the grain. The amount of organic Se in the

plant was positively correlated with applied Se concentration. Our results indicate that bio-

fortification of seedlings with selenate is a successful method to increase Se levels in rice.

Introduction

The micronutrient selenium (Se), is essential for all mammals due to its presence in seleno-pro-

teins [1]. A balanced Se-status correlates with reduced incidence of viral infections, auto-

immune thyroid diseases, as well as some cancers. However, an excess of Se supplementation

has been shown to raise the risk for type-2 diabetes [2]. Characterized by a narrow gap between

malnutrition (<55 μg/d [3]) and toxicity (> 400 μg/d [4]), Se has, therefore, been compared to

a ‘double-edged sword’ [5].
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Considering the fact that an estimated 0.5–1 billion people worldwide suffer from low Se

intake [6], Se-biofortification of cereals is a topic of major impact [7,8]. As primary staple crop

for more than 3 billion people, rice is considered to be the ‘cereal crop of the world’s poor’ [9].

Detailed molecular mapping and extensive collections of mutants and transgenic lines have

established rice as central model for functional genomics in cereals [10]. However, a worldwide

survey of Se content in rice grain indicates that for a daily consumption of 300 g of rice per day,

130 ng/g Se are required to account for 70% of the RDI (55 μg/d), yet the world mean concen-

tration in rice grain is around 50 ng/g Se and, therefore, too low to meet recommended human

requirements [4]. As rice is such an important food crop, biofortification with Se is a promising

means to increase dietary Se levels.

Previous research on Se-uptake into rice has focused on Se uptake from Se-supplemented

soils [4,11]. In addition, biomolecular studies on Se transport between plant tissues, or single-

ion competition studies are available for rice [12,13]. Unfortunately, how rice takes up the dif-

ferent forms of Se [1,8], and which mechanisms are responsible for Se phyto-toxicity, remains

poorly understood [14]. To achieve effective, yet safe, Se-biofortification, Se-uptake into the

plant, phyto-toxicological effects of Se, transport and partitioning of Se species within the rice

plant have to be investigated [1,12,14]. Furthermore, it is crucial to know how different concen-

trations and forms of Se in the soil solution affect speciation of Se in the different parts of the

plant and in the rice grain [4], as these factors largely control the efficiency of transfer into the

bloodstream upon ingestion [5].

XANES (X-Ray Absorption Near Edge Spectra) analysis is a useful technique to study in-

situ speciation of Se in plant tissues [15]. So far, there have been only a few XANES studies on

Se speciation in rice tissue [8,13,15,16], addressing different research questions. One of these

studies investigated Se transport into rice grains [13] and reported that SeMet and SeMeSeCys

are the two Se species that can enter the rice grain, while selenite cannot. However, in that

study, Se (126.6 μM) was applied via excision below the panicle, which does not represent typi-

cal plant Se uptake. Another study [7] analysed Se speciation in rice seedlings grown in hydro-

ponic cultures, employing a combined fluorescence mapping & XANES analyses in hydrated

plant tissue and showed that selenate and selenite were converted to C-Se-C compounds in the

roots, while free selenate was transported to the shoots. However, that study did not investigate

Se speciation along the length of the plant and was only conducted for a single concentration of

Se concentration added as selenite or selenate (1 μM Se).

Crop fertilization is often achieved by adding inorganic Se to soils combined with fertil-

izer. Unfortunately, this is potentially a very wasteful method of Se-biofortification, as 80–

95% of Se added as selenate may be washed out due to irrigation or rainfall [17] and selenite

is less bioavailable due to adsorption onto ferric soil minerals [17] or accumulation in plant

tissue which is not part of human diet, like rice roots [13]. Moreover, rice typically grows

in paddy fields, where reducing conditions prevail and thus reduced selenium species such

as elemental Se or selenides are likely predominant, which are less bioavailable to plants

[10].

Therefore, we investigated Se accumulation upon germination in a Se-rich environment,

which was proposed as an idea to achieve biofortification before planting [18]. Liu and Gu

[18] showed that Se uptake upon germination was successful. However, long-term effects

(> 48h) of Se uptake on potential toxicity or speciation in the rice plants were not investi-

gated. Therefore, in the present study, we investigated both Se uptake and toxicity in rice

seedlings after 16 day exposure to different Se concentrations (as selenite and selenate) prior

to germination in the presence or absence of nutrient solution. XANES analysis and fluores-

cence mapping was used to investigate Se concentration and speciation over the whole length

of the plant, specifically examining speciation changes between root and shoot. This study
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provides new insights into the mechanisms of Se uptake and speciation in rice as well as opti-

mum Se speciation and concentration ranges for safe and effective biofortification of Se in

rice prior to germination.

