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Abstract The composition and dynamics of plankton

communities are critically affected by human-induced

environmental changes. We analysed 33 years of

phytoplankton monthly data collected in Lake Zurich

(Switzerland), assigning organisms (genus level) to

taxonomic groups (class, family), Reynolds associa-

tions and size categories. The aim was to understand

howeutrophication and climate change have influenced

taxa co-occurrence patterns within and between groups

over the lakewater column (14 depths, 0–135 m), using

null-models to test for non-random spatial (depth)

assembly.We found that thewhole community showed

high taxa co-occurrence levels, significantly deviating

over time from random assembly concurrently with

lake warming and reduced nutrient loading. This

pattern was driven mostly by the depth structure of

metalimnetic assemblages during summer and autumn.

The prevalence of non-random spatial patterns changed

for different taxonomic and functional groups, with

only few significant deviations from null-model expec-

tations. Within taxonomic and functional groups (par-

ticularly Classes and size categories), the frequency of

spatial overdispersion of taxa decreased over time

while the frequency of clustering increased. Our data

suggest that the relative importance of mechanisms

determining phytoplankton metacommunity dynamics

have changed along with environmental gradients

shaping water column structure.

Keywords Phytoplankton � Co-occurrence �
Variance ratio � Eutrophication � Climate change �
Community assembly

Introduction

Understanding the processes that govern long-term

changes in the structure and composition of natural

communities has always been a fundamental
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e-mail: francesco.pomati@eawag.ch

B. Matthews � O. Seehausen � B. W. Ibelings

Centre for Ecology Evolution and Biogeochemistry,

Eawag: Swiss Federal Institute of Water Science and

Technology, Seestrasse 79, 6047 Kastanienbaum,

Switzerland

B. W. Ibelings

Institut F.-A. Forel, Université de Genève, Versoix,
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challenge in ecology (Diamond, 1975), but it is

increasingly important in light of anthropogenic

impacts on biodiversity and ecosystem services (Car-

dinale et al., 2012). Despite a rich history of both

community assembly theory and practice, we still lack

the long-term series of data necessary to assess how

human impacts influence the processes that generate,

maintain, and change biodiversity (Magurran et al.,

2010; Vonlanthen et al., 2012). Such time-series are

critical for understanding the relative influence of

stochastic and deterministic processes in governing

community assembly across broad environmental

gradients over both space and time (Chase et al.,

2011; Gravel et al., 2011; Kathleen Lyons et al., 2015).

In a series of previous studies, several authors have

analysed a dataset from the mesotrophic peri-alpine

Lake Zurich (Switzerland), featuring monthly water

samples taken at different depths for more than

30 years in conjunction with environmental variables,

to understand how climate warming and re-oligotroph-

ication influenced lake physics, chemistry and plank-

ton community structure (Livingstone, 2003;

Anneville et al., 2004; Matthews & Pomati, 2012;

Pomati et al., 2012, 2015). Such investigations have

highlighted that, over the past three decades, climate

warming and re-oligotrophication in Lake Zurich have

occurred alongside: (i) an increase in thermal stability

of the water column and reduced deep mixing

(Livingstone, 2003; Posch et al., 2012), (ii) a change

in phytoplankton community composition (Anneville

et al., 2004), (iii) an increase in number of plankton

taxa possibly due to reduction in phosphorus inputs

combined with climate warming-mediated enhance-

ment of resource heterogeneity over the water column

(Pomati et al., 2012), (iv) a decrease in annual species

turnover (Matthews & Pomati, 2012), and (v) an

increase in the annual prevalence of taxa while the

abundance of both rare and common taxa declined

(Pomati et al., 2015). Overall, the phytoplankton data

suggested a trend of decreasing dominance, with more

taxa coexisting simultaneously in the water column of

the lake, and potential changes in the mechanisms

driving community assembly.

