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Abstract

Temperature strongly affects phytoplankton growth rates, but its effect on communities and ecosystem

processes is debated. Because phytoplankton are often limited by light, temperature should change commu-

nity structure if it affects the traits that determine competition for light. Furthermore, the aggregate response

of phytoplankton communities to temperature will depend on how changes in community structure scale up

to bulk rates. Here, we synthesize experiments on 57 phytoplankton species to analyze how the growth-

irradiance relationship changes with temperature. We find that light-limited growth, light-saturated growth,

and the optimal irradiance for growth are all highly sensitive to temperature. Within a species, these traits

are co-adapted to similar temperature optima, but light-limitation reduces a species’ temperature optimum

by �58C, which may be an adaptation to how light and temperature covary with depth or reflect underlying

physiological correlations. Importantly, the maximum achievable growth rate increases with temperature

under light saturation, but not under strong light limitation. This implies that light limitation diminishes

the temperature sensitivity of bulk phytoplankton growth, even though community structure will be

temperature-sensitive. Using a database of primary production incubations, we show that this prediction is

consistent with estimates of bulk phytoplankton growth across gradients of temperature and irradiance in

the ocean. These results indicate that interactions between temperature and resource limitation will be fun-

damental for explaining how phytoplankton communities and biogeochemical processes vary across temper-

ature gradients and respond to global change.

Global warming has underscored the need to understand

how temperature affects organisms, populations, commun-

ities, and ecosystems. Predicting the ecological effects of

temperature is difficult, in part because populations are typi-

cally limited by competition or predation, and so to predict

growth or abundance we need to know how temperature

modulates the multiple physiological processes that underlie

species interactions (Vasseur and McCann 2005; Kordas et al.

2011; O’Connor et al. 2011). For example, simple scaling

relationships for the temperature-dependence of ecosystem

processes may only apply when resources are not limiting

(Xu et al. 2004; L�opez-Urrutia and Mor�an 2007; De Castro

and Gaedke 2008). Although resource limitation and other

processes complicate the role of temperature, there still may

be general rules for how temperature modulates physiology

and species interactions, and quantifying such rules will

enhance our ability to explain ecosystem responses to tem-

perature gradients (Dell et al. 2014). Because light and nu-

trient limitation strongly affect primary producers, it is

essential to characterize any general patterns for how tem-

perature interacts with limitation by these resources.

In this study, we synthesize monoculture experiments

that characterize the interactive effects of light and tempera-

ture on phytoplankton growth. Phytoplankton contribute

nearly half of global primary production, are the base of the

food web in aquatic environments, and play a critical role in

the feedbacks of the global carbon cycle to anthropogenic

forcing (Falkowski et al. 1998; Field et al. 1998). Phytoplank-

ton are very sensitive to environmental change (Doney et al.

2012), and both temperature and irradiance are among the

key environmental drivers whose distribution is predicted to

continue changing in the future (De Stasio et al. 1996; Boyd

et al. 2015). The temperature and irradiance that

*Correspondence: kfe@hawaii.edu

Additional Supporting Information may be found in the online version of this
article.

1232

LIMNOLOGY
and

OCEANOGRAPHY Limnol. Oceanogr. 61, 2016, 1232–1244
VC 2016 Association for the Sciences of Limnology and Oceanography

doi: 10.1002/lno.10282

Eawag_09575



phytoplankton experience tend to be positively correlated,

because solar radiation increases water temperature, and

increased temperature drives stratification and shoals the

mixed layer, thus increasing average irradiance experienced

by phytoplankton. Nonetheless, phytoplankton occur over a

wide range of temperature-irradiance combinations, includ-

ing low irradiance at the deep chlorophyll maximum or

below in warm waters (Fennel and Boss 2003; Cullen 2015),

and saturating irradiance in shallow mixed layers in cold

waters (e.g., due to meltwater in the summer in polar

regions; Lancelot et al. 1993). Therefore, understanding the

processes that control individual growth, community struc-

ture, and primary production requires us to understand

how light and temperature interact, i.e., how temperature

modulates the growth-irradiance relationship and how light

modulates the growth-temperature relationship. Whether

temperature has important direct effects on phytoplankton

growth and community size structure in the ocean is cur-

rently debated (Mor�an et al. 2010; Mara~n�on et al. 2012,

2014; Regaudie-de-Goux and Duarte 2012), and conflicting

results may in part be driven by interactions between tem-

perature and resource limitation.