Materials and Methods

Set-up 1: Germination of rice on Se-spiked nutrient-free phytoagar

Plant-box experiments were carried out to investigate Se uptake into rice during the stage of

germination in a nutrient-free environment (experimental set-up 1; Fig 1A). Six rice (Oryza

sativa L. ssp. japonica cv. Nihonmasari) caryopses per box were surface-sterilized with ethanol

(80%) and NaOCl (5%) [13], and planted into 100 mL of 0.4% phytoagar (Duchefa Direct) sup-

plemented with Se (Na2SeO4
�10 H2O, VWR BDH Prolabo 302113L, or Na2SeO3, AlfaAesar

012585) in concentrations of 0, 5, 10, 25, 50, 100, 250, 500, 1000 and 2500 μg/L Se in closed

Magenta-boxes (Sigma Aldrich, Art. No. V8380, V8505 & C0667). Boxes were kept closed for

the duration of the experiment (16 days) in a climate chamber at 70% humidity, with a day-

night cycle (daylight: 8 a.m.–4 p.m.) and a transition period of 1 hour for dawn and dusk,

respectively, and corresponding temperatures of 28°C (day) and 22°C (night). Three indepen-

dent biological replicas were conducted of this experiment.

Fig 1. Experimental set-ups for nutrient-free, direct Se exposure (a), nutrient-free, delayed Se exposure (b) and Se-nutrient solution, delayed Se exposure
experiments (c).

doi:10.1371/journal.pone.0152081.g001
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Set-up 2: treatment of rice with Se-spiked nutrient solution after pre-
germination in Se-free conditions

To study the effect of nutrient supplementation on Se-uptake after pre-germination in the

absence of Se, (experimental set-up 2; Fig 1C), 9 sterilized plants per box germinated in 0.7%

phytoagar (in a reaction tube cut open at the bottom) containing no Se or nutrients, until

(after 5 days) the roots reached 170 mL of an optimized nutrient solution [19]: 2500 μMCa

(NO3)2
�4H2O, 375 μMK2SO4, 325 μMMgSO4

�6H2O, 400 μMKH2PO4, 8 μMH3BO3, 0.4 μM

CuSO4, 0.75 μMZnSO4
�H2O, 1.2 μMMnSO4

�H2O, 50 μMCaCl2, 0.075 μMNa2MoO4
�2H2O,

75 μMC6H5O7Fe (in double-distilled water) supplemented with 0, 5, 10, 25, 50, 100, 250, 500,

1000 and 2500 μg/L Se. To make the Se-uptake time frame comparable to set-up 1, all plants

were harvested after 19 days to compensate for the time required for roots to reach the Se-

nutrient solution. Three independent biological replicas were conducted of this experiment.

Set-up 3: treatment of rice with Se-spiked phytoagar after pre-
germination in Se-free conditions

In a variation of set-up 2 (Fig 1B), seedlings were pre-germinated Se- and nutrient-free, but

then Se was added to nutrient-free 0.4% phytoagar. This experiment was conducted once for

selenate and selenite, respectively.

Sampling and sample preparation for Se analysis

All plants were harvested, rinsed externally with Millipore water and separated above the cary-

opses into root and shoot, which were weighed separately to determine fresh weight and

freeze-dried at 0.05 mbar and -20°C for 24 h to determine plant dry weight. For plant digestion

[20], each bulk sample (roots or shoots per plant-box: 0.01–0.1 g) was digested with 1 mL of

double-distilled water, 3 mL of concentrated HNO3 (suprapure) and 1 mL of 30% H2O2 (p.a.)

Teflon vessels. Each batch of 10 digestion samples included one blank and one plant standard

(0.1 g NBS SRM 1567a Wheat Flour) to verify digestion quality.

Se analysis with HG-FIAS

Total Se-content of the roots and shoots of plants harvested from all three set-ups was ana-

lysed with HG-FIAS (Hydride Generation Flow Injection Atomic Absorption Spectroscopy;

Perkin Elmer AAnalyst200, FIMS-400 Hydride Generation System); Total Se in samples was

completely reduced to selenite in 6 M Hg-free HCl (Merck, 37%, 1.13386.2500) in a water

bath pre-heated to 75°C for 15 min and then diluted to 1 M HCl with double-distilled water

and measured with HG-FIAS. For calibration, 10 mL of Se standard solution (1000 μg/L Se,

Roth Rotistar ICP) were reduced to selenite in 6 M HCl in the same way as the samples.

From this solution, calibration concentrations of 0.5, 0.75, 1, 2, 4, 5, and 6 μg/L Se were pre-

pared with 1 M Hg-free HCl. Reduction quality and drift correction was analyzed using a

multi-element drinking water standard (PromoChem Trace Metals QCP 050–1 and QCP

050–2 combined, with 252 μg/L Se).

Quality measures for all three experiments show that harvested plant yield was 86% (± 6),

67% (± 7) and 60% (± 17), respectively, of transferred seedlings. Of the plant standard used

to verify digestion quality, 85% (± 14), 87% (± 10) and 98% (± 6), were retrieved, respec-

tively. Drinking water standard retrieval verifying HG-FIAS measurement was 102% (± 7),

104% (± 5) and 118% (± 7), respectively.

