
RESEARCH ARTICLE
10.1002/2015WR017871

Describing the catchment-averaged precipitation as a

stochastic process improves parameter and input estimation

Dario Del Giudice1,2,3, Carlo Albert1, J€org Rieckermann1, and Peter Reichert1,4

1Eawag, Swiss Federal Institute of Aquatic Science and Technology, D€ubendorf, Switzerland, 2Institute of Environmental

Engineering, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland, 3Now at Department of Global

Ecology, Carnegie Institution for Science, Stanford, California, USA, 4Institute of Biogeochemistry and Pollutant Dynamics,

ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland

Abstract Rainfall input uncertainty is one of the major concerns in hydrological modeling. Unfortunately,

during inference, input errors are usually neglected, which can lead to biased parameters and implausible

predictions. Rainfall multipliers can reduce this problem but still fail when the observed input (precipitation)

has a different temporal pattern from the true one or if the true nonzero input is not detected. In this study,

we propose an improved input error model which is able to overcome these challenges and to assess and

reduce input uncertainty. We formulate the average precipitation over the watershed as a stochastic input

process (SIP) and, together with a model of the hydrosystem, include it in the likelihood function. During

statistical inference, we use ‘‘noisy’’ input (rainfall) and output (runoff) data to learn about the ‘‘true’’ rainfall,

model parameters, and runoff. We test the methodology with the rainfall-discharge dynamics of a small

urban catchment. To assess its advantages, we compare SIP with simpler methods of describing uncertainty

within statistical inference: (i) standard least squares (LS), (ii) bias description (BD), and (iii) rainfall multipliers

(RM). We also compare two scenarios: accurate versus inaccurate forcing data. Results show that when infer-

ring the input with SIP and using inaccurate forcing data, the whole-catchment precipitation can still be

realistically estimated and thus physical parameters can be ‘‘protected’’ from the corrupting impact of input

errors. While correcting the output rather than the input, BD inferred similarly unbiased parameters. This is

not the case with LS and RM. During validation, SIP also delivers realistic uncertainty intervals for both rain-

fall and runoff. Thus, the technique presented is a significant step toward better quantifying input uncer-

tainty in hydrological inference. As a next step, SIP will have to be combined with a technique addressing

model structure uncertainty.

1. Introduction

One of the main sources of uncertainty in hydrological modeling are input errors. These are predominantly

associated with errors in the estimation of the true precipitation (here used interchangeably with rainfall)

over a watershed [Kavetski et al., 2006; Vrugt et al., 2008]. Hydrological systems are indeed heavily input-

driven and inaccuracies in rainfall characterization can dramatically impair the quality of calibration results

and model output [Bardossy and Das, 2008].

Rainfall input errors affecting model calibration arise for a variety of reasons: inadequate areal coverage of

point-scale pluviometers, inexact spatial interpolation, mechanical limitation of the gauge, wind effects, etc.

[McMillan et al., 2011; Renard et al., 2011]. Furthermore, precipitation provided at an insufficient temporal

resolution can substantially impair the model’s ability to represent runoff, especially for small and fast-

reacting catchments [Ochoa-Rodriguez et al., 2015].

In studies focusing on precipitation simulation, several statistical models have been proposed to determine

the time evolution of precipitation intensity (or rain rate) and its uncertainty [e.g., Rodriguez-Iturbe et al.,

1987; Cowpertwait et al., 1996; Deidda et al., 1999; Paschalis et al., 2013; Langousis and Kaleris, 2014]. Results

of those stochastic weather generators can provide (uncertain) inputs to rainfall-runoff models, thus helping

to assess the influence of rainfall errors on runoff predictive uncertainty. However, as discussed e.g., by

Sikorska et al. [2012], in studies focusing on hydrological model calibration and probabilistic prediction,

input uncertainty has largely been neglected in the statistical inference process. This is probably due to the
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computational complexity of including it in a likelihood function [Honti et al., 2013]. The likelihood (func-

tion) is the probability density of observations given the values of model parameters and inputs. The

assumption is often that the observations are generated by the underlying model, consisting of a determin-

istic part describing the system, and a stochastic part describing the errors. This function is needed to

extract information about model parameters and input from observed data. To make correct inference, the

likelihood should consider all relevant mechanisms and error contributions. However, as discussed, e.g., by

Yang et al. [2008], Sikorska et al. [2012], and Reichert and Schuwirth [2012], likelihood functions formulated

as uncorrelated normal distributions and centered at the outputs of a deterministic model are still fre-

quently used. Due to input errors and/or structural deficits of the model, this assumption is usually unrealis-

tic [Yang et al., 2007b]. Independent and identically distributed (iid) normal likelihoods have repeatedly

been shown to produce biased estimates of model parameters and unreliable predictions [Renard et al.,

2011; Honti et al., 2013; Del Giudice et al., 2015b].

One alternative to the iid uncertainty description is the use of autoregressive error models [Kuczera, 1983;

Yang et al., 2007a]. Although these likelihoods are still simple, they implicitly acknowledge the existence of

errors besides the random output measurement noise (including inaccuracies in the input estimation). The

effects of these errors on model output have been described by autocorrelated stochastic processes added

to the model output [Frey et al., 2011; Evin et al., 2013]. In recent studies focusing on reliable runoff predic-

tions, (iid) observation errors have been explicitly considered in addition to the ‘‘bias process,’’ describing

correlated deviations [Reichert and Schuwirth, 2012; Del Giudice et al., 2013; Dietzel and Reichert, 2014]. While

likelihoods describing bias are more plausible than those assuming iid errors, they still have some limita-

tions: (i) they can only provide limited information about the causes of model bias and, therefore, do not

help much to disentangle input from structural errors; (ii) they can only partially buffer the corruption of

model parameter estimates; (iii) they do not contribute to quantifying the uncertainty of unobserved varia-

bles (such as water level in an arbitrary point of the drainage network) [Reichert and Mieleitner, 2009; Del

Giudice et al., 2015a].

A more satisfying approach for considering input errors is to make the input uncertain and to

propagate it through the model [Honti et al., 2013; McMillan et al., 2011]. A simple way of doing

so, which has become popular in hydrology, is the use of so-called rainfall multipliers [Kavetski

et al., 2006; Sun and Bertrand-Krajewski, 2013]. These are event-specific random variables multiplied

with the observed rain to provide the input to the model. These multipliers and their uncertainty

are then estimated jointly with the other model parameters to correct for possible rainfall input

errors during the calibration period. Most of these investigations in statistical model calibration

have focused on the temporal dynamics of precipitation rather than its spatial variability, thus

using the whole-catchment precipitation as input for a lumped runoff model. For specific applica-

tions in distributed modeling, one multiplier per grid point or subcatchment (and event) has been

considered [Salamon and Feyen, 2010; Li et al., 2012].

While using rainfall multipliers is relatively straightforward, they have important drawbacks: multipliers do

not provide a realistic assessment of input uncertainty if, for example, the temporal dynamics, i.e., the

‘‘shape,’’ of a recorded storm event is significantly different from the true precipitation dynamics, or if a

storm bypasses the pluviometric stations so that they do not record any precipitation although the catch-

ment shows a runoff response [Kavetski et al., 2006; Renard et al., 2011]. While the first disadvantage can be

reduced with multipliers varying within the storm event [Reichert and Mieleitner, 2009], the second one can-

not be solved within this framework and requires a fresh approach.

In this study, we therefore suggest a novel input uncertainty model that describes the input of a hydrosys-

tem as a continuous stochastic process. This makes it possible to formulate a more realistic likelihood func-

tion than those discussed above. This also allows us to learn about and reduce input as well as output

uncertainties. By means of Bayesian inference, we show how to update our prior beliefs about parameters

and rainfall patterns from the simultaneous use of input data (here: from pluviometers), output data (from a

flowmeter at the outlet of the catchment), the runoff model (a lumped linear reservoir), a rainfall model (a

transformed Gauss-Markov process), and models of the input and output observation errors (both normal

distributions). We name this method Stochastic Input Process, SIP.

SIP, compared to the previous methods, has the following benefits:
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1. It can probabilistically estimate the true input to a system in cases of sparse, inaccurate, or imprecise

input measurements, if the output measurements and the underlying model are comparably accurate.

This can be valuable to reconstruct past precipitation records from flow data or to spatially upscale point

measurements. Reliable precipitation estimates can also be very useful to test hydrological theories and

benchmark recordings from other sensors like radars [Kirchner, 2009].

2. It can reduce the bias in inferred parameters of hydrological models and therefore in runoff predictions.

This can substantially support regionalization studies, which try to establish relations between hydrologi-

cal model parameters calibrated in gauged catchments and properties of these catchments [Kavetski

et al., 2006].

3. It can produce not only a reliable assessment of total output uncertainty, but also quantify the contribu-

tions due to parameter and input uncertainty. Supporting uncertainty separation, SIP can help assess to

what extent prediction uncertainty can be reduced by providing better rainfall data and can therefore

guide our efforts to minimize the uncertainty sources [Sikorska et al., 2012].

We examine the ability of our approach to produce realistic posterior parameter estimates and reliable pre-

dictions, the two pivotal features of ‘‘Bayesian data assimilation’’ [Rougier, 2013]. We then compare SIP with

the three methods mentioned above: the simple least squares (LS) formulation assuming iid errors, an

autoregressive bias description (BD), and the event-dependent rainfall multiplier (RM) error model. As an

illustrative example, we perform inference and prediction for a monitored urbanized watershed which we

model with a parsimonious hydrological model of combined waste and rainwater discharge.

2. Method

We briefly describe the LS, BD, and RM approaches, three commonly used techniques to calibrate and pre-

dict with environmental and, specifically, rainfall-runoff models. All techniques are implemented in a Bayes-

ian framework, meaning that the likelihood function is combined with a prior distribution of the parameters

to obtain posterior parameter estimates from observations. This allows us to make use of our existing

knowledge of physical and error model parameters. Prior knowledge can reduce the identifiability problem

between the process-based model and the statistical error model [Bayarri et al., 2007]. After this review, we

explain more in depth the concepts and numerics of the method developed in this paper that is based on

describing rainfall as a Stochastic Input Process (SIP). Finally, we discuss the case study we selected to dem-

onstrate the usefulness of the SIP calibration scheme in the presence of important input errors. A graphical

comparison of the methods is provided in Figure 1.