In this study, we use a statistical approach to study

the spatial (depth) structure of phytoplankton assem-

blages over the water column of Lake Zurich (Fig. 1),

during the directional environmental change charac-

terising the recent lake history. The aim was to test for

non-random taxa co-occurrence patterns to gauge

spatial underdispersion (i.e. clustering) and overdis-

persion of organisms at the entire community level and

within taxonomic groups, ecological associations and

trait-based categories. Clustering and overdispersion

are defined as a tendency for taxa or groups to co-occur

at different sites (depths) with an expectancy larger/

smaller than predicted by appropriate null models of

random assembly (Emerson & Gillespie, 2008;

Cadotte et al., 2013). Studying community over/

underdispersion may allow us to link changes in

patterns to the interplay of the potential underlying

mechanisms (dispersal, environmental filtering and

species interactions) (HilleRisLambers et al., 2012).

For example, we expect that environmental filters will

frequently result in the spatial clustering of similar

organisms, while strong and negative species interac-

tions might lead to spatial overdispersion of species

with similar traits (Emerson & Gillespie, 2008;

Cavender-Bares et al., 2009; Kraft & Ackerly, 2010;

Kathleen Lyons et al., 2015). In most cases, neutral

processes (e.g. ecological drift, dispersal limitation)

will generate random co-occurrence patterns for both

trait and taxonomic groupings (Rosindell et al., 2011).

There can be however interactions among mecha-

nisms and many exceptions to these predictions (Bell,

2005; Mayfield & Levine, 2010). Teasing apart the

processes that determine diversity in ecological com-

munities is in fact an ongoing challenge (Kraft et al.,

2014). Nevertheless, the above approach has demon-

strated useful for investigating the relative importance

of different mechanisms involved in community

assembly in many cases (Gotelli & McCabe, 2002;

Bell, 2005; Adams, 2007; Emerson and Gillespie

Emerson & Gillespie, 2008; Livingston & Philpott,

2010; Weiher et al., 2011; Kathleen Lyons et al.,

2015).

To study co-occurrence patterns, we use null-model

simulations of random assembly that account for

differences in site suitability over the water column

and temporal changes in the size of the species pool

(Gotelli, 2000; Kathleen Lyons et al., 2015). We

analyse depth co-occurrence (clustering and overdis-

persion) for the whole phytoplankton community,

regardless of any taxonomic or functional affiliation,

and compare co-occurrence patterns among and

within taxonomic groups, Reynolds ecological asso-

ciations and size categories (Fig. 1). Such analyses

can provide hypotheses on how directional environ-

mental change, through the combined effects of re-
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oligotrophication and climate warming, can modify

phytoplankton vertical structure in a deep lake and

potentially community assembly (Emerson & Gille-

spie, 2008; Cadotte et al., 2013).

Materials and methods

Data

The phytoplankton dataset consists of microscopic

counts of samples collected from 1976 to 2008 in

monthly intervals (n = 396) at one site (centre of the

lake in front of Thalwil in Lake Zurich) at 14 different

water depths: 0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40,

80, 120, 135 m. Data were collected consistently by

the Zurich Water Supply Company (WVZ). For more

details about sampling methods, please refer to

(Pomati et al., 2012, 2015). Taxonomy of all species

in the dataset was harmonised according to the

modern phytoplankton classification (for details about

how the temporal dataset was homogenised see

(Pomati et al., 2012, 2015), the latter reference reports

also detail about how we dealt with potential incon-

sistency in taxonomic classification). In this study, we

classified each species into ecological associations

following the system proposed by Reynolds and

others (Reynolds et al., 2002; Padisák et al., 2009).