Selenium in Rice Plants
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XANES analysis

To determine Se speciation in shoots and roots, using X-ray absorption near edge structure

(XANES), set-up 2 was repeated for Se concentrations of 500, 2000 and 10,000 μg/L Se as sele-

nite and selenate. Prior to analyses, roots and shoots were air-dried in a desiccator for 4 weeks

to avoid Se-loss and speciation change and to preserve plant structures during the drying pro-

cess. Roots and shoots fixed on Kapton tape were measured at the SUL-X beamline (Synchro-

tron facility ANKA, Karlsruhe) from -75 eV to +200 eV around the absorption edge of 12.658

keV in fluorescence mode under vacuum. Preliminary experiments had verified that there were

no significant differences between N2-cryo-cell or vacuum measurements.

Per plant cross section, 5–8 scans were measured with short acquisition times (ca. 7 min),

which were merged for better accuracy. To minimize beam-induced redox reactions, a maxi-

mum of 2 scans was performed on the exact same spot (beam spot on sample: 30 x 50 μm). Ref-

erences for combination fitting between -30 eV and +30 eV around the absorption edge

(Athena, Demeter Software 0.9.13) were measured in transmission mode as powders on Kap-

ton tape of seleno-methionine (Sigma Aldrich S3132-100 MG), Na2SeO3 (AlfaAesar 012585)

and Na2SeO4 • 10H2O (VWR BDH Prolabo 302113 L).

For energy calibration, all samples and references were measured against the Se(0) standard

prepared as a pressed pellet with 8 mg of elemental Se (Merck 1.07714.0050) in 100 mg of cellu-

lose powder (Sigma Aldrich C8002-1KG). The SUL-X beamline was equipped with a 7-element

fluorescence detector (2 eV; Resolution:<310 eV at 5.9 keV, 100.000 cps), three ionisation

chambers for absorption measurement (Oxford Instruments, IC-Plus type; active length 5 cm,

Kapton windows 6 μm thick), a CCD detector (Photonic science; 80 x 120 mm 2, Fiber optic

3.46:1, 2048 x 2048, 16 bit dynamic, readout time 3.3 s 21 s) and an optical microscope (TSO

Spezialoptik, resolution 2 μm).

High resolution μ-XRF mapping

To determine the distribution of Se within the plant, X-ray fluorescence (XRF) was mapped in

the roots and shoots at an excitation energy of 22 keV at the FLUO beamline at ANKA, Karls-

ruhe, equipped with a double multilayer monochromator (W-Si multilayers in 2.7 nm period),

CRL: 2x10 9 ph/s at 17 keV (5 μm x 2 μm), 1 ionisation chamber, Si(Li)-energy dispersive

detector (Oxford Instruments), HPGe-High Purity Germanium detector (Princeton Gamma-

Tech (PGT)), and a SiMCD-Vortex Silicon Multicathode Detector. Two undiluted, pressed pel-

lets of bulk plant material (Brassica juncea) from Punjab, India [21] with known Se concentra-

tions (measured with ICP-MS after acid digestion) were used to calibrate Se concentration in

the mappings (root: 186 mg/kg Se DW; leaf: 931 mg/kg Se DW). Plant samples were placed

between Kapton tapes to ensure a plane surface. Se fluorescence meshs (at 11.2222 keV for

kα1) across plant sections (measured across the point from -1 mm to +1 mm in 50 steps for 1

s) were measured at an excitation energy of 22 keV. Beam spot size on the sample was 16 x

11 μm (polycapillary focus), and acquisition time was 3–4 sec. Data were analysed using the

PyMCA (version 3.9.5) software and mappings were created with Surferplot 6 (Golden

Software).

Results and Discussion

Se uptake—influence of nutrient supply and timing of Se application

One-way ANOVA testing (n = 3, k = 9) revealed that the addition of Se significantly influenced

Se content in the rice plants with P< 0.001 in all experiments (S1–S8 Tables).When rice plants

were grown in the nutrient-free environment but exposed to Se directly upon germination

Selenium in Rice Plants
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(Fig 1A), greater Se content in the agar resulted in greater Se content in plant tissue. This was

valid for selenate additions up to 250 μg/L Se, resulting in 367 mg/kg DW Se in shoots and 96

mg/kg DW Se in roots (Fig 2A) and for selenite additions up to 1000 μg/L Se, resulting in 75

mg/kg DW Se in shoots and 177 mg/kg DW Se in roots (Fig 2A). When Se concentration

exceeded these values, however, Se content decreased again for both selenate (67 mg/kg DW Se

in shoots and roots) and selenite (55 mg/kg DW Se in shoots and 102 mg/kg DW Se in roots).

This was accompanied by symptoms of toxicity, such as diminished shoot height (55 and 44%

of untreated growth), stunted root growth (root growth< 3 mm vs. 5–8 cm), lack of secondary

roots and brown discoloration (S2 Fig).