2.1. Alternative Methods Used for Comparison

2.1.1. Standard Least Squares: LS Method

The standard nonlinear least squares methodology is the simplest of the four approaches. This regression

method describes the residual errors, i.e., the differences between the output of a deterministic model, yM,

and observations, yo, as normally and identically distributed and independent (Figure 1). The implicit

assumption here is that model results deviate from data only because of random observation errors, E. The

other error sources, like input and structural errors, are neglected or somehow considered to have the same

effect as white observation noise [Vrugt et al., 2008; McMillan et al., 2011]. Relaxing the assumptions of con-

stant variance and normality of the residual errors via output transformation can make the LS approach

slightly more appropriate for hydrological applications [Wang et al., 2012]. The probabilistic model used for

inference and prediction in this approach is:

f ðyo jh;wy ; xÞ5
ð2pÞ2q=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðRðwyÞÞ
q � exp 2

1

2
½gðyoÞ2gðyMðh; xÞÞ�

T
RðwyÞ

21½gðyoÞ2gðyMðh; xÞÞ�

� �

Y

q

i51

dg

dy
ðyo;iÞ ;

(1)

where h is the vector of hydrological model parameters, wy is the vector of parameters of the error term, x

is the time-varying model input (in our case precipitation), q is the number of elements of yo and yM, and g

is the scalar transformation function, which, when applied to a vector, returns the vector of the function

applied to all components of its argument. For the LS method, the input used in equation (1) is given by

the observed input (ignoring input uncertainty),
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x5xo (2)

and the covariance matrix RðwyÞ is given by the diagonal matrix

RijðwyÞ5dijr
2
E ; (3)

where i and j are subscripts running from 1 to q, and d represents the Kronecker delta. The results of the

deterministic model are represented by yMðh; xÞ, whereas the corresponding observed values are denoted

by yo. We here consider the heteroscedasticity of the errors (i.e., the dependence of the error variance on

the corresponding model output) via an output transformation, g, whose functional form is given in Appen-

dix A. The only parameter wy of this error model is rE, the (constant) standard deviation of the output mea-

surement noise in transformed units. Several studies have shown that this error description is too simple for

complex environmental systems where input and structural errors play an important role [e.g., Yang et al.,

2007a,2007b; Vrugt et al., 2008; Renard et al., 2011; Reichert and Schuwirth, 2012; Honti et al., 2013]. However,

we chose the LS method as a benchmark for comparison with conceptually more satisfactory methods

because it is still widely applied in environmental modeling.

2.1.2. Statistical Bias Description: BD Method

A way to consider the effects of input errors and structural deficits on model output is to mimic the system-

atic deviations of model results from data with an autocorrelated stochastic process. This approach was

introduced in hydrology decades ago [Sorooshian and Dracup, 1980; Kuczera, 1983]. The version we use,

however, besides modeling the autocorrelated process B, which represents the effects of input and struc-

tural errors, additionally includes an uncorrelated process E, representing the observation noise. [Kennedy

and O’Hagan, 2001; Bayarri et al., 2007; Reichert and Schuwirth, 2012; Brynjarsd�ottir and O’Hagan, 2014], As

adequate information on measurement precision is usually available, and B and E have different properties,

their identifiability is typically high. However, there is an identifiability problem between B and the parame-

ters of the deterministic model which can be resolved by defining appropriate prior distributions [Reichert

and Schuwirth, 2012]. The bias correction B here follows an Ornstein-Uhlenbeck (OU) dynamics [e.g., Platen

and Bruti-Liberati, 2010; Kroese et al., 2011, and references therein]

dBðtÞ52
BðtÞ

s
dt1

ffiffiffi

2

s

r

rBdWðtÞ; (4)

where s is the correlation time and rB is the asymptotic standard deviation of the statistical fluctuations

around the average value of B, here 0. W(t) is a Wiener process, also called standard Brownian motion, or

random walk with independent Gaussian increments. The first part of the (Langevin) equation (4) describes

a deterministic dampening, central-restoring force, or pull towards the long-run mean of zero. The second

term counterbalances this tendency by adding stochastic white noise. This leads to random oscillations of

realizations of this process around the equilibrium state with standard deviation rB and correlation time s.

We chose an OU process, because it is time-continuous, linear, Markovian, has a finite stationary variance,

Figure 1. Representation of the four methods we use to describe the uncertainties during inference and predictions (section 2). Greek let-

ters denote (random) calibration parameters of the hydrological model, H, input, Wx , and output error model, Wy (more details in Table 1).

The random processes E, B, and N have different illustrations depending on their consideration of autocorrelation. The dashed lines exem-

plify the learning process of inference while the solid lines illustrate the information flow during predictions. The zigzags typify the com-

parison between modeled and measured time series during inference. While the RM implicitly accounts for input uncertainty by inferring

additional parameters, SIP explicitly considers it in the likelihood function.
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and can be integrated analytically [Ibe, 2009; Paul and Baschnagel, 2013]. Using Gaussian error models in

combination with an appropriate transformation not only keeps the inference relatively simple due to their

analytical properties, but has additionally been proven to appropriately describe errors in runoff modeling

[Honti et al., 2013; Del Giudice et al., 2013]. Similar output error models might be appropriate as well,

although care has to be taken to avoid overparameterization [Evin et al., 2013].

In the BD approach, the likelihood function has the same basic form as in equation (1), but the covariance

matrix is nondiagonal:

RijðwyÞ5r2Be
2s21jti2tj j1dijr

2
E : (5)

In this equation, i and j are subscripts spanning over the time domain, and s and rB are the (hyper)para-

meters, wy , of the Gaussian bias process. As the effect of input errors is corrected at the output, this tech-

nique is based on using the observed input (2) when applying the likelihood function (1) with (5).

2.1.3. Multiplicative Rainfall Error Model: RM Method

The RM (rainfall multiplier) approach explicitly considers input (in our case rainfall) uncertainty by perturb-

ing the observed precipitation time series with independent random factors for all storm events [Kavetski

et al., 2006; McMillan et al., 2011]. To make the inference tractable, these (latent) factors are kept constant

during an event [Vrugt et al., 2008]. We then apply the likelihood function (1) with (3) and with the per-

turbed input

xi5bjðiÞxo;i ; (6)

where the index i runs through all elements of the rainfall time series, whereas the index j remains con-

stant for all values of i within any given storm event. The parameters b5ðb1; . . . ;bnsÞ represent the rain-

fall bias corrections for all (ns) storm events. The priors for the elements of b are formulated as

lognormal distributions centered at 1 and with a joint standard deviation rb. Centering these distribu-

tions at 1 implies assuming the observed input to be correct. Inferring rb leads to a hierarchical parame-

ter estimation problem. While some applications of RM kept rb fixed [Sun and Bertrand-Krajewski, 2013],

making the error model nonhierarchical, we prefer to infer this hyperparameter to learn about the over-

all input variance detected during calibration [Li et al., 2012; Sikorska et al., 2012]. Despite using the

same likelihood function as for the LS method, the replacement of the input description (2) by (6) leads

to the consideration of input uncertainty at the level of whole storm events and augments the parame-

ter vector with the parameters Wx5fb; rbg of the rainfall error model. The basic difference between LS

and RM is that, while the former assumes the observed rainfall to be the true input, the latter considers

sections of the true input to be unknown multiples of the recorded precipitation during that time period

(Figure 1). While the RM technique provides a simple approximation for the uncertainty of the rainfall

volumes, its limited ability to deal with strongly dynamic input errors has been widely acknowledged

[Kavetski et al., 2006; Vrugt et al., 2008; Sikorska et al., 2012]. Consequently, a more realistic statistical

representation of the catchment-averaged precipitation is needed [Salamon and Feyen, 2010; Renard

et al., 2011].

2.2. Joint Inference of Input, Hydrological Model, and Output Error Parameters: SIP Method

2.2.1. Overall Concept

The framework we propose to quantify and propagate input uncertainty is based on the inference of a

latent Gauss-Markov stochastic process, the ‘‘rainfall potential,’’ n [Sigrist et al., 2012]. This time series can

be transformed to the areal average watershed precipitation. As in previous studies developing techni-

ques to consider input uncertainty in hydrological inference [e.g., Kavetski et al., 2006; Vrugt et al., 2008;

Reichert and Mieleitner, 2009; Kirchner, 2009; Sikorska et al., 2012], we concentrate on the time evolution of

precipitation rather than on its spatial variability. We thus develop a stochastic rainfall model which satis-

fies two requirements: (a) its realizations should have some statistical properties of the real rainfall and (b)

the conditional probabilities (needed e.g., in equations (19) and (20)) are available in analytical form. Mod-

eling the rainfall potential n as a normal, linear, and Markovian process simplifies the calculation of condi-

tional probabilities, thus making inference easier. Together with n, the parameters of the hydrological

model, H, those of the input, Wx , and those of the output error model, Wy , are also inferred. Furthermore,

similar to Sigrist et al. [2012], we simultaneously estimate no, the ‘‘rainfall potential’’ at the pluviometric

station. The rainfall potential over the catchment, n, is only inferred indirectly through both
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measurements of rainfall at the observa-

tion site, xo, and of runoff, yo. Thus, for

inference we need two models, one for

the observed rainfall (section 2.2.4) and

the other for observed runoff (section

2.2.4). The ‘‘rainfall potential’’ describes

the rainfall in a given catchment or at a

given site and is not meant as a potential

in a physical sense. These ‘‘rainfall poten-

tials’’ can be transformed to the associ-

ated rainfall by means of the scalar

function h:

x5hðnÞ; xo5hðnoÞ: (7)

(again, the application of h to n is to be

understood element-wise). As discussed

by Sigrist et al. [2012] and Ailliot et al.

[2015], transforming a latent Gaussian pro-

cess is a parsimonious way to model

occurrence and amount of precipitation.