The independent effects of irradiance and temperature on

phytoplankton growth have been intensively studied and are

well-characterized. Growth increases nearly linearly at low

irradiance, saturates at some optimal irradiance for growth,

and then declines due to photoinhibition (Langdon 1988;

Talmy et al. 2013; Edwards et al. 2015). Interspecific differen-

ces in this relationship are thought to be due to differences

in pigment content, respiratory costs, cell size, and pathways

for photoprotection and repair of photodamage (Langdon

1988; Six et al. 2007). Temperature responses are also unimo-

dal, typically with a left-skew such that growth increases

exponentially or linearly from low temperature, and declines

more rapidly above the optimum (Eppley 1972; Montagnes

et al. 2003; Thomas et al. 2012). Interspecific differences in

this relationship are thought to be due to differences in pro-

tein structure (particularly the stability of enzymes, which is

related to specificity and reaction rates), lipid composition of

cell membranes, and chaperone protein production (Clarke

2003; Kingsolver 2009). For both irradiance and temperature

responses, differences between genotypes or species meas-

ured in the lab have been correlated with differences in dis-

tributions across depths, seasons, or latitudes (Rodr�ıguez

et al. 2005; Johnson et al. 2006; Thomas et al. 2012, 2016;

Edwards et al. 2013a,b).

The interactive effects of temperature and irradiance on

phytoplankton have been studied in many experiments (e.g.,

Dauta 1982; Verity 1982; Palmisano et al. 1987), but there is

currently no clear consensus for how growth-irradiance rela-

tionships change with temperature, or how thermal optima

change with irradiance. It is often expected that light-

limited photosynthesis and growth will be less sensitive to

temperature than light-saturated rates, due to limitation of

photosynthesis by photon absorption at low irradiance, but

contradictory results have been observed (Raven and Geider

1988; Davison 1991; Nicklisch et al. 2008). Phytoplankton

growth is often modeled as an exponential function of tem-

perature under all resource conditions (Blackford et al. 2004;

Taucher and Oschlies 2011), which assumes that resource-

saturated growth has the same monotonic temperature sensi-

tivity as light- or nutrient-limited growth. In contrast, the

initial slope of the chlorophyll-specific photosynthesis-irradi-

ance curve is sometimes modeled as temperature-insensitive,

while the maximum rate of photosynthesis is given an expo-

nential temperature dependence (Geider et al. 1998; Moore

et al. 2002). Importantly, the way in which temperature

effects are modeled has large effects on projections of global

primary production under climate change (Sarmiento et al.

2004; Taucher and Oschlies 2011).

Many pressing ecological questions require us to “scale

up” from community diversity and dynamics to aggregate

ecosystem processes. For example, to understand the role of

the biosphere in the global carbon cycle we need to know

how complex communities respond to multiple environ-

mental factors, and how community structure determines

aggregate processes like primary production or carbon export

to the deep ocean (Duffy and Stachowicz 2006; Boyd et al.

2015; Worden et al. 2015). Responses to temperature are an

area where the difference between individual and aggregate

outcomes are significant: even though individual species

exhibit unimodal responses to temperature (Thomas et al.

2012; Dell et al. 2014), bulk ecosystem rates typically change

monotonically with temperature, i.e., they do not decline

above some optimum. This difference between species and

community response was explained in an influential paper

by Eppley (1972), which compiled measurements of phyto-

plankton growth rate as a function of temperature. Although

individual species exhibited unimodal responses to tempera-

ture, the highest observed growth rates across species as a

function of temperature increased exponentially. He charac-

terized this with an exponential curve, l50.59 3 100.02753T,

where l is specific growth rate (d21) and T is temperature

(8C). This curve is equivalent to a Q10 of 1.88, i.e., growth

increases by a factor of 1.88 when temperature increases by

108C (a recent update using more data by Bissinger et al.

(2008) found an essentially identical exponent, l50.81 3

100.02743T, or Q1051.88). This result implies that species will

replace one another along a temperature gradient via compe-

tition, with the result that phytoplankton whole-community

growth rate increases monotonically with temperature, if the

maximum possible growth rate is higher for species adapted

to higher temperatures (Eppley 1972; Norberg 2004; Bis-

singer et al. 2008). We will refer to the predicted whole-

community curve, derived from the upper envelope of the

single-species curves, as a trait envelope (Fig. 1A). Impor-

tantly, it is possible that the shape or slope of this envelope

changes as a function of resource limitation (Fig. 1B).
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The diversity of experimental results and modeling

approaches highlights the need for a synthesis of data on

the light–temperature interaction, which can address several

important questions: Are there general rules for how light

and temperature interact to determine growth, and how con-

sistent are these patterns across a diversity of species? How

might community structure be affected by the temperature

responses of traits that determine competition? Can the tem-

perature scaling of aggregate ecosystem processes be pro-

jected from trait variation across species adapted to different

conditions? To address these questions, here we quantify

how the parameters of the growth-irradiance curve change

with temperature, and how the optimal temperature for

growth changes with irradiance, for 57 marine and fresh-

water phytoplankton species. We quantify whether different

light utilization traits have different temperature sensitiv-

ities, and whether different traits of the same species are co-

adapted to the same temperature. Finally, we use a compila-

tion of field-based primary production incubations to ask

whether the effects of light and temperature on aggregate

growth of natural phytoplankton communities is similar to

what is predicted from lab-based trait measurements of spe-

cies adapted to different temperature and irradiance regimes.

Methods

Data compilation

Previously we compiled from the literature comprehensive

datasets of phytoplankton temperature traits (Thomas et al.