When rice plants were pre-germinated in the nutrient-free environment, but exposed to Se

5–7 days after germination (Fig 1B) Se content in tissue increased with higher concentrations

of Se in the medium (Fig 2C). For selenate, 1000 μg/L Se resulted in 1040 mg/kg DW Se in

shoots and 505 mg/kg DW Se in roots; for selenite this concentration resulted in in 170 mg/kg

DW Se in the shoots, and 93 mg/kg DW Se in the roots. This treatment thus resulted in greater

Se accumulation in the plant tissue for all Se additions (by a factor of about 1.2–5.2) compared

to the first experiment, where plants had germinated in a Se environment. Moreover, plants

exhibited no toxicity symptoms, even when adding Se concentrations greater than 1000 μg/L

Se. At concentrations higher than that, however, tissue content of Se was lower—especially for

treatment with selenate (382 mg/kg DW Se in shoots and 345 mg/kg DW Se in roots), but also

for root Se-content in response to treatment with selenite (67 mg/kg DW Se). In contrast,

Fig 2. Uptake of applied Se into rice plants expressed as Se concentration in mg per kg of dry plant matter for all three experimental set-ups: nutrient-free,
direct Se exposure (a), Se-nutrient solution, delayed Se exposure (b) and nutrient-free, delayed Se exposure experiments (c).

doi:10.1371/journal.pone.0152081.g002
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shoot Se-content increased to 269 mg/kg DW Se for the addition of 2500 μg/L Se. μXRF map-

ping showed that addition of 10,000 μg/L Se resulted in highest Se concentrations in the vascu-

lar bundles (S7 Fig) with Se content being 6 times higher compared to the surrounding

parenchymatic tissue.

The pattern of uptake differed when rice plants were first pre-germinated in the absence of

Se and then exposed to Se after a delay of 5–7 days after germination while being supplied with

nutrients (Fig 1C). Here, Se-content increased steadily with greater concentrations of Se for

both selenate (405 mg/kg DW Se in shoots and 128 mg/kg DW Se in roots) and selenite (159

mg/kg DW Se in shoots and 312 mg/kg DW Se in roots).

Nutrient supply controlled Se-uptake

Our data show increased Se-uptake in the absence of nutrients (Fig 2A and 2C) compared to

experiments with nutrient solutions (Fig 2C) up to 250 μg/L Se, irrespective of the speciation.

This antagonism between Se uptake and nutrient supply might be attributed to two phenom-

ena: (1) Lacking competition for free binding sites at transporters involved in Se uptake (sul-

phate, phosphate or silicon transporters [11,12]) might increase Se-uptake passively. It is

known that additional nutrient elements, especially phosphate and sulphate influence Se-

uptake by plant roots [1,11], although effects of sulphate are considered more prominent then

those of phosphate, because the affinity of selenate to the sulphate transporter is higher than

that of selenite to the phosphate transporter [11,22]. (2) Active up-regulation in number or

activity of sulphate, phosphate or silicon transporters in response to low abundance of these

nutrients in the medium, which as a consequence would also increase Se-uptake [1].

For higher Se concentrations (� 500 μg/L Se), the presence of nutrients led to higher uptake

of Se compared to nutrient-free treatment. Though a higher dose of Se had to be added than in

the nutrient-free experiments to achieve the same plant Se-content, plants in nutrient solution

remained healthy. Moreover, they even took up more Se than any of the plants raised in the

absence of nutrients treated with Se from germination (Fig 2B). This promotion of Se uptake

by nutrients might be linked with the protective effect of S against Se toxicity reported in the lit-

erature [23]. Therefore, we conclude that nutrient supply likely increases plant resilience due to

anion competition during uptake into the plant, or during subsequent Se transport within the

plant, and the incorporation of Se versus S into proteins [11].

Fig 3. comparison of rice root growth for the additions of 0, 1000 and 2500 μg/L Se as Na2SeO3 or Na2SeO4 to agar of the nutrient-free, direct Se
exposure experiment.

doi:10.1371/journal.pone.0152081.g003
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Nutrient-free cultivation only induces phyto-toxicity when plants pre-
germinate in Se

None of the plants with a 5-day delay of Se exposure after germination (irrespective of the pres-

ence or absence of nutrients) showed signs of toxicity. Only rice plants directly exposed to Se

during germination in the absence of nutrients exhibited a decrease in tissue Se-content cou-

pled with phyto-toxicity and impaired root development at concentrations of� 250 μg/L Se as

selenate or� 1000 μg/L Se as selenite (Figs 2A and 3). We, therefore, concluded that root func-

tionality and, thus, uptake of Se was impaired. Since both effects can be mitigated by addition

of nutrients, competition of Se and essential ions for transporter proteins might be the primary

cause for the observed Se toxicity. Our study strongly suggests that Se bio-fortification adminis-

tered to germinating seedlings has to be conducted in the presence of nutrients to avoid phyto-

toxicity and lowering crop yield already at low Se concentrations. Up until now, effects of Se

toxicity and bio-fortification have only been tested on healthy, pre-germinated seedlings

[7,11,20]. Only one study [18] directly addressed germination of rice in Se, however, not

beyond radicle emergence and therefore our study investigated for the first time subsequent

seedling development.