As multiple values of the ‘‘rainfall poten-

tials’’ are mapped to zero precipitation, the

function h is not invertible (Figure 2).

Therefore, we avoid denoting the ele-

ments of n and no the ‘‘transformed rain-

fall.’’ However, whenever the rainfall

intensities are not zero, and thus h21

exists, they are transformed rainfall

intensities.

The two main differences between the suggested technique and RM are:

1. The SIP technique does not assume (pieces of) the true precipitation to be proportional to the observed

time series. Instead, our knowledge of true input is inferred from prior knowledge, input observations,

and output observations. This makes it possible to deal with time-varying observation errors of the rain

rate and with unrecorded storms that bypassed the observation site but led to a runoff increase, a situa-

tion intractable with rainfall multipliers. These features make the suggested technique conceptually

more satisfying than the techniques described in section 2.1.

2. The joint input and output likelihood function of SIP does not have a simple explicit form as for the RM

(equation (1)), but is instead given in a discretized form of a high-dimensional integral over all possible

realizations of n and no (equation (8)). Unfortunately, this makes the suggested technique computation-

ally more demanding than all three techniques used to compare with.

The SIP likelihood function can be written as:

f ðyo; xojh;wy ;wxÞ5

ð

f ðyojh;wy ; x5hðnÞÞf ðxojnoÞf ðnojn;wxÞf ðnjwxÞdndno ; (8)

where integration is over all possible discretized time series of n and no. This formulation is the discretized

version of what in physics is called path integral (for an application in the environmental sciences see, e.g.,

Quinn and Abarbanel [2010]).

In the following, we describe the factors of the integrand above. f ðyojh;wy ; xÞ is the likelihood of

observed output given the parameters of the hydrological model, h, the parameters of the output error

model, wy , and the rainfall input, x; f ðxojnoÞ is the model of observed input, xo, given the input potential

at the observation site, no; f ðnojn;wxÞ is the model for the rainfall potential at the observation site, no,

given the rainfall potential for the whole catchment, n, and the input model parameters, wx ; and f ðnjwxÞ

Figure 2. Empirical function to transform a normally distributed value into a

rain value (see equation (11)). The data used to parameterize the function

are sorted according to their value. The values of b and c for n> n2 were

derived from continuity constraints for h and dh
dn

at n2. The dotted vertical

lines define three domains of the transformation whose parameters are indi-

cated above. These regime switches have been empirically determined. Note

that x, a, and c have units of mm/min.
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is the a priori model for the rainfall potential for the whole catchment, n, given the input model parame-

ters, wx . Subsequently, we describe these models in more detail, the numerical method to implement

inference of parameters and time series of rainfall potential, and, finally, we elucidate how to make pre-

dictions with SIP.

2.2.2. Output Probabilistic Model

The term f ðyojh;wy ; xÞ represents the probabilistic hydrological model for the observed discharge, yo, as a

function of the rainfall, x, the parameters of the hydrological model, h, and those of the output error model,

wy . This probability density function is assumed to be given by equation (1) with the covariance matrix

given by equation (3) as for the LS and RM approaches. The difference is, again, the representation of the

input. The LS approach assumes the observed input to be error-free (equation (2)). The RM approach

assumes the true input to be a piecewise-scaled version of the observed one (equation (6)). In our new

approach, we infer the rainfall potential, n, and the corresponding input, x, jointly with the parameters of

the hydrological model and the error models using rainfall (input) and runoff (output) data. In some sense,

we use the output of the catchment as an additional rain gauge, to gain spatially integrated information

about the catchment-averaged precipitation.

Similarly to the RM approach, the use of the probability density function (1) with the covariance matrix

given by equation (3) assumes that model structural deficits are negligible and can be ‘‘absorbed’’ by

parameter uncertainty. This means that we assume that the systematic deviations of model output from

observations are dominated by problems in acquiring the input with sufficient accuracy. For the simple

hydrosystem under study, this assumption is very plausible (see section 4). However, it would be possible to

use an output model that accounts for the effect of structural errors (see section 5.4).

2.2.3. Prior Rainfall Model

We base the description of the prior rainfall model on a ‘‘rainfall potential,’’ n, that follows an Ornstein-

Uhlenbeck process with mean zero, asymptotic standard deviation unity, and correlation time sn, from

which we get the distribution of rainfall intensity by a transformation, h: x5hðnÞ. In continuous-time formu-

lation, the rainfall potential then follows the stochastic differential equation

dnðtÞ52
nðtÞ

sn
dt1

ffiffiffiffiffi

2

sn

s

dWðtÞ; (9)

which is solved by a Gaussian process with conditional expectation and variance given by

E½nðtÞjnðt0Þ�5nðt0Þexp
t02t

sn

� �

; Var½nðtÞjnðt0Þ�512exp 22
t2t0

sn

� �

: (10)

The discrete time series, n, used for our model, consists of an evaluation of this process for a discrete set of

time points. The resulting probability density, f ðnjwxÞ, describes our prior knowledge of the rainfall potential

time series at catchment scale during rainy periods. Time modeling of precipitation as a simple hidden (i.e.,

latent or potential) and censored (where an observation only becomes available when a threshold is

exceeded) stochastic process to be transformed into precipitation and updated using data is well known in

statistical meteorology [Ailliot et al., 2015].

In our case study, we estimated the parameterization of the transformation h and the choice of the parame-

ter values from a long precipitation time series with few zeros and including the most intense rain events

recorded in 2013 in the area (Figure 2). Similar to Sigrist et al. [2012], we chose a power function, but we dif-

ferentiated its coefficients for three rain intensity intervals (or regimes): no rain, light rain, and heavy rain.

The coefficients were constrained to guarantee the differentiability of h over the full range of its argument.

This led to:

x5hðnÞ5aðn2bÞc1c;

n5h21ðxÞ5b1ðx2c
a
Þ1=c if a 6¼ 0;

dh

dn
5acðn2bÞc21;

(11)

with three sets of parameters for the intervals] –1, n1], [n1, n2], and [n2, 1 [(see Figure 2). Note that for

n� n1, a5 c5 0, so that h is only invertible for n> n1. The correlation time sn and the parameters of the
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transformation h are used to formulate our prior knowledge about the process n. Thus, they are not

included in Bayesian inference. However, the actual time course of n is inferred.

As will be shown later, the properties of this Ornstein-Uhlenbeck process are convenient to efficiently sample

from the posterior (section 2.2.5). Furthermore, these types of censored power-transformed Gaussian models

have few parameters, are analytically tractable, and have shown satisfactory performances in precipitation

generation [Sigrist et al., 2012; Ailliot et al., 2015]. The parameterization chosen makes this prior stochastic

model particularly suitable for typical rainy periods. Thanks to the Bayesian framework, however, this model

can be updated to correctly reproduce a wide range of calibration events [Renard et al., 2011]. Alternative sto-

chastic models for precipitation [e.g., Paschalis et al., 2013] could also be used. For instance, if the analysis of

extreme events is of particular interest, more complicated multifractal models randomly simulating the cas-

cade of rainfall across scales could be envisaged [e.g., Deidda et al., 1999]. Incorporating those models in

hydrological inference, however, would make the calculation of conditional probabilities difficult and thus

would require a different numerical approach.

2.2.4. Model for Rainfall Observations

As mentioned in the introduction, the true input to the catchment, x, differs from the observed input, xo,

mainly due to sampling errors caused by insufficient gauge coverage and/or the imperfect spatial interpola-

tion scheme between gauges [McMillan et al., 2011]. Similar to Sigrist et al. [2012], our error model for input

observation errors related to the distance and intrinsic inaccuracy of pluviometers is multivariate normal in

the space of the ‘‘rainfall potential’’:

f ðnojn;wxÞ5
1

ð2pÞnxo =2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðRnoðwxÞÞ
p exp 2

1

2
ðno2nÞTRnoðwxÞ

21ðno2nÞ

� �

: (12)

Due to insignificant correlations found in long time series of reference data sets (supporting information

Figure S1), we parametrized the covariance matrix in equation (12) as:

Rno;ijðwxÞ5dijr
2
n; (13)

where r2n is the variance characterizing the deviation in rainfall potential between the observation site and

the input to the catchment (supporting information Figure S2). The larger rn, the less accurately the observed

rainfall represents the true rainfall at catchment scale. While we expect an increase in r2n with increasing dis-

tance from the catchment, other factors, such as topography and wind direction, can influence the value of r2n
as well. Additionally, while we use rain gauge data to estimate the areal average catchment precipitation,

unlike in Bardossy and Das [2008], this does not involve spatial interpolation but rather a Bayesian updating of

the prior input process for the whole catchment n via assimilation of rainfall xo and discharge data yo. Our

strategy is similar to using hidden Markov models where the a priori parameterization of the weather state

(here: precipitation) is optimally fitted/conditioned to the data [Ailliot et al., 2015].

Finally, in our model for rainfall observations, the probability distribution of rainfall given the rainfall poten-

tial is given by

f ðxojnoÞ5dðxo2hðnoÞÞ: (14)

This Dirac function represents the transformation from rainfall potential into actual rain rate at the measure-

ment station.

2.2.5. Numerical Implementation of Inference With SIP

Bayesian updating of the prior process N and distributions H; Wy , and Wx are based on the Markov chain

Monte Carlo (MCMC) scheme proposed by Tomassini et al. [2009]. In particular, we adopt a Metropolis-within-

Gibbs algorithm, which sequentially samples different conditional distributions while keeping the other

parameters or process realizations constant (supporting information Figure S3). Using the index k for the ele-

ments of these Markov chains, we sequentially generate the elements k1 1 of the different chains as outlined

below. The starting point for the iterations can be obtained by drawing a vector of parameters and a realiza-

tion of the input processes from the prior distribution. The pseudocode of this algorithm is as follows:

1. Sample a new point of the Markov chain of the hydrological model and output error parameters,

ðhk11; wk11
y Þ, for the conditional distribution
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f ðhk11;wk11
y jyo; xo;w

k
x ; n

k ; nkoÞ5f ðhk11;wk11
y jyo; n

kÞ

/ f ðyojh
k11;wk11

y ; hðnkÞÞ � f ðhk11;wk11
y Þ

(15)

using Metropolis sampling: draw a candidate point for ðhk11; wk11
y Þ from Nððhk ;wk

yÞ;RyÞ as the pro-

posal (or jump) distribution with covariance matrix Ry and accept or reject this candidate by the

Metropolis rule using the density (15). This step requires running the deterministic model.