Reynolds categories represent combinations of spe-

cies based on similar morphological and physiological

traits, and similar ecological requirements (high

affinity for phosphorus or CO2, requirement of

skeletal silicon, motility, mixotrophy etc.) (Padisák

et al., 2009; Reynolds et al., 2002). Apart from

Reynolds categories, we decided to work for the rest

of the study using genus level classification of taxa to

reduce potential biases in the taxonomic classification
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Fig. 1 Schematic description of the approach used to study taxa

co-occurrence patterns.A Several depths were sampled over the

vertical structure of the lake water column, which changed

according to the season and across years (temperature profiles);

phytoplankton taxa differently occupied depth habitats (depths

occupancy) and showed to consistently share such habitats with

other taxa (clustering), not to be associated with other taxa

(dispersion), or to be randomly distributed. BWe analysed these

taxa associations using their variance-ratio (VR) over depths for

each date of the time-series and compared it to expected patterns

from null-model (random) assumptions.C Patterns were studied

for all organisms regardless of their affiliation, within taxonomic

groups at different scales and within eco-morphological groups
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of certain phytoplankton species, which was previ-

ously documented for the long lake Zurich time-series

(Pomati et al., 2015).

We also built phytoplankton categories indepen-

dent of taxonomic affiliation by grouping genera

into clusters based on genus median biovolumes

(Log10(lm
3) of each counted taxon, corresponding

to a natural unit of colonies in case of colonial forms,

and to individual cells for non-colonial taxa), using the

database published by Kremer et al. (2014). When

species were missing in the database, natural unit

biovolumes were obtained from the Eawag database

(H.R. Buergi, unpublished—see online Supporting

Information, Table S1). To create trait-based groups,

we chose biovolume (hereafter size) because of its

importance in phytoplankton resource acquisition,

predator avoidance and reproduction (Litchman &

Klausmeier, 2008). To build size categories, we used

unsupervised model-based clustering as provided by

the R package mclust (R-Development-Core-Team,

2015), applying maximum likelihood estimation and

Bayes criteria to identify the most likely model and

number of clusters (Fraley & Raftery, 2002; Pomati

et al., 2013). The list of phytoplankton species and

their corresponding classification into taxonomic

groups, Reynolds associations and size categories is

available as online Supporting Information (Support-

ing Tables, Table S1).

Phytoplankton community analysis

As mentioned above, we used genera as our basal

taxonomic unit of study, and analysed co-occurrence

patterns at different levels of taxonomic resolution and

eco-morphological groupings. We calculated the

variance ratio (VR) of presence/absence matrices

(genera 9 depths) for each sampling date, to test for

non-random patterns in the co-occurrence of genera

(Fig. 1). The VR is defined as the variance in the total

number of taxa or groups over sites (depths) divided

by the sum of between-site variances in individual taxa

or groups (Seehausen & Schluter, 2004). In our study,

high VRs indicate spatial clustering in the water

column and low VRs indicate spatial overdispersion

(Fig. 1). First, we calculated VRs for the entire

community to test for non-random spatial distribution

of the whole phytoplankton, and tested whether

patterns were driven by the most common organisms

compared to the rare genera (25% most common and

50% least prevalent genera, respectively, decided

based on genera prevalence distributions in the whole

dataset). Then, we calculated VRs within Kingdoms,

Families, Classes, Reynolds associations and size

categories, across all depths for each sampling event

over the whole time series to assess co-occurrence of

taxonomically and eco-morphologically similar taxa

(Fig. 1).

We compared observed VRs to a null-model in

which sites (depths) differed in their generalised

suitability and genera differed in their likelihood of

appearing at each site (SIM8 in (Gotelli, 2000) where

the probability of site occupancy P(aij) = Si Tj/N
2,

with N is the matrix total, Si is the total for row i, Tj is

the total for column j). For studying the VR of taxa

over time, we used all the lake depths as sites at each

sampling date. We considered significant clustering

and overdispersion to be present when the observed

VR was greater or smaller than 95% of the null

distributions, respectively, and calculated (i) the fre-

quency of significant clustering and overdispersion

over the water column for each sampling date, and (ii)

the percentage of sampling dates where each group

showed significant deviation from null-model distri-

butions. To study VR over the water column of the

lake, at each date we calculated observed VR and null-

model expected values within a window of 4 depths

that from top to bottom slides over the 14 sampled

depths. Increasing or decreasing the size of the moving

window between 3 and 6 depths did not change the

observed patterns (data not shown).