Se speciation—partitioning and distribution within the plant

Independent of the mode of cultivation, when adding Se as selenate, Se was preferentially parti-

tioned to the shoots (factor 3.5–5, 72% of total plant-Se on average) rather than the roots (Fig

2). Selenium speciation was inhomogeneous, particularly in the root (Fig 4), with selenate

dominant near the caryopses while organic Se was more dominant in lower parts of the root

(linear combination fitting confirmed this S12 Table). In the shoots, selenate uptake led to

enrichment of selenate toward the leaf ends of higher leaves, compared to organic Se in lower

leaves.

When Se was added as selenite, Se accumulated more in the roots (factor 2–4, 70% of total

plant-Se on average) than in the shoots (Fig 2, S9 Table). Furthermore, an increase of Se con-

tent in the medium corresponded to an increase of organic Se in the plant tissue, irrespective of

the added speciation, while proportions of selenate and selenite in the plant tissue decreased

accordingly.

This inverse partitioning has also been reported for other cereals, such as perennial ryegrass

[22], and wheat [11]. Our findings are, therefore, consistent with the current explanation that

selenate is taken up actively by the sulphate transporter and readily transported via the xylem

into plant shoots and leaves, while selenite is rapidly transformed into organic Se already in the

roots [7,11,22].

In contrast to other results [16], however, our data show speciation proportions in the rice

plant to be dependent on Se concentration as well as added species. Not only did higher Se con-

centrations lead to a greater share of organic Se in the plant tissue, but Se speciation in the

medium determined Se speciation distribution within the plant: selenite addition led to uni-

formly distributed Se (mainly organic Se) throughout the plant, while resulting speciation

within the plant was highly inhomogeneous when Se was added as selenate (Fig 4).

While the mechanisms of selenite uptake and inner-plant transport are not fully under-

stood, particularly with respect to the role of phosphate [11] and silicone transporters [1,12],

there is consensus on the fact that selenite is rapidly converted into organic Se in the roots

[1,21,22], as is also shown by our data (Fig 4). The higher proportions of organic Se in the root

compared to the shoot can be explained by Se being stored as organic Se in the roots. This does

not necessarily imply incorporation into proteins, since it could also be present as free amino

acid, such as MeSeCys [24]. In Arabidopsis, this amino acid has been shown to accumulate in

Selenium in Rice Plants
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chloroplasts and the SeCys-methylation is thought to reduce toxicity-inducing mis-incorpo-

ration of SeCys instead of the S-containing Cys into proteins [3,24–26]. We believe this mecha-

nism explains both the generally high proportion of organic Se within the plant as well as the

preferential accumulation of selenite in the root by conversion into methylated or unmethy-

lated forms of SeCys.

Selenite transport into rice shoots

As for the Se transported into the shoots after selenite treatment, our data indicated the vascu-

lar bundles as the most likely path of transport, because Se was found to be enriched in this tis-

sue compared to the surrounding parenchyma (S7 Fig). In what form Se is transported through

vascular bundles, however, remains to be elucidated. One possibility would be transport as sele-

nite, which has not yet been transformed into organic Se. This appears plausible, as only 1/4 of

the plant-Se was found to travel to the shoot, and this might pose no toxicity threat to the

Fig 4. XANES results in shoot and root of a dried rice plant treated with 2000 μg/L Se as Na2SeO4 (a); or Na2SeO3 (b) with green, red & blue indicating peak
lines for selenomethionine (12.661 keV), selenite (12.664 keV) and selenate (12.667 keV), respectively.

doi:10.1371/journal.pone.0152081.g004
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plant. This is supported by the fact that we found no indication of methylated precursors for Se-

volatilization [21,25], a common pathway to remove excess Se. Furthermore, we estimate

through linear combination fitting that 11–17% of Se were estimated to be present as non-con-

verted selenite within the plant (Table 1). The second possibility might be that Se is transported

as an organic Se compound as suggested by Carey et al. [13], who demonstrated quick inner-

plant transport of selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) in excised

rice leaves. These organic compounds moved to the grain exclusively via the phloem, whereas sel-

enate was transported via xylem. Further studies are required to understand how organic Se spe-

cies are prevented from incorporation into proteins and committed for transport via the phloem.

Selenate transport into rice shoots

Our data on speciation in the plant after selenate addition indicate that about half of the 1/5th

of Se found in the roots is being transported as selenate, while the rest is probably immobilized

as organic Se in the root. It has been reported that selenate reduction, which takes place in the

chloroplasts, is the rate-limiting step of selenate assimilation, which produces GsH-Se-, SeCys

and then SeMet [25]. Since roots are void of chloroplasts (it is considered unlikely that amylo-

plasts participate in assimilation), it is not surprising that added selenate is mostly transported

to the shoots. However, linear combination fitting of our results estimated 13–18% of Se in the

shoot to be selenite. Although selenate can be reduced to selenite [3,25], it remains unclear,

how this reduction competes with conversion into organic Se, as it has been reported for roots