2. Sample a new point of the Markov chain of the input error model parameters, wk11
x , for the conditional

distribution

f ðwk11
x jyo; xo; h

k11;wk11
y ; nk ; nkoÞ5f ðwk11

x jnk; nkoÞ

/ f ðnkojn
k ;wk11

x Þ � f ðnk jwk11
x Þ � f ðwk11

x Þ
(16)

using Metropolis sampling: draw a candidate point for wk11
x from Nðwk

x ;RxÞ as the proposal distri-

bution with covariance matrix Rx and accept or reject this candidate using the Metropolis rule using

the density (16). The parameters of the Ornstein-Uhlenbeck process for n are mean zero and stand-

ard deviation unity. Furthermore, the correlation time (here: sn5 10.6 min) was estimated from a

long precipitation time series not used during inference. Therefore, in the current application, the

density f ðnjwxÞ does not depend on wx and cancels for the rejection rate calculation. This step does

not require any hydrological model run.

3. Sample a new element of the Markov chain of the rainfall potential time series at the input observa-

tion site, nk11
o , for the conditional distribution

f ðnk11
o jyo; xo; h

k11;wk11
y ;wk11

x ; nkÞ5f ðnk11
o jxo;w

k11
x ; nkÞ

/ f ðxojn
k11
o Þf ðnk11

o jnk ;wk11
x Þ :

(17)

For time indices, I, at which xo,i> 0, we can directly calculate nk11
o;i 5h21ðxo;iÞ since h21 exists for argu-

ments that are larger than zero. For time indices, I0, at which xo,i5 0, we sample nk11
o;i from a normal

distribution with mean nkI01Rno;I0;IR
21
no;I;I

ðh21ðxo;IÞ2nkI Þ and covariance matrix Rno;I0;I01Rno;I0;IR
21
no;I;I

R
T
no ;I0;I

that is truncated to values n< n1.

4. Sample a new element of the Markov chain of the rainfall potential time series for the whole catch-

ment, nk11, for the conditional distribution

f ðnk11jyo; xo; h
k11;wk11

y ;wk11
x ; nk11

o Þ5f ðnk11jyo; h
k11;wk11

y ;wk11
x ; nk11

o Þ

/ f ðyojh
k11;wk11

y ; hðnk11ÞÞf ðnk11
o jnk11;wk11

x Þf ðnk11jwk11
x Þ :

(18)

This is similar to drawing a new element of the Markov chain of a time-dependent parameter [Tomas-

sini et al., 2009; Reichert and Mieleitner, 2009], with the difference that we condition not only on the

parameters, ðh;wy ;wxÞ, and on the observed output, yo, but, in addition, on the rainfall potential of the

observed input, no. In principle, we could draw a candidate realization from the Ornstein-Uhlenbeck

process f ðnk11jwk11
x Þ, and use the two other factors in (18), f ðyojh

k11;wk11
y ; hðnk11ÞÞ and

f ðnk11
o jnk11;wk11

x Þ, for the calculation of the rejection ratio of Metropolis sampling. However, in that

case we would not profit from what we have learned in the past (up to step k) about the posterior of n.

This would lead to a very low acceptance rate. To improve efficiency, we draw a realization only for

pieces of the time series of nk11, keeping the remainder of the time series at their previous values, nk ,

for the intervals that were not yet updated, or their new values, nk11, for the intervals that were already

updated (supporting information Figure S4). This leads to the following algorithm for the construction

of nk11 from nk (adapted from Tomassini et al. [2009]):

4.1 Divide the calibration period and the previous realization of the rainfall potential, nk , into m

subintervals of similar length (using random disturbances to prevent the interval boundaries

from being the same in successive steps). Denote with nkl 5nkjIl
the restrictions of nk to the

subinterval Il.
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4.2 Repeat the following three substeps 8 l5 1,. . ., m subintervals Il in order to draw nk11, a sample of

the updated N. The more substeps are considered, the more hydrological model runs will be

required for one iteration.

4.2.1. Draw a candidate sample nk110
l over the subinterval Il from an Ornstein-Uhlenbeck process

conditional on the values of nk at its start time point, s, and its end point, u. Updating the

current sample over the subinterval Il guarantees continuity of the process over the full time

domain. Conditional mean and variance of this process are given by

E½NðtÞjnðsÞ; nðuÞ�5
exp ð2ðt2sÞ=snÞ½12exp ð22ðu2tÞ=snÞ�

12exp ð22ðu2sÞ=snÞ
nðsÞ

1
exp ð2ðu2tÞ=snÞ½12exp ð22ðt2sÞ=snÞ�

12exp ð22ðu2sÞ=snÞ
nðuÞ;

(19)

Var½NðtÞjnðsÞ; nðuÞ�5
½12exp ð22ðu2tÞ=snÞ�½12exp ð22ðt2sÞ=snÞ�

12exp ð22ðu2sÞ=snÞ
: (20)

Then, replace the current sample (that may have already been modified on previous inter-

vals) by the candidate, nk110
l , in the interval Il. We denote this candidate sample over the full

time domain by nk11
<l [ nk110

l [ nk>l .

4.2.2. Compute the acceptance probability, r, of this candidate sample according to:

r5min 1;
f ðnojn

k11
<l [ nk110

l [ nk>l ;w
k11
x Þf ðyojh

k11;wk11
y ; hðnk11

<l [ nk110
l [ nk>lÞÞ

f ðnojn
k11
<l [ nkl [ nk>l;w

k11
x Þf ðyojh

k11;wk11
y ; hðnk11

<l [ nkl [ nk>lÞÞ

" #

: (21)

This part requires running the hydrological model, which might be time consuming. In

contrast to Tomassini et al. [2009], in this acceptance ratio, the rainfall observations are con-

sidered in the form of a probability density of the rainfall potential at the observation site,

f ðnojn;wxÞ, in addition to the probability density for the observed output, f ðyojh;wy ; hðnÞÞ.

4.2.3. Set nk11
l 5nk110

l , i.e., accept nk110
l , with probability r, otherwise set nk11

l 5nkl , i.e., reject n
k110
l .

4.3. After having completed these m substeps, set nk11
5nk11

1 [ . . . [ nk11
m and move to the next itera-

tion (step 1 above).

After having repeated these steps 1–4 of the MCMC algorithm to convergence, we obtain a sample of the

joint posterior distribution and input processes f ðh;wy ;wx ; n; nojyo; xoÞ. The posterior of the parameters

only can be gained through marginalization: f ðh;wy;wxjyo; xoÞ5

ð

f ðh;wy ;wx; n; nojyo; xoÞdndno. A sample

from this distribution is obtained from the sample of f ðh;wy ;wx ; n; nojyo; xoÞ by disregarding the informa-

tion on n and no.

2.3. Predictions in the Calibration and Validation Periods

Once having a statistically calibrated model, we are usually interested in quantifying our knowledge of the

true system output, y. This is done by calculating

f ðyL2 jyL1o ; x
L1[L2
o Þ

5

ð

f ðyL2 jh;wy ;wx; y
L1
o ; x

L1[L2
o Þf ðh;wy ;wx jy

L1
o ; x

L1[L2
o Þdhdwydwx ;

(22)

where the superscripts L1 and L2 indicate that we may be interested in predictions for another time period

(here: ‘‘layout,’’ L), L2, than we have observations for, L1. As in most studies on inference and uncertainty

analysis, we still assume input data to be available also in L2 and thus operate in ‘‘prediction’’ or ‘‘hindcast-

ing’’ mode [Renard et al., 2011; Del Giudice et al., 2015b].

When evaluating the quality of the models, we want to compare observations of the system with predicted

observations. This requires us to predict our knowledge of observations, yL2o , rather than our knowledge of

the true output, yL2 :
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f ðyL2o jy
L1
o ; x

L1[L2
o Þ

5

ð

f ðyL2o jh;wy ;wx; y
L1
o ; x

L1[L2
o Þf ðh;wy ;wx jy

L1
o ; x

L1[L2
o Þdhdwydwx :

(23)

The essential difference between equations (22) and (23) is that the latter also considers output observation

errors, usually in the form of iid Gaussian noise.

In the following subsections, we describe the specifics of predicting yL2 and yL2o with the four different meth-

ods described here. In addition, for the techniques RM and SIP, which also infer the rainfall input, we will

discuss the formulation of our posterior knowledge of the rainfall.

2.3.1. Predictions With Alternative Methods

2.3.1.1. Predictions With LS

As the traditional least squares approach assumes that the uncertainty in the system output predictions

only arises from incomplete knowledge about model parameters, its predictive distribution can thus be

obtained by propagating the posterior of the model parameters:

YL2
5yL2M ðH

L1
post; xÞ: (24)

For the prediction of observations, the observation error, E, must be added in the g-transformed space:

YL2
o 5g21ðgðyL2M ðH

L1
post; xÞÞ1EL2ðWL1

y;postÞÞ (25)

for time points in L2 that are not identical to time points in L1, where we know the observed output. Note

that according to the model assumption (2), the observed input is used for x in these equations.

Numerically, a sample of YL2 is generated by propagating the parameter sample through the deterministic

model, yL2M . To generate a sample of YL2
o , sample points of the normal distribution of EL2 with the corre-

sponding sample points of WL1
y;post must be added on the transformed scale and the sum transformed back

to the original scale as indicated in equation (25).