2012, 2016) and light utilization traits (Schwaderer et al.

2011; Edwards et al. 2015). While compiling these studies we

gathered a subset of experiments that measured growth rate

of a single phytoplankton isolate across a factorial manipula-

tion of temperature and irradiance. In the current analysis,

we include only those experiments where at least four irradi-

ance levels and four temperature levels were used. The

median range of temperatures used in an experiment was

178C, the narrowest range was 78C and the broadest was

308C. In all experiments, nutrients were not strongly limit-

ing, and the cultures were acclimated to irradiance and tem-

perature treatments before growth rate was measured. These

criteria yielded 59 experiments from 29 publications on 57

unique species (31 freshwater and 26 marine; Supporting

Information Tables A1, A2, A3). Taxonomically the species

include 19 diatoms, 18 chlorophytes, 6 cyanobacteria, 3 hap-

tophytes, 3 cryptophytes, 2 dinoflagellates, 2 desmids, and 2

chrysophytes. For all analyses, we pool marine and fresh-

water species to simplify presentation of the results. In our

dataset marine species tend to have lower temperature

optima on average, but preliminary analyses showed that

the interaction between temperature and irradiance, which

is the focus of this study, did not vary between these groups.

Supplementary plots show the major results coded by fresh-

water or marine origin (Supporting Information Figs. A1–

A3). Scripts for all statistical models used in the analysis are

included as Supporting Information.

Growth-irradiance and growth-temperature curves

To characterize how light utilization changes with tem-

perature, for each experiment we fit a growth-irradiance

curve to the measurements from each temperature level. We

used the following curve:

l Ið Þ5
lmaxI

lmax

aI2opt
I21 122 lmax

aIopt

� �

I1 lmax

a

(1)

where l is the specific growth rate (d21) as a function of the

photon flux density (I, lmol photons m22 s21), lmax is the

maximum growth rate achieved at Iopt, the optimal irradi-

ance, and a is the initial slope of the curve. In other words,

Fig. 1. Scaling from individual to whole-community temperature responses. (A) Under saturating irradiance, individual species/genotypes exhibit

unimodal responses to temperature (solid lines), but competitive species sorting leads to an exponential response of the aggregate growth rate across

a temperature gradient (dashed line). (B) Under light limitation, maximal growth may not increase at higher temperatures; aggregate community

rates may then be insensitive to temperature even if individual species are sensitive. Note that the axes for (A) and (B) are on different scales.
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as I ! 0, l Ið Þ ! aI. This curve was derived by Eilers and Pee-

ters (1988) from a dynamic model of photoinhibition of

photosynthesis, and it allows us to compare across species

the relative performance under limiting irradiance (a), rela-

tive performance under saturating irradiance (lmax), and the

irradiance above which photoinhibition reduces growth

(Iopt). As reviewed previously (Edwards et al. 2015), theory

and experiments show that these parameters determine com-

petitive ability and coexistence under a variety of irradiance

regimes. For example, for species with equal loss rates, a

should determine competitive ability under chronically low

irradiance (such as that experienced at a deep chlorophyll

maximum). In mixed layers, a, lmax, and Iopt may all be

important for competitive outcomes, depending on incident

irradiance and the depth of mixing (Huisman and Weissing

1994; Huisman et al. 1999; Gerla et al. 2011).

Equation 1 does not include a parameter for maintenance

respiration, i.e., the growth rate when irradiance is zero.

However, maintenance respiration is typically low for phyto-

plankton (�0.02 d21, Geider and Osborne 1989), and nega-

tive growth rates were only observed in four growth-

irradiance relationships (out of 327 total). In addition, 95

experiments used four irradiance levels, and we did not wish

to estimate a four-parameter curve from four observations.

Therefore, we used the three-parameter curve and removed

the four relationships with negative growth rates from the

analysis. The fitted curves are given in Supporting Informa-

tion S1. As described previously (Edwards et al. 2015), we

used Eq. 1 instead of the curve of Platt et al. (1980) because

the two curves have a very similar shape, but Eq. 1 is para-

meterized in terms of the traits we wish to compare across

species, and often fits the data slightly better.

To compare optimum temperature for growth as a func-

tion of irradiance, we fit the following curve:

l Tð Þ5 12
T2z

W=2

� �� �

aebT (2)

where z is the midpoint of the growth curve, W is the width

of the unimodal response to temperature, and a and b

jointly determine the overall height, steepness, and skewness

of the curve (Norberg 2004; Thomas et al. 2012). We esti-

mated the optimum temperature (Topt) from the fitted curve

by numerical optimization. For subsequent analysis, we use

only those growth-temperature relationships where the esti-

mated optimum is at least 58C from the highest experimen-

tal temperature.