[1]. Alternatively, a different Se species not accounted for by the linear combination fitting,

might occur. Selenite in the shoots detected by linear combination fitting of XANES data has

also been reported for wheat [21], but was not reported for a similar XANES analysis of rice

[7]. Detection of selenite in the shoots might indicate selenite transport to the upper parts of

the plant, but this would not agree with the published record [10,16,25,26]. We believe it is

more likely that a vital Se reference is missing in the linear fitting, since selenite is not consid-

ered part of the selenate assimilation process [25]. As argued previously in the literature

[7,16,27], XANES spectra of some organic Se species are difficult to distinguish and resulting

Table 1. Mean linear combination fitting results & R-factor for Se speciation in plant tissue after treatment with 500, 2000 or 10000 μg/L Se as sele-
nate or selenite.

c(Se) tissue org. Se SeO3
2- SeO4

2- R-fac.

[μg/L] [%] [%] [%] [–]

Se treatment with Na2SeO3

500 shoot 65 ±8 35 ±8 0 ±0 2.26

root 85 ±9 15 ±9 0 ±0 0.85

2000 shoot 73 ±11 27 ±11 0 ±0 1.84

root 95 ±4 3 ±5 1 ±1 0.47

10000 shoot 78 ±3 22 ±3 0 ±0 0.81

root 99 ±2 0 ±1 0 ±0 1.25

Se treatment with Na2SeO4

500 shoot 38 ±10 14 ±9 48 ±16 1.00

root 42 ±10 13 ±6 46 ±16 0.88

2000 shoot 45 ±11 18 ±4 38 ±15 0.63

root 48 ±30 17 ±7 36 ±33 0.68

10000 shoot 54 ±11 13 ±6 32 ±12 0.44

root 54 ±7 18 ±4 38 ±15 0.63

doi:10.1371/journal.pone.0152081.t001
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linear combination fittings easily show a 10%—error. Several Se compounds that include S

could are plausible candidates, since their XANES spectra show peaks at multiple energies

between organic species and selenite [28]. Determination of these spatial-speciation differences

will require improved spectral resolution.

In conclusion, our results show that Se uptake during the germination stage is a very effec-

tive method of rice biofortification with Se. To avoid phyto-toxicity, nutrients must be added

as well. To achieve the highest Se content in the rice grain, Se should be applied as selenate

rather than selenite. This study has provided insight into mechanisms of rice biofortification

with Se and how to more effectively use the available Se resources during this process. Future

studies need to address the transport of Se within the plant—particularly regarding transfer

pathways and the spatial distribution of organo-seleno compounds. This will require improved

spatial and molecular resolution of analytical methods to address the spatial differentiation of

Se speciation in vivo.
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S3 Fig. XANES of the shoot and root of a dried rice plant treated with 500 μg/L Se as

Na2SeO3 (left) or Na2SeO4 (right); green, red & blue indicating peak lines for selenomethio-

nine (12.661 keV), selenite (12.664 keV) and selenate (12.667 keV), respectively.

(PDF)

S4 Fig. XANES of the shoot and root of a dried rice plant treated with 2000 μg/L Se as

Na2SeO3 (left) or Na2SeO4 (right); green, red & blue indicating peak lines for selenomethio-

nine (12.661 keV), selenite (12.664 keV) and selenate (12.667 keV), respectively.

(PDF)

S5 Fig. XANES of the shoot and root of a dried rice plant treated with 10,000 μg/L Se as

Na2SeO3 (left) or Na2SeO4 (right); green, red & blue indicating peak lines for selenomethio-

nine (12.661 keV), selenite (12.664 keV) and selenate (12.667 keV), respectively.

(PDF)

S6 Fig. Selenium fluorescence mappings of shoot and root tissue of a dried rice plant

treated with 10,000 μg/L Se as Na2SeO4; photos taken with a binocular.

(PDF)

S7 Fig. Selenium fluorescence mappings of shoot and root tissue of a dried rice plant

treated with 2000 μg/L Se (top) and 10,000 μg/L Se (bottom) as Na2SeO3; photos taken with

a binocular.

(PDF)

S8 Fig. Results for plant Se content for each of the three experimental runs of agar experi-

ments.

(PDF)

Selenium in Rice Plants

PLOS ONE | DOI:10.1371/journal.pone.0152081 April 26, 2016 11 / 15



S9 Fig. Results for plant Se content for each of the three experimental runs of nutrient solu-

tion experiments.

(PDF)

S10 Fig. Results for shoot height and length of the 2nd leaf for plants from the agar experi-

ments.

(PDF)

S11 Fig. Results for shoot height and length of the 2nd leaf for plants from the nutrient

solution experiments.

(PDF)

S12 Fig. Calculated element uptake into plants from nutrient solution plotted against

added Se concentration.

(PDF)

S13 Fig. Photos of harvested plants treated with Na2SeO3 in phytoagar & direct Se.

(PDF)

S14 Fig. Photos of harvested plants treated with Na2SeO4 in phytoagar & direct Se.

(PDF)

S15 Fig. Photos of harvested plants treated with Na2SeO3 in nutrients & delayed Se.