Environmental change

The lake Zurich dataset included physico-chemical

variables measured over the water column (Pomati

et al., 2012). Here, we used the first principal

component (PC1) of lake environmental change,

calculated by principal component analysis of scaled

water-column values of temperature, conductivity,

pH, P–PO4
3-, N–NO3

- and light absorption, to help

explain variation in patterns in taxa spatial co-

occurrence. These six water variables were chosen

based on their measured consistency at all sampling

depths over the whole time-series, their relevance as

habitat conditions or plankton nutrients and their low

cross-correlation (Pomati et al., 2012). PC1 loadings

were 0.65, 0.30, -0.13, -0.31, -0.35, and -0.48 for

temperature, pH, light, P–PO4, conductivity and N–
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NO3, respectively. For presentation purposes, time-

series were decomposed in long-term trend, seasonal

and residual variation by locally weighted scatterplot

smoothing (Cleveland et al., 1990). Data analysis and

graphics were performed in the R statistical program-

ming language (R-Development-Core-Team, 2015).

Results

At the entire community level, phytoplankton genera

tended to be more spatially (depth) aggregated than

expected by chance (Fig. 2). Although our null-model

accounted for differences in site suitability, the most

dominant pattern at the community level was strong

spatial clustering of phytoplankton genera over the

water column (Fig. 2A). This pattern characterised the

whole accounted lake history, but markedly increased

in frequency towards the end of the time series (after

mid-1990s, Fig. 2A). Clustering was particularly

evident during the summer and autumn months

(Fig. 2B) and the overall level changed over the long

term, with stronger deviation from null-model expec-

tations in the most recent 10 years (blue dots,

Fig. 2B). Later in the time series, clustering was more

pronounced during spring (the onset of water column

stratification) and early summer (months 4 and 7,

Fig. 2B). Patterns of spatial clustering were driven by

the most common genera (high prevalence quartile,

n = 42, see Fig S1 in Supporting Information), while

rare genera (50% least common, n = 81) exhibit

mostly random patterns in their long-term and sea-

sonal trends, with a slight tendency towards overdis-

persion (Fig. S2 in Supporting Information).

The first principal component of lake environmen-

tal change, which was mainly driven by water

temperature, remained rather stable during the 1970s

and early 1980s, showing a steep decrease to negative

values in the late 1980s and after then a steady increase

till the end of our analysed time series, with a

transition from negative to positive values in the

middle of 1990s (Fig. 3A). Seasonally, PC1 showed to

be negative in winter and positive in summer time

(Fig. 3B), and it increased over the time series with

higher values in the most recent 10 years (blue dots,

Fig. 3B). Both seasonal and long-term patterns of PC1

and VR were strikingly similar (Figs. 2, 3). Over the

whole time series, in fact, significant non-random

spatial aggregation increased with higher levels of

PC1, suggesting an effect of water temperature on the

intensity of phytoplankton taxa co-occurrence

(Fig. 3C).

Since the observed changes in the phytoplankton

spatial aggregation appeared to be related to seasonal

and long-term variation in the environmental condi-

tions of the water column (Fig. 3), we investigated

how phytoplankton community patterns changed over

the lake depths (Fig. 4). Deviation of taxa co-occur-

rence levels from null-model simulations were lowest

in the epilimnion (\10 m) and increased over the

meta- (15–30 m) and hypolimnion (40–136 m,

Fig. 4A). These depth patterns did not significantly

change over time in the epiliminion, but taxa co-

occurrence markedly increased in the meta- and

hypolimnion towards the end of the time series

(Fig. 4A). Clustering of taxa was particularly evident

Fig. 2 Observed VR between all phytoplankton taxa in Lake

Zurich compared to null-model simulation (conditional proba-

bility model SIM8 Gotelli, 2000).AVR long-term trends (black

solid line) compared to null-model median (grey solid line) and

relative 95% confidence intervals (grey dotted lines); time series

were decomposed as reported in Methods. B Seasonal change in

deviation of observed VR from null-model simulated median:

black lines represent observed VR distribution median (solid),

first and third quartiles (dashed) for the whole dataset; green and

blue dots represent average VR levels and their standard error

for the first and last 10 years of the time series, respectively;

horizontal grey dashed line highlights no deviation, data above

the line signal clustering
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during the summer and autumn months in the metal-

imnion and in the hypolimnion during winter

(Fig. 4B).

Patterns of taxa co-occurrence varied with the

taxonomic scale of analysis (Fig. S3, Supporting

Information). We studied phytoplankton co-occur-

rence patterns over depth focusing on the variance

ratios calculated within taxonomic groups (Families

and Classes), Reynolds ecological associations and

size categories. The frequency of non-random spatial

patterns varied considerably between Families,

Classes, Reynolds categories and size-groups and

over time (Fig. 5). Most taxonomic and trait-based

groups of phytoplankton did not show significant

deviation from null-model simulated patterns, since

significant deviation from random occurred for about

4% of Families, 10% of Classes, 6% of Reynolds

groups, and 15% of size-groups.

Unlike generalised spatial aggregation patterns

detected at the entire community level, within

taxonomic and trait-based groups overdispersion

was relatively common (grey lines in Fig. 5), and

in most cases decreased in frequency over time. By

comparison, levels of clustering within groupings

(black lines in Fig. 5) were less common, and

increased towards the end of the time series (with an

exception for phytoplankton Families, Fig. 5A), with

an evident shift of prevalence from overdispersion

to clustering for Classes and size-groups (Fig. 5B–

D). Within the Families, Classes, Reynolds cate-

gories and size-groups that showed either significant

clustering or overdispersion, such patterns only

occurred in less than 10% of the sampling dates,

with few exceptions (Fig. S4 and Tables S2–S5,

Supporting Information).

Discussion

In deep water bodies, the vertical structure of the water

column represents the most heterogeneous dimension

of phytoplankton spatial ecology (Litchman & Klaus-

meier, 2008). Contrasting gradients of essential

resources can cause a heterogeneous spatial distribu-

tion of phytoplankton groups over the water column:

light attenuates with depth, light spectrum changes and

nutrients are generally richer in the deeper water layers

(Klausmeier & Litchman, 2001; Stomp et al., 2004;

Reynolds, 2006; Longhi & Beisner, 2009). The

partitioning of phytoplankton over a stratified water

column and the occurrence of assemblages of plankton

in persistent water layers have been documented in

lakes and oceans (Klausmeier & Litchman, 2001;

Reynolds, 2006; Durham & Stocker, 2012). Changes

in the dispersal of organisms and in the distribution of

resources over depths are dependent on the structure

Fig. 3 A Long-term trends of PC1, the time series was

decomposed as reported in Methods. B Seasonal change in

PC1 levels: black lines represent PC1 distribution median

(solid), first and third quartiles (dashed) for the whole dataset;

green and blue dots represent average PC1 levels and their

standard error for the first and last 10 years of the time series,

respectively. C Correlation between deviation of observed VR

between all phytoplankton taxa from null-model simulated

median and PC1 values across the entire time series. Significant

spatial aggregation (above 97.5% interval of null-model

simulation) is highlighted in red. PC1 strongest loadings were

temperature (0.65) and N–NO3 (-0.48), see Methods and

Pomati et al. (2012) for more detail
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Fig. 4 Deviation of observed VR from null-model simulated