Response of light utilization traits to temperature

Exploration of the growth-irradiance curves showed that

all three traits (a, lmax, Iopt) exhibit substantial variation

with temperature for nearly all species (Supporting Informa-

tion S2). For each trait about half of the relationships are

unimodal, and most of the remainder are monotonically

increasing, while a few are monotonically decreasing or

essentially flat. To characterize the typical shape of the tem-

perature responses and compare the sensitivity to tempera-

ture across the three traits, we took two approaches. The first

approach was to quantify how steeply the trait values rise

and fall with temperature, by breaking each curve into rising

and falling portions. The second approach was to character-

ize the mean shape of the curve using a nonparametric

smoother.

To characterize the rising portion of the curve, for each

experiment we selected the trait values measured at or below

the temperature of the maximum trait value; we only

included experiments for which there were at least two val-

ues at temperatures below the maximum, yielding a total of

at least three values. To quantify the typical shape of the ris-

ing curve, we fit a generalized additive mixed model

(GAMM) where the trait value was a non-parametric smooth

function of temperature, and a random effect for species was

included to account for the fact that species differ in their

mean trait (across temperatures). Because species have differ-

ent temperature optima, we standardized the temperatures

so that all species had their trait maximum at the same posi-

tion on the temperature axis (set to 0). We also fit a linear

mixed model with log(trait) as the response, which is equiva-

lent to assuming that the trait increases exponentially with

temperature. Using the fitted slope we calculated a Q10 coef-

ficient for the trait. We then repeated this whole procedure

for the falling portion of the curve, again only using experi-

ments where there were at least two trait values at tempera-

tures above the temperature of the maximum trait value.

The second approach was to characterize the typical shape

of the whole temperature response curve for each trait. For

this analysis, we used only those species for which the maxi-

mum trait value was not at the highest or lowest tempera-

ture (i.e., the relationship appears unimodal). Again we used

a GAMM with a random effect for species, and we standar-

dized the temperature axis so that all species had their maxi-

mum trait value at the same position (set to 0). For all of the

above analyses, we only used Iopt estimates when the esti-

mated Iopt was less than the maximum irradiance used in

the experiment; otherwise there was not sufficient data to

estimate Iopt. When comparing Iopt across temperatures, we

only used experiments where Iopt could be estimated for at

least four temperatures.

Response of temperature optima to irradiance

To characterize how the optimal growth temperature

changes with irradiance, we fit a GAMM with Topt as the

response variable, a smoother for the effect of irradiance,

and a random effect for species to account for differences

between species in mean Topt across irradiances.

Comparison of temperature optima across traits

To test whether different traits have similar temperature

optima, we compared the temperature of the maximal trait

values across species. We will refer to these respectively as

Edwards et al. Light–temperature interactions
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Ta
opt , T

l
opt , and T I

opt . It should be noted that a higher a or lmax

are always beneficial, all else equal, while a higher Iopt will

reduce photoinhibition but also reduce growth at lower irradi-

ances. Nonetheless, as shown below T I
opt is correlated with

Ta
opt and Tl

opt , suggesting that species exhibit higher Iopt at

temperatures to which they are best adapted. We performed

standardized major axis regression (SMA; Warton et al. 2006)

for Ta
opt vs. T

l
opt , T

I
opt vs. T

l
opt , and Ta

opt vs. T
I
opt . For these analy-

ses, we only compared temperature optima when at least one

of the optima was not at the highest or lowest temperature

measured. Our rationale is that if two traits both peak at the

highest temperature in the experiment (or the lowest temper-

ature), there is not sufficient information to ask whether these

traits have similar optima. However, if at least one trait shows

a unimodal relationship to temperature, then we can ask

whether the two traits peak at the same temperature or not.

Trait envelopes

To understand how the interaction between irradiance and

temperature will affect whole-community growth, we quanti-

fied trait envelopes (Fig. 1) for a, lmax, and Iopt as a function

of temperature, by performing quantile regression on the trait

data from all species. For each trait we fit a model where the

90th percentile of log(trait) is a linear function of temperature;

this is equivalent to assuming that the 90th percentile

increases exponentially with temperature. We used the 90th

percentile because we are interested in the upper envelope of

trait variation, but higher percentiles tend to have low statisti-

cal confidence. For comparison we also fit an ordinary least

squares regression. In preliminary analyses, we also fit non-

parametric curves to the 90th percentile of the data (using

GAMLSS, generalized additive models for location, scale, and

shape; Rigby and Stasinopoulos 2005) and to the mean of the

data (using a generalized additive model, GAM). However, we

found that the relationships only deviated from linear at

extreme temperatures for which there was less data, and so

we present the linear fits here for simplicity.

Light–temperature interactions in field incubations

To compare the patterns found in the trait envelope anal-

yses to whole-community growth in natural systems, we

used the extensive compilation of �24,000 marine primary

production observations compiled by Behrenfeld and

colleagues (http://www.science.oregonstate.edu/ocean.

productivity/field.data.c14.readme.php). This compilation

contains 14C uptake measurements, from field incubations of

2–24 h duration (only a small percentage are <6 h), taken

over depth profiles (range 0–175 m) at >1600 stations across

a wide range of productivity and latitude (Behrenfeld and Fal-

kowski 1997). In addition to daily carbon fixation, the dataset

includes chlorophyll concentration, surface PAR, incubation

PAR, latitude, longitude, date, and sea surface temperature.