(PDF)

S16 Fig. Photos of harvested plants treated with Na2SeO4 in nutrients & delayed Se.

(PDF)

S17 Fig. Photos of harvested plants treated with Na2SeO3 in phytoagar & delayed Se.

(PDF)

S18 Fig. Photos of harvested plants treated with Na2SeO4 in phytoagar & delayed Se.

(PDF)

S19 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

500 μg/L Se as Na2SeO3 in nutrient solution.

(PDF)

S20 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

500 μg/L Se as Na2SeO4 in nutrient solution.

(PDF)

S21 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

2000 μg/L Se as Na2SeO3 in nutrient solution.

(PDF)

S22 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

2000 μg/L Se as Na2SeO4 in nutrient solution.

(PDF)

S23 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

10,000 μg/L Se as Na2SeO3 in nutrient solution.

(PDF)

S24 Fig. all XANES spectra of each region of interest (ROI) on a rice plant treated with

10,000 μg/L Se as Na2SeO4 in nutrient solution.

(PDF)

Selenium in Rice Plants

PLOS ONE | DOI:10.1371/journal.pone.0152081 April 26, 2016 12 / 15



S1 Table. One-way ANOVA results for shoot-Se in agar plants when added as selenite.

(PDF)

S2 Table. One-way ANOVA results for root-Se in agar plants when added as selenite.

(PDF)

S3 Table. One-way ANOVA results for shoot-Se in agar plants when added as selenite.

(PDF)

S4 Table. One-way ANOVA results for root-Se in agar plants when added as selenite.

(PDF)

S5 Table. One-way ANOVA results for shoot-Se in nut.sol. plants when added as selenite.

(PDF)

S6 Table. One-way ANOVA results for root-Se in nut.sol. plants when added as selenite.

(PDF)

S7 Table. One-way ANOVA results for shoot-Se in nut.sol. plants when added as selenite.

(PDF)

S8 Table. One-way ANOVA results for root-Se in nut.sol. plants when added as selenite.

(PDF)

S9 Table. Se distribution for uptake of selenate and selenite into root and shoot in all three

experimental set-ups (dshoot [%] = c(Se)shoot [mg/kg]/(c(Se)shoot [mg/kg] + c(Se)root

[mg/kg])�100).

(PDF)

S10 Table. Wet weight accumulation factors AF of selenate into plant tissue in all three

experimental set-ups (AF [–] = c(Se)medium [mg/L] / c(Se)plant [mg/kg]).

(PDF)

S11 Table. Wet weight accumulation factors AF of selenite into plant tissue in all three

experimental set-ups (AF [–] = c(Se)medium [mg/L] / c(Se)plant [mg/kg]).

(PDF)

S12 Table. Linear Combination Fitting Results using references for selenomethionine (org.

Se), selenite and selenite.

(PDF)

Acknowledgments

We want to thank the Landesgraduiertenförderung Baden-Württemberg for the 2-year PhD

grant and the Council for Research and Promotion of Young Scientists (CRYS, KIT) for finan-

cial support via Dr. Monika Stelling’s YIG and the Helmholtz Graduate School GRACE (KIT).

We are grateful for beamtime SUL-X and FLUO beamlines (ANKA, Karlsruhe). We also thank

Rolf Simon at FLUO beamline and Claudia Mößner for ICP-MS measurements. We acknowl-

edge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of

Karlsruhe Institute of Technology.

Author Contributions

Conceived and designed the experiments: AKN EE MR. Performed the experiments: AKN

MvB GK. Analyzed the data: AKNMvB GK. Contributed reagents/materials/analysis tools:

AKNMR PN JG RS RB. Wrote the paper: AKN EE PN LHEW TN.

Selenium in Rice Plants

PLOS ONE | DOI:10.1371/journal.pone.0152081 April 26, 2016 13 / 15



References
1. Khan MS, Hell R. Applied Cell Biology of Sulphur and Selenium in Plants. In: Nick P, Opatrný Z, editors.

Applied Plant Cell Biology. Springer: Berlin Heidelberg; 2014, pp. 247–272.

2. RaymanM. Selenium and Human Health. Lancet 2002; 379: 1256–1268.

3. Finley JW. Selenium Accumulation in Plant Foods. Nutr. Rev. 2005; 63: 196–202. PMID: 16028563

4. Williams PN, Lombi E, Sun G, Scheckel K, Zhu J, Carey A et al. Selenium Characterization in the global
Rice Supply Chain. Environ. Sci. Technol. 2009; 43: 6024–6030. PMID: 19731713

5. Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. J.
Trace Elem. Med. Biol. 2005; 18: 309–318. PMID: 16028492

6. Combs GF. Selenium in global food systems. Brit. J. Nutr. 2001; 85: 517–547. PMID: 11348568

7. Wang P, Menzies NW, Lombi E, McKenna BA, James S, Tang C, et al. Synchrotron-based X-ray
absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots
and leaves of wheat and rice. J. Exp. Bot. 2015; 4795–4806. doi: 10.1093/jxb/erv254 PMID: 26019258

8. Zhu Y, Pilon-Smitts EAH, Zhao F, Williams P, Meharg AA. Selenium in higher plants—understanding
mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2008; 14: 436–442.