2.3.1.2. Predictions With BD

The bias description approach assumes that the uncertainty in the system output predictions arises from

incomplete knowledge about model parameters and from input and structural errors. Thus, our best knowl-

edge of the true system output requires consideration of the bias (and the transformation g):

YL2
5g21ðgðyL2M ðH

L1
post; xÞ1BL2

postðW
L1
y;postÞÞ: (26)

For the prediction of observations, the observation error, E, must be added to the bias (on the transformed

scale also):

YL2
o 5g21ðgðyL2M ðH

L1
post; xÞÞ1BL2

postðW
L1
y;postÞ1EL2ðWL1

y;postÞÞ: (27)

Again, the observed input (2) is used in these equations, as the effect of input errors to the output is corrected

in the output by the additive term B. As the distributions of Bpost and E conditional on their parameters are nor-

mal (with expectation and variance given by equations (35)–(38) in Reichert and Schuwirth [2012]), we can again

propagate the posterior sample of the model parameters through these equations and sample from the corre-

sponding normal distributions to get a posterior sample of (26) and (27), respectively.

2.3.1.3. Predictions With RM

The rainfall multipliers approach assumes that the uncertainty in the system output predictions arises from

incomplete knowledge about model parameters and from input imprecision. The output of the system is

assumed to be equal to the model output forced with uncertain input yMðH;XÞ, as for each storm event, j,

the uncertain input is equal to the observed input times a factor bj. Compared to the LS approach, this leads

to the expansion of the parameter vector. The predictions are thus still given by the equations (24) and (25)

with the exception that the use of the observed input (2) is replaced by the input given by equation (6).

When predicting beyond calibration, our knowledge of the rainfall multiplier is described by a hierarchical

model based on a conditional lognormal distribution with mean unity, the standard deviation of which is

distributed according to the posterior of the parameter r
b
post.

In addition to the posterior of the model output, the RM technique provides a posterior estimate of the rain-

fall given by (see equation (6))
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Xi5bjðiÞxo;i: (28)

The numerical implementation is again similar to the LS approach. For storm events included in the calibra-

tion phase, the rainfall multiplier bj is part of the parameter sample. For other events, bj is drawn from a log-

normal distribution with mean unity and standard deviation r
b
post.

2.3.2. Predictions With SIP

Our approach of using a stochastic input process assumes that the uncertainty in the system output predic-

tions arises from incomplete knowledge about model parameters and from input imprecision. The distribu-

tions representing our knowledge of true and observed output are given by considering an additional

integration over the rainfall potentials, n and no, in the equations (22) and (23), and eliminating arguments

that are not relevant. This leads to

f ðyL2 jyL1o ; x
L1[L2
o Þ5

ð

f ðyL2 jh;wy ; hðn
L1[L2ÞÞ

�f ðh;wy ;wx; n
L1[L2 ; nL1[L2o jyL1o ; x

L1[L2
o Þdhdwydwxdn

L1[L2dnL1[L2o

(29)

and

f ðyL2o jy
L1
o ; x

L1[L2
o Þ5

ð

f ðyL2o jh;wy ; hðn
L1[L2ÞÞ

�f ðh;wy;wx ; n
L1[L2 ; nL1[L2o jyL1o ; x

L1[L2
o Þdhdwydwxdn

L1[L2dnL1[L2o :

(30)

The posterior of our knowledge of the true catchment-mean precipitation is given by

f ðxL1[L2 jyL1o ; x
L1[L2
o Þ5

ð

f ðxL1[L2 jnL1[L2Þ

�f ðh;wy;wx ; n
L1[L2 ; nL1[L2o jyL1o ; x

L1[L2
o Þdhdwydwxdn

L1[L2dnL1[L2o :

(31)

Numerically, this involves assimilating input data for both L1 and L2 and, additionally, using output data

from L1 to estimate the input. For time points which are several correlation lengths sn ahead of L1, the dis-

charge calibration data yL1o will have a negligible (direct) influence on the estimation of nL2 . Indirectly, how-

ever, yL1o influences the estimation of nL2 by affecting the posterior distribution of r2n . A sample for the true

output (29) is then obtained by propagating the posterior sample components corresponding to h; wy , and

n through the model yMðh;wy ; hðnÞÞ. For the sample for (30), we have to add sample points of the normal

distribution of observation errors with the corresponding parameters wx as well as consider output transfor-

mation, as in equation (25). Finally, to draw realizations of rainfall intensities, e.g., to numerically quantify

input uncertainty, we simply need to generate random paths of n and transform those into time series of x

via h. This Monte Carlo method is similar to drawing samples from a desired distribution by drawing from a

standard uniform distribution and then transforming those samples via an inverse distribution function

[Platen and Bruti-Liberati, 2010; Kroese et al., 2011]. Our method, however, additionally aims to capture the

autocorrelation structure of the rainfall.

3. Materials

To demonstrate the relevance of our method in hydrology, we tested it in an urban catchment with real

observations.

3.1. Rainfall Scenarios

To test the performance of the SIP method compared to the other three error descriptions, we considered

two typical scenarios of rainfall data availability. Scenario Sc1 uses as input the rainfall recorded by two of

our own pluviometers located in the direct vicinity of the catchment (section 3.4). Averaging the data from

two pluviometers close to the catchment centroid has appropriately characterized the input of systems

with areas ranging from dozens [Del Giudice et al., 2015a] to more than 1000 ha [Del Giudice et al., 2015b].

For larger catchments (>10000 ha), more complex methods, such as angular distance-weighting [Li et al.,

2012], conditional simulation [Renard et al., 2011], or external drift kriging [Bardossy and Das, 2008], could

be more appropriate for spatial interpolation of rainfall data. Using the highly-representative (located only
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400 m away from the catchment centroid) high-resolution (recorded every minute) data from these gauges

is an illustrative example of the best case scenario of input data availability. We thus define Sc1 as using

‘‘accurate input.’’ Scenario Sc2 uses as input the rainfall recorded by a pluviometer managed by the Swiss

meteorological office (section 3.4). Using data from this less-representative gauge is a typical example of

suboptimal input data availability. We define Sc2 as using ‘‘inaccurate input.’’ In this study, we focus on

point-scale pluviometers, since they still are the most common source of rainfall measurements [McMillan

et al., 2011].

3.2. System

The test case hydrosystem is a small partially combined sewer network located in Adliswil in the proximity of

Zurich, Switzerland (Figure 3). The watershed surface is about 28.6 ha, only a fraction of which contributes to

the stormwater outflow. The area is characterized by medium density of housing and a slope of about 8.7%.

3.3. Hydrological Model

The hydrological model of the hydrosystem consists of two components, one for the stormwater runoff and

the other for the wastewater produced. This concept is akin to the one adopted by Del Giudice et al.

[2015b]. Parsimonious linear models, using as input spatially aggregate rainfall, are effective tools to repro-

duce the discharge dynamics at the catchment outlet during storm events [Coutu et al., 2012; Sun and Ber-

trand-Krajewski, 2013].

The stormwater runoff is modeled by a linear reservoir which is alimented by a time-varying precipitation

input, x, and a constant base flow partly coming from groundwater, xgw. The dynamics of this compartment

is described by the following ODE which can be solved analytically:

dsðtÞ

dt
5A � xðtÞ1xgw2

sðtÞ

k
; (32)

where s is the water volume within the reservoir, A is the area contributing to the rainfall-runoff, and k is the

mean residence time in a virtual reservoir.

The daily variations in discharge due

to wastewater input are described

by the harmonic function:

wðtÞ5
X

2

i51

1isin
2pit

24
1vicos

2pit

24

� �

;

(33)

with r1, r2, v1, and v2 represent-

ing the coefficients of the trigono-

metrical series. The base flow

parameter xgw makes sure that the

outlet discharge be nonnegative.

For the system studied, the storm-

water component during high pre-

cipitation can be more than 20

times larger than the average

wastewater flow. The combined

discharge at the outlet of the sys-

tem is modeled by the superposi-

tion of the storm and wastewater:

yMðtÞ5
sðtÞ

k
1wðtÞ: (34)

The model, as well as the analyses,

has been coded in the statistical

programming language R [R Core

Team, 2014].

Figure 3. Map of the study area. The urban catchment and monitoring sites for input

and output measurements are represented. Data from P1a and P1b are combined to

provide the input of Sc1, while data from P2 are used as input in Sc2.
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3.4. Data Set

The measurements of precipitation and discharge were performed from June to November 2013. We

recorded the rainfall data with two weighing gauges (Figure 3, P1a and P1b). Averaging the recordings

(Dt5 1 min) from those gauges (OTT Pluvio2), we derived the input to the system in scenario Sc1 (section

3.1). As input in scenario Sc2 we instead used rainfall observed (Dt5 10 min) at the pluviometric station of

Zurich-Fluntern (Figure 3, P2), which belongs to the network of the Swiss meteorological office (www.hw.

zh.ch/hochwasser/foto/DB\%20SMA.pdf). Precipitation data from four stations located around the catch-

ment (not shown) were analyzed to parameterize the function transforming the standard OU-process into

precipitation (see Figure 2) and the prior of the ‘‘rainfall potential’’ (supporting information Figures S1 and

S2). These pluviometers located outside the catchment provided valuable information about the dynamics

of precipitation in the region, but were not selected for hydrological modeling due to their distance from

the catchment.

Wastewater flow was measured (Dt5 4 min) at the outlet of the catchment by a radar-based contact-free

sensor (Flo-Dar 4000 SR). From the recorded data, we selected three events for calibration and two for vali-

dation (see section 4). These storms were characterized by a significant response of the system (i.e., maximal

flowrate one order of magnitude larger than during dry-weather) and negligible infiltration from ground-

water. Being separated by several days in between, the individual precipitation events can be regarded as

independent. During these storms, the volume of precipitation ranged from 5 to 50 mm, the duration from

1 to 15 h, and the maximal intensity from 0.3 to 0.8 mm measured in 1 min. The average precipitation inten-

sity observed both during calibration and validation was 2 mm/h. Although not extremes, those storms

where among the largest for the recorded period and location. The use of typical storm events is generally

regarded as appropriate in hydrological studies on rainfall uncertainty (section 1).

3.5. Prior Distributions

The marginal prior distributions of the hydrological model and error model parameters are given in Table 1.