This information can be used to calculate chlorophyll-specific

daily primary production. If the chlorophyll-to-carbon ratio

(Chl:C) of the phytoplankton were known (it is not), then

phytoplankton growth rate could be approximated as the

carbon-specific rate of daily carbon fixation (Eppley 1972;

Mara~n�on 2005). For our purposes, we are more interested in

how the interaction between irradiance and temperature

causes relative changes in growth than the absolute magni-

tude of growth. Therefore, we took two approaches to the

issue of Chl:C, and the fact that Chl:C may change with irra-

diance and temperature (Cloern et al. 1995). (1) Convert Chl-

specific production to specific growth rate, using a Chl:

C ratio of 0.01, which is an intermediate value based on

estimates for ocean phytoplankton (Behrenfeld et al. 2005);

(2) assume that Chl:C varies according to the model of Beh-

renfeld et al. (2005), which is an empirical model of how

Chl:C changes with irradiance and temperature, based

on remote sensing of bulk chlorophyll and phytoplankton

biomass. The model is Chl:C5Chl:Cmin1 (Chl:Cmax –

Chl:Cmin)e
23I, with Chl:Cmin50.017 – 0.00045T, and

Chl:Cmax50.01510.00005e0.215T, and where T is temperature

(8C) and I is daily irradiance (mol quanta m22 h21). Thus,

Chl:C declines exponentially with irradiance, and the range

of potential Chl:C increases with temperature. Although our

approach yields only a rough estimate of phytoplankton

growth rate, the large number of observations over a wide

range of irradiance and temperature conditions allows us to

ask whether the trait envelope predictions from our monocul-

ture compilation are consistent with light–temperature inter-

actions in natural communities.

Because we are interested in effects of irradiance and tem-

perature, we excluded observations where nutrients were

likely to be strongly limiting. We excluded values where

nitrate concentration is expected to be <0.5 lmol L21 based

on the World Ocean Atlas (Garcia et al. 2014), and we

excluded values from >608 N or>408 S, which are likely to

be iron-limited (Moore et al. 2013). Finally, because only sea

surface temperature is reported in the dataset, we only used

values from the mixed layer, based on a climatology of

mixed layer depth (de Boyer Mont�egut et al. 2007), and we

used SST to approximate temperature for all samples within

the mixed layer at each station. These criteria resulted in

2090 observations for analysis.

To quantify how temperature and irradiance interact to

affect our proxy of phytoplankton growth, we fit linear

regressions of log(growth) vs. temperature for low-light sam-

ples (<20 lmol photons m22 s21) and for sufficient-light

samples (between 100 lmol photons m22 s21 and 200 lmol

photons m22 s21). We also fit a generalized additive model

with a two-dimensional smoother for the interactive effect

of irradiance and temperature.

Results

For all three growth-irradiance traits (a, lmax, Iopt), nearly

all species exhibit substantial variation with temperature

(Supporting Information Fig. A1). About half of the

Edwards et al. Light–temperature interactions
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relationships were unimodal, and most of the remainder are

monotonically increasing, while a few are monotonically

decreasing or essentially flat. Both the rising and falling por-

tions of the curve could be approximated by an exponential

relationship, for all three traits (i.e., a linear relationship

between log(trait) and temperature; Fig. 2). Although an expo-

nential relationship is certainly a simplification, because the

full unimodal relationships are flatter near the optimum (Fig.

2C,F,I), the near-exponential rising and falling portions are

useful to characterize the sensitivity of these traits to tempera-

ture. Combining the data across species, the estimated Q10

values for the rising curves are 2.64, 1.90, and 1.73 for a,

lmax, and Iopt, respectively (95% confidence intervals for Q10

are [2.17, 3.19], [1.77, 2.03], and [1.62, 1.85], respectively).

The estimated Q10 values for proportional decrease along the

falling curves are 2.26, 2.38, and 1.51 for a, lmax, and Iopt,

respectively (95% confidence intervals for Q10 are [1.90, 2.69],

[1.67, 3.42], and [1.32, 1.72], respectively).

Comparison of the temperatures at which growth-

irradiance traits reach their maximum values shows that the

three traits tend to be co-adapted to similar temperatures

(Figs. 3A–C, 2C,F,I). For the temperature of peak a vs. the

temperature of peak lmax, SMA regression has an intercept of

25.52 (95% CI: [211.2,0.17]), a slope of 1.06 (95% CI:

Fig. 2. Rising portion (A, D, G), falling portion (B, E, H), and full curve (C, F, I) for the three growth-irradiance traits as a function of temperature.

The rising and falling portions are fit both as linear regressions with log(trait) as the response (dashed lines) and generalized additive models (solid

lines with 95% confidence bands). The plotted points are corrected, using the fitted GAMM, to remove differences between species in the mean trait

value across temperatures. The x-axis uses temperature values that have been standardized, such that each species reaches its maximum trait value at

08, as described in Methods.