9. Cantrell RP, Reeves TG. The Cereal of the World’s Poor Takes Center Stage. Science 2002; 296: 53.
PMID: 11935006

10. Läuchli A. Selenium in Plants: Uptake, Functions, and Environmental Toxicity. Bot. Act. 1993; 106:
455–468.

11. Li H, McGrath SP, Zhao F. Selenium uptake, translocation and speciation in wheat supplied with sele-
nate or selenite. New Phytol. 2007; 178: 92–102.

12. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF. Involvement of Silicon Influx Transporter OsNIP2;1 in
Selenite Uptake in Rice. Plant Physiol. 2010; 153: 1871–1877. doi: 10.1104/pp.110.157867 PMID:
20498338

13. Carey A, Scheckel KG, Lombi E, Newville M, Choi Y, Meharg AA. Grain Accumulation of Selenium Spe-
cies in Rice (Oryza sativa L.). Environ. Sci. Technol. 2012; 46: 5557–5564. doi: 10.1021/es203871j
PMID: 22502742

14. Brozmanová J, Mániková D, Vlčková V, Chovanec M. Selenium: a double-edged sword for defense
and offence in cancer. Arch. Toxicol. 2010; 84: 919–938. doi: 10.1007/s00204-010-0595-8 PMID:
20871980

15. Wang P, Menzies NW, Lombi E, McKenna BA, de Jonge MD, Paterson DJ. In situ speciation and distri-
bution of toxic selenium in hydrated roots of cowpea. Plant Physiol. 2013; 163: 407–418. doi: 10.1104/
pp.113.222299 PMID: 23835408

16. Sun G, Liu X, Williams PN, Zhu Y. Distribution and Translocation of Selenium from Soil to Grain and its
Speciation in Paddy Rice (Oryza sativa L.). Environ. Sci. Technol. 2010; 44: 6706–6711. doi: 10.1021/
es101843x PMID: 20701283

17. Keskinen R, Räty M, Yli-Halla M. Selenium fractions in selenate-fertilized field soils of Finland. Nutr.
Cycl. Agroecosyst. 2011; 91: 17–29.

18. Liu K, Gu Z. Selenium Accumulation in Different Brown Rice Cultivars and Its Distribution in Fractions.
J. Agric. Food Chem. 2009; 57: 695–700. doi: 10.1021/jf802948k PMID: 19154168

19. Murashige T, Skoog F. A Revised Medium For Rapid Growth And Bio AssaysWith Tabbacco Tissue
Cultures. Physiol. Plant. 1962; 15: 473–497.

20. Bell PF, Page AL, Parker DR. Contrasting Selenate-Sulfate Interactions in Selenium-Accumulating and
Nonaccumulating Plant Species. Soil Sci. Soc. Am. J. 1992; 56: 1818–1824.

21. Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, Dhillon KS, Sadana US. Sele-
nium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Bras-
sica juncea) from a seleniferous area of Punjab, India. Sci. Total Environ. 2015; 505: 952–961. doi: 10.
1016/j.scitotenv.2014.10.080 PMID: 25461096

22. Hopper JL, Parker DR. Plant availability of selenite and selenate as influenced by the competing ions
phosphate and sulfate. Plant Soil 1999; 210: 199–207.

23. Kikkert J, Hale B, Berkelaar E. Selenium accumulation in durum wheat and spring canola as a function
of amending soils with selenite, selenate and or sulfate. Plant Soil 2013; 372: 629–641.

24. LeDuc D. L.; Tarun A. S.; Montes-Bayon M.; Meija J.; Malit M.F.; (. . .); Neuhierl B. Overexpression of
selenocysteinemethyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and
accumulation. Plant Physiol. 2004, 135, 377–383. PMID: 14671009

25. Terry N, Zayed AM, de Souza MP, Tarun AS. Selenium in Higher Plants. Ann. Rev. Plant Physiol. Plant
Molec. Biol. 2000; 51: 401–432.

Selenium in Rice Plants

PLOS ONE | DOI:10.1371/journal.pone.0152081 April 26, 2016 14 / 15



26. Zayed A, Lytle CM, Terry N. Accumulation and volatilisation of different chemical species of selenium
by plants, Planta 1998; 206: 284–292.

27. Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL. Selenium biofortfication of broccoli and car-
rots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata, Food Chem. 2015;
166: 603–608. doi: 10.1016/j.foodchem.2014.06.071 PMID: 25053099

28. Pickering IJ, George GN, Van Fleet-Stalder V, Chasteen TG, Prince RC. X-Ray absorption spectros-
copy of selenium-containing amino acids, J. Biol. Inorg. Chem. 1999; 4: 791–794. PMID: 10631611

Selenium in Rice Plants

PLOS ONE | DOI:10.1371/journal.pone.0152081 April 26, 2016 15 / 15