We estimated the prior marginal distributions of A, k, xgw, r1, r2, v1, v2, and rE based on a least squares cali-

bration employing measurements not used in the final analysis (data not shown). Having an interpretation

related to the hydrological system (A is connected to the volume of effective precipitation, k to the rapidity

of the system response, xgw to the base flow, and r1, r2, v1, v2 to the harmonic dynamics of wastewater)

and measurement device (rE represents the imprecision of runoff observations), we refer to these constants

as ‘‘physical parameters.’’ Regarding the priors of the bias error model (BD), we followed the guidelines pro-

vided in previous works [Reichert and Schuwirth, 2012; Brynjarsd�ottir and O’Hagan, 2014; Del Giudice et al.,

2015b]. For rB, the magnitude of the bias, we determined its prior standard deviation by analyzing the

model discrepancy between the model forced with accurate rainfall and the measured discharge. The prior

expected value of s, the bias autocorrelation time scale, was set approximately equal to 1/3 of the duration

of the falling limb of a storm hydrograph. As for the other parameters, the priors of the bias were based on

analyses of events independent from those used for calibration and validation. In the multiplicative error

Table 1. Hydrological Model and Error Model Calibration Parameters (h;wy ;wx )
a

Symbol Description Units Prior

A Area contributing to outflow m2 LN(11815.8, 1181.6)

k Water residence time hr LN(0.079, 0.016)

xgw Groundwater infiltration and sewage base flow L/s LN(2.05, 0.013)

–r1 Trigonometric coefficient of the sewage flow L/s LN(0.25, 0.094)

–r2 Trigonometric coefficient of the sewage flow L/s LN(0.84, 0.019)

–v1 Trigonometric coefficient of the sewage flow L/s LN(0.68, 0.019)

v2 Trigonometric coefficient of the sewage flow L/s LN(0.077, 0.01)

rE Standard deviation of E g(L/s) LNð4:1 dg
dy
j50; 0:41

dg
dy
j50Þ

rB Standard deviation of B (BD method) g(L/s) TNð0; 3:77 dg
dy
j50; 0; 1Þ

s Correlation length of B (BD method) hr LN(0.47, 0.047)

bj Rainfall multiplier for the event j (RM method) LN(1, rb)

rb Standard deviation of the multipliers (RM method) LN(0.1, 0.02)

r2n Variance between rainfall potentials (SIP method) LN(0.4, 0.2)

aThe notation for prior distributions is: LN(l, r): lognormal, TN(l, r, a1, a2): truncated normal. The symbol meaning is: l: expected

value, r: standard deviation, a1: lower limit, and a2: upper limit.
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model (RM), similar to Sikorska et al. [2012], we assumed a priori no bias in the rainfall measurements and

estimated the mean standard deviation of the input uncertainty, rb, to be 10%.

3.6. Performance Assessment

An optimal error description should produce posterior model parameters which are highly representative of

the average conditions of the physical system [Vrugt et al., 2008; Brynjarsd�ottir and O’Hagan, 2014]. Further-

more, it should ensure reliable (i.e., with high coverage of data), accurate (i.e., on average close to the data

or unbiased), and precise (i.e., sharp or with low dispersion) predictions, especially in the extrapolation

domain. For this reason, we inspected the following factors:

1. Consistency of the updated parameters h;wy;wx . To assess the corruption of the estimated parame-

ters due to input errors, we compare the posterior marginals obtained with accurate and inaccurate rain-

fall data and with the different likelihood functions.

2. Prediction accuracy. As a measure of model adequacy, we calculate the Nash-Sutcliffe efficiency at the

maximum of the posterior, NS. The closer this coefficient is to 1, the better the model fits the data, espe-

cially during high-flow periods [Reichert and Mieleitner, 2009; Coutu et al., 2012].

3. Prediction reliability. We analyze the data coverage of the 95% interquantile intervals. If the percentage

of data points falling into these total uncertainty bands is larger than or equal to 95, we consider the pre-

dictions to be reliable [Del Giudice et al., 2013; Li et al., 2012].

4. Prediction precision. We compute the average band width (ABW) of the 95% interquantile intervals.

The lower this value, the lower prediction uncertainty is.

5. Integrated predictive performance. We adopt two metrics to quantify how reliable, accurate, and pre-

cise predictions are. The first is the interval (skill) score [Gneiting and Raftery, 2007]. The better the quality

of the predictions, the closer to 0 this statistic is. Second, we also create predictive quantile-quantile

plots, which analyze the probability of the observations being distributed as the model output (including

all uncertainties). The more reliable and precise the predictive distribution is, the closer to the identity

line the observed p values are [Renard et al., 2011].

4. Results

In the following, we present the outcomes of the case study application in terms of ‘‘calibration distribu-

tions,’’ representing the posterior parameters, and ‘‘smoothing distributions,’’ representing the posterior

input and output in the calibration phase (where both rainfall and runoff data are assimilated) and in the

extrapolation phase (where only rainfall data are assimilated).

4.1. Estimated Parameters During Calibration

Violin plots of the parameters are illustrated in Figure 4 and are based on the MCMC samples presented

in supporting information. The convergence to the target posterior distributions was typically reached

within 1042105 iterations and was corroborated by running multiple chains with different initial condi-

tions and by observing their consistency, time-independence, and mixing. Compared to the other infer-

ence schemes, calibration with SIP involved a computational expense 10–100 times higher (supporting

information Figure S5). In the scenario with accurate rainfall data (Sc1), inferred hydrological model

parameters had a similar distribution for all error representations (Figure 4, top row). A and rE, however,

showed some dependencies on the error model. The first parameter, connected to the fraction of precipi-

tation converted into discharge, decreased slightly more during inference with LS and BD, both of which

do not describe input uncertainty explicitly. The second parameter, connected to output measurement

uncertainty, reached the lowest value with BD (50% less than the average of the other error models),

which partitions output uncertainty into two terms. Very little model bias was identified (posterior rB sim-

ilar to posterior rE and �70% lower than for Sc2), a condition confirmed by the RM error model which did

not display an increase in rb.

Scenario Sc2, with lower input data quality, induced different performances of the error models (Figure 4,

second row). With BD and SIP, the posterior median of most physical parameters was very similar and also

differed minimally from Sc1 (apart from a 75% increase in k with BD and a 30% decrease in rE with SIP).

Interestingly, in Sc2 the spread of the distributions of the parameters directly related to rainfall, A and k,

increased for the BD (standard deviation on average 260% higher) while remaining almost the same for SIP.
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With LS and RM, some posterior parameters were substantially affected by the increased input errors of Sc2.

In particular, for the hydrologic response time of the catchment (k) the median increased 220% with LS and

170% with RM, while the standard deviation increased 505% with LS and 570% with RM. For the output

measurement errors (rE), both the median and standard deviation increased �95% with both error models.

The other two parameters common to all error models were less affected by the inaccurate rain data. In par-

ticular, xgw, representing low-water flow, was not affected by inference scheme or rainfall data quality. The

effective impervious area, A, was also only mildly altered by the inaccurate input data. This appears to be

connected to the rainfall characteristics of both scenarios (Figure 5) which, despite showing different

Figure 4. Marginal prior and posterior distributions of physical parameters common to all error models (first two rows) and of parameters typical of each error model (bottom two rows).

As in a Box plot, the median (white dot), 50% interquantile range (thick line), and the range of typical values (thin line) are displayed; additionally, the Kernel density estimates are also

shown. Comparing results between Sc1 (accurate rain) and Sc2 (faulty rain) shows the corrupting effects of input uncertainties on the physical parameters and should be detected by

the error model parameters. See Table 1 for an explanation of the symbols.
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temporal behavior, have similar volumes. This is also in agreement with the only slight deviations of the

multipliers b1, b2, b3 from unity, even with the worst rain (Sc2).

An analysis of the error-model-specific parameters (Figure 4, bottom two rows) shows that, as expected, all

parameters related to the amount of input uncertainty increase when comparing Sc1 with Sc2. In particular,

with less accurate rain, more output bias is detected (210% higher rB) and more uncertainty is identified

with SIP (110% higher r2n). With RM, instead, the increased input uncertainty is barely recognized (rb hardly

increases).

4.2. Estimated Input and Output During Calibration

Forced with accurate rainfall data (Sc1), the chosen hydrological model fitted the calibration data accurately

(Nash-Sutcliffe efficiency around 0.9 with all error models, Figure 5, first row). Predictions were also reliable

for all error descriptions (data coverage around 95%) and sharp (ABW � maximum discharge). Estimated

input uncertainty with RM and SIP was also very low. In the more realistic scenario Sc2, however, a substan-

tial distinction among error models becomes evident (Figure 5, second row, and Figure 6). Both LS and RM

significantly increase output uncertainty, producing unrealistically wide (i.e., imprecise) prediction intervals

while still missing the misrecorded rainfall peaks. Instead, BD was able to effectively assimilate the deviating

flow data and in this way correct model output in a reliable and precise way. The most interesting result,

however, was produced by SIP. Not only were the output predictions the most accurate and precise among

the four cases but, compared to the other methods, total uncertainty intervals were mostly above zero. This

desirable feature can be difficult to achieve in ephemeral catchments when modeling uncertainty at the

output level, even with heteroschedastic error models [Evin et al., 2013]. Instead, propagating uncertainty

through the model, as SIP does, can ensure nonnegative discharge predictions in a way conceptually more

satisfying than when constructing heteroschedastic output error models [Honti et al., 2013; Del Giudice et al.,

2015b]. Additionally, SIP also generated the most realistic input estimates. As shown in Figure 6 and

Figure 5. Total output (bottom of each frame) and input uncertainty (top of each frame) in the calibration phase with all error models and rainfall scenarios. Each tick indicates 1 h and,

for each event, marks are either plotted on the top or on the bottom of the figure. The points represent measured data. Red triangular dots indicate runoff data not included within the

95% output credible intervals. Predictions are considered reliable if red dots are� 5% of the total. ABW is the average band width. NS expresses the accuracy of the model median (blue

line). While LS and BD do not assess input uncertainty, RM and SIP do.
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supporting information Figure S6, even when using highly biased input data (Sc2), SIP produced estimates

very close to the optimal data (plotted for comparison). The rainfall multipliers, instead, were unable to deal

with these dynamic input biases.