Edwards et al. Light–temperature interactions

1237



[0.86,1.32]), and R2
50.48. For the temperature of peak Iopt

vs. the temperature of peak lmax, SMA regression has an

intercept of 23.08 (95% CI: [28.6,2.43]), a slope of 0.96

(95% CI: [0.77,1.2]), and R2
50.71. For the temperature of

peak a vs. the temperature of peak Iopt, SMA regression has

an intercept of 23.12 (95% CI: [29.5,3.2]), a slope of 1.06

(95% CI: [0.83, 1.36]), and R2
50.59. Therefore, the slopes of

these relationships are not significantly different from 1,

while the intercept for a vs. lmax is likely lower than 0, indi-

cating that a tends to peak at a lower temperature than lmax.

It may also be the case that Iopt tends to peak at a lower tem-

perature than lmax, because 11 values in Fig. 3B are below

the 1:1 line, while only 2 are above the 1:1 line.

An analysis of how the optimal growth temperature (Topt)

changes with irradiance (Fig. 3D) is consistent with the differ-

ences in Fig. 3A,B. The value of Topt increases by about 48C

from the lowest irradiance to about 100 lmol photons

m22 s21, and then decreases by 1–28C at the highest irradiance.

A comparison of a values for all species across temperatures

shows that the upper limit on a does not change with tempera-

ture (Fig. 4A). The regression slope for the 90th percentile of

log10 a vs. temperature is 20.0024 (95% CI: [20.0066, 0.015]).

Fig. 3. (A–C) Comparison across species of temperature optima for a and lmax, Iopt and lmax, and a and Iopt, respectively. (D) Optimal temperature

for growth as a function of irradiance. The y-axis in this plot is relative Topt, which substracts the mean value of Topt for each species, to better visualize

how Topt changes with irradiance for all species. The fitted smoother is from a generalized additive model.

Edwards et al. Light–temperature interactions
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Likewise, an OLS regression through the middle of the data has

a weakly increasing slope not different from zero (0.0068, 95%

CI: [20.00033, 0.014]). In contrast, the upper limit and mean

of lmax increase with temperature (Fig. 4B). The 90th percentile

slope for log10 lmax vs. temperature is 0.015 (95% CI: [0.011,

0.019]), which corresponds to a Q10 of 1.42 (95% CI: [1.28,

1.56]), and the OLS slope is also 0.015 (95% CI: [0.011, 0.018]).

Finally, the upper limit on Iopt also tends to increase with tem-

perature (Fig. 4C). The 90th percentile slope for log10 Iopt vs.

temperature is 0.012 (95% CI: [0.0052, 0.014]), which corre-

sponds to a Q10 of 1.33 (95% CI: [1.13, 1.39]), and the OLS

slope is 0.0088 (95% CI: [0.0042, 0.013]).

An analysis of field estimates of primary production shows

that the temperature sensitivity of growth depends on irradi-

ance. When irradiance is �20 lmol photons m22 s21, Chl-

specific C uptake shows no trend with temperature (Fig. 4D;

regression slope of log10 (growth) vs. temperature50.004, 95%

CI: [20.008, 0.016]). In contrast, when irradiance is between

100 lmol photons m22 s21 and 200 lmol photons m22 s21,

Chl-specific C uptake increases with temperature (Fig. 4E;

regression slope of log10 (growth) vs. temperature50.031, 95%

CI: [0.023, 0.038]; equivalent Q1052.04, 95% CI: [1.71, 2.42]).

Finally, in the field data the optimal irradiance for growth

tends to increase with temperature, changing from about 100

lmol photons m22 s21 to 200 lmol photons m22 s21 when

moving from the lowest to highest temperatures. This is most

readily seen by fitting a 2D smoother for the effect of irradiance

and temperature (Fig. 4F).

The patterns in Fig. 4D–F use a constant Chl:C of 0.01 to

convert from Chl-specific to C-specific values. If a variable

Chl:C is used instead, derived from the remote sensing

model of Behrenfeld et al. (2005), the results are very similar

(Supporting Information Fig. A4).

Discussion

Our compilation shows a substantial effect of tempera-

ture on the growth-irradiance relationship. Each of the

Fig. 4. (A–C) Trait envelopes for the three growth-irradiance traits across temperatures. The solid line is the quantile regression fit to the 90th percen-

tile of all trait data for all species, the dashed line is an ordinary least squares fit to the mean of the data. (D) Whole community growth rate vs. tem-

perature, at irradiances below 20 lmol photons m22 s21. Specific growth rate is approximated using Chl-specific primary production (14C uptake),

with a fixed Chl: C of 0.01. (E) Whole community growth vs. temperature, at irradiances between 100 lmol photons m22 s21 and 200 lmol photons