median over Lake Zurich depths:A black lines represent median

values (solid), first and third quartiles (dashed) over the whole

dataset; green and blue dots represent average levels and their

standard error for the first and last 10 years of the time series,

respectively; B coloured lines represent observed VR distribu-

tion median for the whole dataset during different seasons. VR

and null models were calculated in windows of 4 depths moving

from surface to bottom over the water column

Fig. 5 Percentage of

phytoplankton Families (A,
n = 79), Classes (B,
n = 18), Reynolds

categories (C, n = 30) and

size-based-groups (D,
n = 8) showing significant

(outside confidence limits of

null-model) clustering

(black line) and

overdispersion (grey line)

during the time series. Time

series were decomposed

(see Methods) and solid

lines represent trends
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and stability of the water column, which have a

seasonal pattern: in summer–autumn the water column

is stratified and more stable and nutrients tend to

become depleted in the photic zone (Reynolds, 2006).

In our data, we observed a seasonal pattern of

increasing deviation from random community assem-

bly during summer and autumn months in lake Zurich

(Fig. 2B), apparently associated with metalimnetic

assemblages of phytoplankton (Fig. 4B) and mirrored

by a similar trend over the time series (Fig. 2A). For

algal Classes and size categories, overdispersion of

genera was more common early in the time series with

clustering of genera increasing in frequency late in the

time series (this pattern was also slightly evident for

Reynolds categories, Fig. 5B–D). Overdispersion was

more frequent than clustering within phytoplankton

Families and Reynolds associations (Fig. 5A, C),

suggesting the presence of negative interactions (e.g.

competition) among supposedly similar taxa within

these groups (Emerson & Gillespie, 2008; Cavender-

Bares et al., 2009; Kraft & Ackerly, 2010; Kathleen

Lyons et al., 2015). Overall the data indicated that,

within broad taxonomic and functional groups as well

as for the whole community, environmental change

has increased spatial clustering of taxa around certain

depths. This signal of deviation from random spatial

assembly correlated with changes in the physics

(temperature) and chemistry (NO3) of the water

column (Fig. 3). Lake Zurich environmental changes

have been strongly driven by water temperature,

which in turn affected the strength and stability of

thermal stratification (Livingstone, 2003) and the

distribution of essential nutrients (Pomati et al.,

2012). This suggests an effect of water column

stratification on taxa co-occurrence patterns.

Previous work has shown that lake Zurich, during

the same period of time of this study, changed towards

a more stably stratified lake with a significant decrease

in the frequency and depth of water column mixing

(Livingstone, 2003; Posch et al., 2012). These

changes, together with reduction in free available

phosphorus and limited variation in light penetration

(Pomati et al., 2012), have shifted algal blooms from

the epi- to the metalimnion (Posch et al., 2012). Since

the 1990s, the metalimnetic assemblage in lake Zurich

has been dominated by the cyanobacterium Plank-

tothrix rubescens (de Candolle ex Gomont) Anagnos-

tidis et Komárek’’ (accounts for circa 40% of the

yearly phytoplankton biomass) (Posch et al., 2012).

This is a low-light/deep light-spectrum and low-

temperature adapted species able to regulate buoyancy

and position itself at the interface between epi- and

hypolimnion, to exploit the nutrients available at depth

(Posch et al., 2012). Our result confirm that, at the end

of the time series and particularly for the metalimnion,

an increase in water column stability and resource

heterogeneity over depths may have interacted to

change phytoplankton taxa co-occurrence patterns,

which significantly departed from random assembly

(Figs. 2, 4).

There are different potential mechanisms that might

have influenced the observed long-term patterns in

lake Zurich taxa co-occurrence. On one hand, envi-

ronmental filtering due to re-oligotrophication and

warming of the lake might have increased in its

importance relative to species interactions (or disper-

sal-driven dynamics) at the end of the time series,

favouring clustering of taxa within and between

groups over depths where the supply of essential

resources was optimal for phytoplankton growth

(Klausmeier & Litchman, 2001). This pattern is

consistent with previous work showing that eutrophic

systems are characterised by stronger competition

than low-productivity environments, because nutrient

enrichment forces organisms to compete mainly for

light and reduces the opportunity for partitioning of

strategies within the same spatial niche (Mittelbach

et al., 2001; Hautier et al., 2009; Ryabov & Blasius,

2011). These considerations are supported by a recent

study on Lake Constance, in which re-oligotrophica-

tion and warming caused a shift from compensatory

(exclusion) to synchronous (co-occurrence) temporal

dynamics in phytoplankton biomass (Jochimsen et al.,

2012).