Figure 6. Zoom of the estimated input uncertainty with RM and SIP using inaccurate rainfall data for a storm event in the calibration

period (Figure 5, second row, fourth column). The accurate data from Sc1 are only used for a posteriori validation. Whole-catchment pre-

cipitation inferred with SIP is substantially more realistic than the one with RM. SIP, as a continuous-time stochastic process, is better able

to learn from the flow data.
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4.3. Estimated Input and Output During Extrapolation

In the validation period, when using only input data but not output data, BD and SIP produced the most

reliable flow predictions (coverage close to 95%), regardless of data quality (Figure 7, bottom two rows, and

supporting information Figures S17–S20). When using the SIP technique, however, the hydrological model

produced �13% less accurate results than with the other methods. Contrary to the calibration phase, differ-

ences among the error models are visible in both rainfall scenarios. With the most accurate and precise rain-

fall (Sc1), the bias description performed best, especially in terms of accuracy and precision during low

flows. Regarding rainfall, SIP allowed for slightly more uncertainty than RM, especially during the moments

of maximum intensity. Using rainfall data from the less representative pluviometer (Sc2) helped to further

differentiate the input estimates of the two error models. While neither was able to account for missing

peaks without considering output information, SIP was substantially less overconfident than RM (supporting

information Figure S6). Concerning the flow predictions with inaccurate rainfall, SIP appears to have gener-

ated realistic uncertainty bands during high flows. It was also more precise than the other methods during

low flows. All-in-all, the BD method dominated in accuracy and reliability, although it slightly overestimated

predictive uncertainty (supporting information Figure S7).

5. Discussion

5.1. Interpreting Posterior Parameters, Input, and Output

As expected theoretically, and as confirmed by the results of the case study, describing input uncertainty in a

more realistic way helps to protect model parameters from shifting to biased values, provided that the hydro-

logical model is sufficiently accurate [Kavetski et al., 2006; Vrugt et al., 2008; Li et al., 2012]. Parameters estimated

with SIP using erroneous input data were very close to the value obtained using the best rain data (Figure 4).

This means that SIP avoided the compensation of input errors by shifts in model parameters. Instead, with sim-

pler error models like LS and RM, some parameters were forced to less meaningful posteriors to help the model

fit flow data, notwithstanding the erroneous forcing. This occurs frequently in hydrological modeling where

Figure 7. Total output (bottom of each frame) and input uncertainty (top of each frame) in the extrapolation phase with all error models and rainfall scenarios. Each tick indicates 1 h

and, for each event, marks are either plotted on the top or on the bottom of the figure. The points represent measured data. Red triangular dots indicate runoff data not included within

the 95% output credible intervals. Predictions are considered reliable if red dots are� 5% of the total. ABW is the average band width. NS expresses the accuracy of the model median

(blue line). While LS and BD do not assess input uncertainty, RM and SIP do. Runoff data here are only used for a posteriori validation.
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input data errors can corrupt model parameters away from their original representation of average catchment

or measurement characteristics [Renard et al., 2011; Bardossy and Das, 2008].

Interestingly, the bias description had a similar parameter preserving effect as SIP. This robustness of BD, only

speculated about in previous studies [Bayarri et al., 2007; Del Giudice et al., 2015b], was confirmed by our study

thanks to the comparison of the ‘‘unbiased model’’ (Sc1) with a ‘‘biased model’’ (Sc2). In other words, both SIP

and BD helped alleviate the (distorting or overtuning) impact of errors in the regressor, i.e., the areal precipita-

tion. The ability of BD to infer parameters close to their physical value even in the presence of input errors is

very promising. This is probably due to a combination of two reasons. First, the a priori parameterization of the

bias process and its parameters was plausible since it was based on a combination of system understanding

and analyses of independent data sets (see section 3.5 and Brynjarsd�ottir and O’Hagan [2014]). Second, our run-

off model appeared to represent the hydrological processes sufficiently well (see Figure 5). SIP and BD also pro-

vided similarly reliable and precise predictions in the calibration phase for the output, even in Sc2. The

mechanisms behind the two methods, however, are different. SIP avoided parameter overtuning by flexibly

adapting the input process and therefore adjusting the biased model at its source. BD, in contrast, avoided

parameter compensation by not forcing the model to fit the data but rather allowing the autocorrelated dis-

crepancy term to bridge the gap between model output and data.

In contrast to our expectations, considering storm-dependent rainfall multipliers did not improve the cali-

bration of physical parameters compared to the simplest least squares approach. This is probably linked to

the fact that we are analyzing a rapidly reacting catchment with more detailed data than what is normally

available for natural systems [Ochoa-Rodriguez et al., 2015]. This can explain why our results with RM differ

from those of studies conducted at coarser time resolutions [Vrugt et al., 2008; Li et al., 2012] or with small

and nonsystematic input errors [Sun and Bertrand-Krajewski, 2013].

As observed in Figures 5 and 6, model input is estimated much more realistically by the SIP method than by

RM. Both methods learn from the output about the input dynamics. Discharge data integrate rainfall-runoff

processes over the entire catchment [Frey et al., 2011] and, by using the hydrological model ‘‘backward,’’

they can be used to reliably learn about precipitation [Kirchner, 2009]. Estimating the rainfall not only from

pluviometric data but also from runoff data is one of the advantages of describing input uncertainty in

hydrological inference with SIP or RM. This allows us not only to quantify but also to reduce input uncer-

tainty, unlike the approaches that estimate true rainfall from pluviometric data alone [e.g., Rodriguez-Iturbe

et al., 1987; Ailliot et al., 2015]. Contrary to RM, however, SIP, however, is not limited to following the tempo-

ral dynamics of the measured rain and can, therefore, more effectively learn from runoff dynamics. This flex-

ibility is even larger than what was obtained by Reichert and Mieleitner [2009], who let the multiplicative

factors vary within the event. Here, indeed, we can additionally handle time periods where rainfall was com-

pletely unobserved.

In the case of contradicting input and output measurements, SIP makes a compromise between matching

the input to the rainfall data and the output to the discharge data. As expected, the direction of this com-

promise is mainly dictated by our a priori assumptions on the errors of the input measurements (rn) and

output measurements (rE) and by the relative number of input and output data (defined by data resolu-

tion). Here, in the best case scenario (Sc1), we had 4 times more input than output data, whereas in the

worst case scenario (Sc2) the size of the output data set was 2.5 times the size of the input data set. This

last point probably explains why SIP considered the information content of the output time series relatively

strongly (Figure 6). While the amount of rainfall data influences the precision with which we can estimate

no, SIP is still able to distinguish which input time series is more informative. When comparing r2n estimated

with the two scenarios (Figure 4), we see that SIP can correctly assess how good the rainfall data are, inde-

pendently of the data size. This ability to ‘‘solve’’ the inconsistencies between input and output data by rec-

ognizing disinformative time series can be very valuable in hydrological inference [Beven and Westerberg,

2011].

Interestingly, although SIP was mainly developed as a method to improve hydrological inference, it also

appears to reliably estimate input uncertainty during extrapolation. In this phase, where only rainfall

data are assimilated, obviously no method can correct an erroneous input. Compared to RM, however,

SIP more realistically reflected our increased lack of knowledge by estimating wider input uncertainty

bands (supporting information Figure S6). Such a comparison of the inferred rainfall against
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independent pluviometric data is a strong test of the robustness of the input estimates [Kirchner, 2009;

Vrugt et al., 2008].

Runoff predictions during extrapolation had, in all cases, a similarly reasonable coverage, even in the worst

scenario and with the simplest error model (Figure 5, last row, first column). This is probably because rainfall

biases, although important, only last a few time steps. These quickly vanishing errors thus produced a con-

siderable mismatch in the output but barely influenced the coverage (or reliability), which is a measure inte-

grating all time points. Among all error models, however, BD still provided slightly more accurate and

reliable uncertainty intervals than the other methods. This confirms the advantages of the bias description

for reliable flow prediction, as discussed in previous studies [Honti et al., 2013; Del Giudice et al., 2015b].

Compared to the other methods, SIP produced extrapolative predictions which were similarly reliable, yet

slightly less accurate. Rather than having to do with the estimated parameters, this is probably connected

to the estimated input. Indeed, the methodology’s focus is to better quantify input uncertainty and only to

reduce it during the calibration phase. Therefore, as in this case study, it is possible to obtain a predictive

median which fits validation data slightly less well than when using input data directly.

5.2. Advantages and Limitations of SIP

Based on theoretical reflections and experiences from this case study, this novel formulation of input uncer-

tainty as a stochastic process has the following advantages over previous methods:

1. Compared to LS and BD, SIP provides a more accurate assessment of model input during the calibration

phase and a realistic characterization of input uncertainty, also when extrapolating to the validation

period. When input errors are the main contributor to predictive uncertainty, SIP helps to infer more real-

istic physical parameters than those obtained with LS. Furthermore, by stochastically describing and

propagating the input, SIP can support the decomposition of output uncertainty into its sources, a highly

desirable feature [Vrugt et al., 2008; Renard et al., 2011]. This is not possible with LS, which erroneously

partitions the identified calibration errors into (only) parameter and output measurement uncertainty.

Characterization of total output uncertainty with SIP is similar to that of BD (Figure 6 and supporting

information Figure S18 versus S20). However, by describing the uncertainties where they arise instead of

‘‘at the end of the pipe,’’ uncertainty separation with SIP is conceptually sounder than with BD.

2. Compared to RM, SIP represents a more appropriate model for forcing errors arising from rainfall meas-

urements of suboptimal quality, e.g., collected by a low-resolution rain gauge or one which is located

away from the catchment. SIP provides a better rainfall description, especially in two cases. First, when

the temporal pattern of whole-catchment precipitation during the storm event is different from the

observed dynamics. In fact, contrary to RM, SIP does not assume the storm to have a certain ‘‘shape’’ dic-

tated by the input measurements. Therefore, SIP can compensate for time-varying input errors and gen-

erate a reasonable rainfall dynamics. Describing the input as a continuous stochastic process allows the

rain rate fluctuations to be estimated at very fine scales [Sigrist et al., 2012]. This can be very useful in

hydrology [Paschalis et al., 2013], for instance by helping to downscale coarse rainfall measurements to a

temporal resolution appropriate for urban hydrology [Ochoa-Rodriguez et al., 2015]. Second, SIP can even

handle storms not recorded at all, which cannot be tackled with RM. Because of this superior input char-

acterization, especially when the number of events is not very high, SIP can estimate more meaningful

physical parameters than RS.