m22 s21. (F) Two-dimensional smoother from a GAM fit to whole community growth as a function of temperature and irradiance.
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growth-irradiance parameters exhibits a unimodal tempera-

ture response that has a fairly consistent shape across spe-

cies, with different species possessing different temperature

optima (Figs. 1, 2). The temperature sensitivities of the traits

are comparable, with each trait exhibiting a mean Q10

between 1.5 and 2.6 on both the rising and falling portions

of the response. For the rising portion of the curve, a has a

Q10 that is greater than the often-used values of 1.88 or 2

(95% CI: [2.17, 3.19]), while lmax has a Q10 that overlaps

these values (95% CI: [1.77, 2.03]), and Iopt has a lower Q10

(95% CI: [1.62, 1.85]). This means that for individual speces,

the light-limited growth rate is at least as sensitive to tem-

perature as the light-saturated growth rate, and susceptibility

to photoinhibition also changes significantly with tempera-

ture. For any particular species the three traits tend to have

similar temperature optima, but on average the optimum for

a is �58C lower than the optimum for lmax, and the opti-

mum for Iopt lies between these. Likewise, the optimal tem-

perature for growth increases by about 48C from the lowest

irradiance to about 100 lmol photons m22 s21, and then

decreases by 1–28 at the highest irradiance.

Temperature will change community structure in part by

altering the values of traits that determine resource (e.g.,

light) competition. The responses of a, Iopt and lmax to tem-

perature imply that competitive ability under either chronic

light limitation such as at a DCM (where a approximates

competitive ability) or fluctuating light limitation such as in

a mixed layer (where a, lmax, and Iopt may contribute to

competitive ability) will be temperature-sensitive, leading to

distinct temperature niches under competition for light. It

may also be the case that a transition from saturating to limit-

ing irradiance causes species’ temperature niches to shift

toward cooler temperatures, i.e., it decreases their ability to tol-

erate higher temperatures. This shift could be adaptive,

because temperature and irradiance are positively correlated

over depth, and over time in seasonal environments. In addi-

tion, Thomas et al. (2012) found that Topt for marine isolates

tends to be �48C higher than mean SST at the isolation loca-

tion, which may be due to widespread (co)limitation of growth

by irradiance, which reduces Topt below that measured under

sufficient irradiance. Nutrient limitation may have a similar

effect on species’ thermal optima (Thomas et al. unpubl.).

These predictions can be tested in field and lab experiments by

quantifying how community composition changes in response

to factorial combinations of light and temperature.

Ecosystem processes such as primary production and ele-

ment cycling depend on aggregate community responses to

environmental forcing. Predicting aggregate responses to tem-

perature (or other factors) is more challenging than predicting

species- or genotype-level responses, because aggregate pat-

terns emerge from the outcome of complex interactions

among diverse actors. If a single trait determines competitive

outcomes along an environmental gradient, then in theory

the upper envelope of that trait will quantify how aggregate

function changes along the gradient (Norberg 2004). The

compiled monoculture data shows that neither the upper

envelope nor the mean of a changes across temperatures

(Fig. 4A). In contrast, the upper envelope and mean of lmax

both increase exponentially with temperature, consistent with

previous findings (Eppley 1972; Bissinger et al. 2008), and Iopt
also increases with temperature (Fig. 4B,C). From these pat-

terns, we can predict that whole-community growth should

be temperature-insensitive under strong light limitation but

temperature-sensitive under saturating light, and intermediate

light limitation will yield a dampened temperature sensitivity.

In addition, the optimal irradiance should increase with

temperature. It is interesting that a for individual species is

quite temperature-sensitive, while the upper envelope for a is

not, which suggests substantial species turnover with little

ecosystem-level effect across a temperature gradient, at the

lowest irradiances (Fig. 1B). The analysis of primary produc-

tion data is consistent with the predictions from trait enve-

lopes. Whole-community growth (approximated as Chl-

specific C uptake) is temperature-insensitive under low irradi-

ance, but increases exponentially with temperature under

moderate or high irradiance, and the optimal irradiance

increases modestly with temperature (Fig. 4D–F). Although
14C incubation data is a rough proxy of the actual bulk

growth rate, it is encouraging that predictions from the lab-

measured trait data are consistent with field patterns.

One difference between the lab and field patterns is the

slope of the growth response under saturating irradiance,

which has a Q10 of 1.42 for the trait envelope but a Q10 of

2.04 in the field data. This may be due to insufficient sam-

pling of species adapted to high temperatures in the trait

compilation or biases in the field data that change with tem-

perature; using the 99th percentile of the data instead of the

90th percentile yields a similar Q10 of 1.44. Prior compila-

tions of maximal growth rates using a larger number of spe-

cies have found a Q10 of 1.88 (Eppley 1972; Bissinger et al.