On the other hand, our analysis highlighted that

non-random patterns in taxa co-occurrence over depth

arise rarely. The high prevalence of random spatial

patterns within taxonomic and functional groups may

have been due to a residual bias in the classification of

some organisms (Pomati et al., 2015). Our results were

however driven by dynamics of the most common

genera, which were the most consistently counted,

classified, and monitored taxa over the long time series

(Pomati et al., 2015). The highest frequency of non-

random co-occurrence patterns was observed within

size classes, highlighting how a functional trait-based

approach may unravel deterministic patterns in the

phytoplankton assemblages (Litchman & Klausmeier,
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2008). More information on the traits of natural

phytoplankton populations and how they are dis-

tributed among taxonomic groups may help to disen-

tangle such effects (Edwards et al., 2012, 2013; Pomati

et al., 2013). Nevertheless, the majority of groups and

sampling dates did not significantly deviate from our

null-model simulation, suggesting stochastic pro-

cesses play an important role in phytoplankton

dynamics.

Dispersal, landscape heterogeneity and spatial

aggregation are important factors influencing popula-

tion dynamics, species coexistence and community

assembly processes (Colwell & Rangel, 2009; Hart &

Marshall, 2009; Fukami, 2010; Edwards & Stachow-

icz, 2011; Rosindell et al., 2011). A decrease in mixing

frequency and depth, as highlighted in the recent

history of lake Zurich by previous studies (Posch et al.,

2012; Livingstone, 2003), may have changed the

frequency and strength of dispersal among water

layers reducing source-sink effects and homogenisa-

tion of the assemblages, diminishing the signal of

random assembly (Leibold et al., 2004; Rosindell

et al., 2011). Such signal mostly affected common

genera, with rare taxa showing no significant change in

their spatial structure (Fig. S1–2, Supporting Infor-

mation). Common taxa in a spatial landscape are

known to provide the core populations at the different

sites, with rare taxa being subjected to stochastic

dispersal processes (Livingston & Philpott, 2010;

White et al., 2010).

Once water layers are formed, aggregation and

growth within a layer can modify the relative strength

of intra- and interspecific competition by changing the

ratio of conspecific to heterospecific competitive

encounters. Previous work suggests that spatial aggre-

gation can strengthen dispersal limitation and

intraspecific competition, favouring the coexistence

of weak and strong competitors, as well as specialists

and opportunists (Adler & Drake, 2008; Hart &

Marshall, 2009; Shen et al., 2009; Edwards &

Stachowicz, 2011; Ryabov & Blasius, 2011). This

would explain our general signal of increasing spatial

clustering, which could also filter taxa by allowing

only similar competitors to coexist as a consequence

of slower competitive exclusion and semi-neutrality

(Scheffer & van Nes, 2006; Vergnon et al., 2012). In

that case, we would expect to see also a pattern of

increase in clustering within both taxonomic and trait-

based groups, which was evident from the VR trends

within Classes and size categories in our data (Fig. 5B,

D). These considerations may also be relevant for

explaining the striking increase in algal richness

detected in the Lake Zurich dataset over the past 3

decades (Pomati et al., 2012, 2015).

In conclusion, our study suggests that dispersal and

metacommunity dynamics may be the important

processes determining non-random patterns in taxa

co-occurrence, and finally community assembly, in

phytoplankton from deep lakes. Future work should

study phytoplankton communities with a dynamics

metacommunity approach (Leibold et al., 2004),

addressing to what extent deterministic sorting of

species in water layers based on their traits interacts

with dispersal limitation, altering community

dynamics.
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