Notwithstanding its several improvements with respect to existing methods, our approach still has some

limitations:

1. The main disadvantage of the suggested technique is its computational requirements. Inferring input

requires the propagation of a large number of suggested inputs through the model, which makes infer-

ence computationally one or two orders of magnitude more demanding. Describing the input stochastic

process as an Ornstein-Uhlenbeck process and then sampling from it with an advanced MCMC strategy

made the inference tractable. While this is more practical than estimating one multiplier per time point,

which is virtually unfeasible, it is still computationally much more expensive than any of the other meth-

ods tested here. A harder and slower inference is a well-recognized problem when attempting to

describe the sources of errors in environmental modeling [Yang et al., 2008; Renard et al., 2011; Rougier,

2013].
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2. Inference of the dynamics of rainfall at an arbitrary temporal resolution from output is obviously limited

by the retention time of the hydrological system. While this was possible for our urban catchment, it

may be more limited in natural catchments. Rather than ‘‘doing hydrology backward,’’ i.e., reconstructing

the precipitation only from discharge data [Kirchner, 2009], we thus suggest adding a ‘‘backward compo-

nent’’ (f ðyojh;wy ; hðnÞÞ as used in equation (21)) to increase the information available to estimate

precipitation.

3. A reasonable parameterization of the prior input process requires rainfall measurements additional to

those used during calibration and validation. The collection of a relatively large rainfall data set necessary

for SIP might be expensive. This, however, can also be seen as an advantage over the other methods,

which cannot use this prior information as effectively. Furthermore, the need for additional data is usu-

ally not problematic as routine rainfall measurements, e.g., provided by meteorological offices, could be

used to parameterize the prior input process.

4. Finally, the current implementation of SIP assumes that the main reason for model bias is input errors

and therefore uses a LS likelihood (equations (1) and (3)) as an output error model. As recognized for

multipliers [Li et al., 2012; Sun and Bertrand-Krajewski, 2013], this has the potential of producing rainfall

estimates which unrealistically compensate for structural inadequacies. While this effect might be useful

in some situations, e.g., to detect unexpected or difficult-to-measure inputs such as groundwater infiltra-

tion, we generally prefer having input estimates as independent as possible from the hydrological model

[Kirchner, 2009]. This can be accomplished by using a model with minimal structural errors, as done here.

However, for more general situations, in section 5.4 we discuss possible strategies to cope with model

structural deficits.

5.3. Recommendations

Depending on the available resources and the specific objectives of hydrological modeling in a given study,

we provide our perspective on which of the four techniques discussed in this paper to preferably apply (but

see also section 5.4 for the development of even better alternatives):

1. If a realistic model is available but rainfall data are limited and of insufficient quality and the study’s focus

is to estimate the physical properties of the catchment, the dynamics of the catchment-averaged rain

rate, or the contribution of the error sources to output (runoff) uncertainty, then we suggest using SIP

whenever this is computationally feasible.

2. Under the same conditions as above, but if the model running time and the length of the time series

make it impossible to perform millions of MCMC simulations, we suggest using RM.

3. If a realistic model is available and input and output data are of high quality, and the study focus is to

estimate the physical properties of the catchment and to predict its output, then we suggest using LS.

Note that these conditions are rarely met.

4. If the available model is structurally deficient and the study focus is to reliably predict runoff, then we

suggest using BD. BD will not substantially help, however, to understand, disentangle, or minimize

uncertainty.

5. If the model is structurally deficient (or, equivalently, if the output observations are inaccurate), and the

input is poorly observed, we recommend to combine BD with either SIP or RM, depending on the com-

putational possibilities. This is particularly relevant when, besides output predictions, input uncertainty

estimation is also of interest. Although this is an extension of the four alternatives discussed in this paper,

it should be straightforward to apply. In the next section, we will provide an outlook to promising devel-

opments toward even better techniques.

5.4. Outlook

In this first application of SIP, as done in several studies on input uncertainty [Kavetski et al., 2006; McMillan

et al., 2011; Sun and Bertrand-Krajewski, 2013], for the sake of simplicity, we deliberately adopted a simple

output error model similar to LS. As demonstrated by the very low bias identified (rB< rE) and by the high

NS obtained with Sc1, for our system-model combination, it was plausible to assume minimal structural

errors. However, since the long-term goal is to also target more realistic situations, we suggest some future

directions of research to deal with input and structural errors in hydrology.

1. Further developing the numerics of SIP by advancing sampling techniques for inference based on likeli-

hoods that are formulated as infinite dimensional integrals, is an important focus for research. One
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option could be to use so-called ‘‘Hamiltonian Monte Carlo’’ algorithms, a promising class of methods

profiting from concepts of molecular dynamics to increase the efficiency of MCMC schemes [Brooks et al.,

2011; see also C. Albert and S. Ulzega, Bayesian parameter inference for 1D nonlinear stochastic differen-

tial equation models, submitted to New Journal of Physics, 2015]. Note that addressing errors where they

are generated, although computationally demanding, is conceptually preferable to correcting the output

for the effects of these errors.

2. Making more realistic distributional assumptions for SIP by not relying on a transformed Ornstein-

Uhlenbeck process could lead to a better description of our prior knowledge on the rain rate. For an

overview of recent promising approaches to model precipitation using e.g., copulas or multifractals, the

reader can refer to Paschalis et al. [2013] or Ailliot et al. [2015]. These more sophisticated precipitation

models, however, would require a different numerical approach for hydrological inference. Research

under point 1 above could contribute to making this feasible.

3. Combining SIP with techniques describing model structural deficits to make it possible to infer the input

jointly with model structural deficits. This is a very important research direction as we often have both

sources of error and are interested in disentangling their contributions to the overall output error [Sala-

mon and Feyen, 2010; Renard et al., 2011]. A promising way of doing this is to combine SIP with stochas-

tic, time-dependent parameters as outlined in Reichert and Mieleitner [2009]. This approach, although

computationally demanding, would enable us to directly capture the sources of uncertainty. Combining

SIP with BD or similar autoregressive output error models (as done for RM by Sikorska et al. [2012] and Li

et al. [2012]) could be also a pragmatic alternative. In both cases, however, to minimize the identifiability

problem between model parameters and stochastic processes, the use of realistic priors for input errors

[Renard et al., 2011] or model discrepancy [Brynjarsd�ottir and O’Hagan, 2014] will be decisive.

4. Extending the input error model to combine different types of input data, such as those from radars or

microwave links in addition to rain gauges, could further reduce input uncertainty. Indeed, these alterna-

tives provide better information on spatially integrated rain rates than rain gauges.

6. Conclusions

In this study, we aimed at improving parameter inference, better estimating areal precipitation, and contribut-

ing to uncertainty separation in hydrological modeling. The main novelty of this work is to perform hydrologi-

cal inference with a more realistic input error model. In particular, we suggest describing the catchment-

averaged precipitation as a stochastic input process (SIP). This appropriately parameterized and transformed

Ornstein-Uhlenbeck process is updated in a Bayesian framework jointly with model parameters by combining

rainfall data (the input), system understanding (the hydrological model), and runoff data (the output). We

applied SIP to a parsimonious urban rainfall-runoff model and compared the effects of optimal versus mediocre

rainfall data. For a better understanding of SIP performance, we compared its results with those obtained with

simpler methods, namely the standard least squares (LS), the rainfall multipliers (RM), and the bias description

(BD). By combining conceptual arguments with the results of our case study, we conclude that:

1. SIP can effectively deal with severe input errors such as unrecorded or temporally shifted rainfall peaks. In

such situations, simpler methods assuming multiplicative forcing errors provide inaccurate rainfall estimates

and biased model parameter values. As shown in our real-world application, given an accurate hydrological

model, high-quality discharge data, and inaccurate precipitation data, SIP was the only method capable of

accurately reconstructing the whole-catchment precipitation and reliably quantifying input uncertainty.

2. In our case study, when forcing the model with inaccurate input data, similar to BD, SIP was able to produce

physically consistent parameters. Simpler methods such as LS and RM instead produced biased parameter

estimates. Furthermore, SIP estimated input uncertainty more reliably than RM, also in prediction mode.

3. Despite those advantages over previous methods, the increased computational requirements of SIP can

be limiting for practical applications. Furthermore, as RM, SIP can unintentionally compensate for model

structural deficits by incorrectly adjusting the input.

4. We recommend SIP to reduce the corrupting effects of input uncertainty on hydrological model parame-

ters and to estimate the input to a catchment in an accurate probabilistic way. Producing rainfall realiza-

tions at every desired temporal resolution, SIP can also be useful to reconstruct past precipitation and

support temporal downscaling of precipitation records. Further developments will aim at improving its
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numerical efficiency and extending its applicability to the consideration of structurally inadequate

models.

Appendix A: Log-sinh Transformation

The log-sinh transformation has recently shown very promising results for hydrological applications [Wang

et al., 2012; Del Giudice et al., 2013]. In contrast to the original notation, we suggest a reparameterized nota-

tion with parameters that have a more intuitive meaning:

gðyÞ5blog sinh
a1y

b

� �� �

; (A1)

g21ðzÞ5ðarcsinh exp
z

b

� �� �

2
a

b

�

b; (A2)

dg

dy
5coth

a1y

b

� �

; (A3)

where a and b are ‘‘low’’ and ‘‘high’’ outputs, relative to observations. a and b control the degree of hetero-

scedasticity of the predictions (higher when a � b). As in the aforementioned studies, we chose b5 50 L/s

to be an intermediately high discharge above which uncertainty was assumed not to significantly increase.

To ensure a mild degree of transformation, we set a5 25 L/s (Figure S9). This provided a plausible represen-

tation of the output-dependent uncertainties with the best rainfall scenario and all error models and

enabled predictive intervals to properly encompass high and low flow data.
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