2008), which is closer to the slope observed in the field data

and supports the upper envelope for lmax as a predictor of

light-saturated growth rate. Studies applying the “metabolic

theory of ecology” have argued that primary production has

a temperature sensitivity largely determined by the activa-

tion energy of Rubisco (0.32 eV), which is thought to limit

the light-saturated rate of photosynthesis (Allen et al. 2005;

L�opez-Urrutia et al. 2006). This activation energy corre-

sponds approximately to a Q10 of 1.64, which is intermediate

between the lab and field sensitivities under saturating light

in our study. Our results indicate that the metabolic theory

approach is likely not suitable for phytoplankton when light

limits growth. Nonetheless, it is possible that under suffi-

cient light the temperature response of phytoplankton

growth is driven by Rubisco. However, it is not clear how to

reconcile this enzyme-specific view with unimodal species-

level responses, which scale up to produce monotonic
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aggregate responses. Furthermore, this framework does not

account for responses to excess irradiance.

Prior studies have found conflicting results for the effect of

temperature on aggregate phytoplankton growth or specific

primary production. Chen et al. (2012) found that growth rate

in marine dilution experiments increases exponentially with

temperature, and Regaudie-de-Gioux and Duarte (2012) found

the same using a compilation of Chl-specific gross primary

production in the open ocean. In contrast, Mara~n�on et al.

(2014) found that resource supply across ocean regions

explains phytoplankton growth with little direct role for tem-

perature, and De Castro and Gaedke (2008) found that sea-

sonal variation in Chl-specific photosynthesis in Lake

Constance was unrelated to temperature. Our results suggest

that conflicting patterns can be reconciled by accounting for

resource supply, with light limitation diminishing the

temperature-sensitivity of bulk growth. Nutrient limitation

may have a similar dampening effect, as seen in mesocosm

experiments (Staehr and Sand-Jensen 2006; O’Connor et al.

2009), although we currently lack sufficient culture studies to

make predictions based on trait envelopes for nutrient compe-

tition. Due to the ubiquity of resource limitation (or co-limita-

tion) in marine and fresh waters, it will be essential to better

quantify how temperature and resources interact, and how

temperature also modulates grazers and pathogens (e.g., Chen

et al. 2012). It will also be important to better quantify tem-

perature effects on photosynthesis vs. respiration, particularly

under low irradiance. The data compiled here did not permit

an analysis of respiratory costs, but if respiration has a greater

temperature sensitivity than light-limited photosynthesis,

this could have important effects on patterns of net primary

production (e.g., L�opez-Urrutia et al. 2006).

Based on our data synthesis, we make some recommenda-

tions below for modeling phytoplankton growth at the spe-

cies and community levels. Models of phytoplankton growth

often use a simple exponential term to account for the effect

of temperature (Blackford et al. 2004; Taucher and Oschlies

2011). If the phytoplankton variable is intended to represent

bulk phytoplankton, or aggregate growth of a diverse func-

tional group, then such a monotonic temperature effect is

appropriate, but only under sufficient irradiance. Therefore,

it would be appropriate to use a functional form where the

maximum growth rate has an exponential or Arrhenius-type

temperature dependence, but the initial slope of the irradi-

ance response is temperature-insensitive. An interaction

between irradiance and temperature is a feature of the photo-

acclimation models of Geider et al. (1997, 1998), which have

been used in a variety of biogeochemical models (e.g., Moore

et al. 2002; Stock et al. 2014). In these models, the maximum

Chl-specific rate of photosynthesis (PC
m) increases with tem-

perature but the initial slope of Chl-specific photosynthesis

vs. irradiance (achl) is insensitive to temperature. The Chl:C

ratio (h) also depends on temperature via a dependence on

PC
m. Under these assumptions, specific growth rate is essen-

tially temperature-insensitive at 1 lmol photons m22 s21,

weakly temperature-sensitive at 10 lmol photons m22 s21,

and strongly temperature sensitive at 100 lmol photons

m22 s21 (Supporting Information Fig. A5). Therefore, use of

this model to represent aggregate growth is largely consistent

with observed light-temperature interactions, although the

temperature-sensitivity may arise at too low of an irradiance,

and, in addition, the model does not account for photoinhi-

bition. In contrast to monotonic temperature effects, models

of individual phytoplankton populations, or models that

include a diversity of phytoplankton species (e.g., Dutkiewicz

et al. 2013), would be made most realistic by incorporating

unimodal temperature functions for growth-irradiance param-

eters. A diversity of species adapted to different temperature

regimes can be implemented by making the parameters fol-

low the trait envelopes in Fig. 4. An example of a growth-

irradiance model with temperature-dependent parameters is

given in Supporting Information S3.

Through effects on stratification, global warming is

expected to decrease nutrient supply to the euphotic zone

while alleviating light limitation (Sarmiento et al. 2004). The

role of the direct effects of temperature on plankton, and

how these interact with resource limitation, are less clear.

The results presented here suggest that the interaction of

temperature and irradiance is substantial, with consequences

for the niches of individual species, the structure of com-

munities, and key ecosystem rates. Important next steps

include testing these patterns in the field, integrating these

interactions with effects of CO2, nutrients, and grazers, and

incorporating the empirical patterns in ecosystem models.
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