
Chapter 31

Source control and source
separation: the Swiss experience

Markus Boller

31.1 INTRODUCTION
In recent years, several buildings have been constructed in Switzerland based on
decentralized concepts of fully or partly self-sufficient energy and water
management. These first attempts covered rainwater and snowmelt harvesting,
reuse of greywater, brownwater and blackwater, urine separation and recovery of
nutrients from urine. They demonstrate that in-house technology is now ready to
accommodate dramatic changes in urban water cycles to achieve higher levels of
environmental sustainability. As a rule, the technologies tested in six key
buildings usually performed successfully and could be operated satisfactorily
over long periods. Some conditions necessary for constructing such systems and
possible reasons for project failures are discussed.

31.2 DRIVERS FOR CHANGE IN SWITZERLAND
After half a century of water pollution control in Switzerland based on major efforts
to implement end-of-pipe solutions, conclusions can be drawn about the efficiency
of existing urban drainage systems with respect to ecological and economic factors.
The quality of the receiving waters has improved enormously thanks to constant
advances in public and industrial wastewater treatment, but we now realize that
even this near-perfect system does not fully meet the environmental requirements.
Residual micro- and nanopollutants in various forms, excess nutrients, heavy
metals and other pollutants as well as the sludge quality for agricultural use
cannot be controlled with current treatment technologies. Membrane filtration,
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activated carbon adsorption and ozonation are considered as further end-of-pipe
expansions. The question thus arises whether pollution control might be achieved
more efficiently and economically by controlling the water pollutants at the
source. This perspective served as a vector in the last decade of our research
to look for examples of the successful introduction of source-control measures to
current urban water systems and to visualize successful approaches to the
stakeholders involved.

There are various ways of changing current end-of-pipe systems towards more
sustainable source control concepts. The easiest way to reduce hazards is to
prohibit or limit the use of certain substances, products and materials. However,
this is often not politically feasible. In Switzerland for instance, it took more than
ten years of debate to prohibit phosphates in washing powders. In 1986,
Switzerland took the lead in Europe in prohibiting phosphates in textile
detergents by law. In subsequent years, successful measures at source cut
phosphate loads from domestic wastewaters by 60%, and together with
appropriate end-of-pipe measures successfully reduced eutrophication in Swiss
surface waters (Siegrist and Boller 1999). Another example of source control by
prohibition with a beneficial impact on water and sediment quality was the ban
on lead in petrol in 1988.

It will hardly be possible to introduce source control of recently discussed
pollutants such as nutrients and certain micropollutants without changing the
current wastewater drainage systems, which still have 65% combined sewers. A
first attempt to change the system was to introduce on-site infiltration of
stormwater and separate sewer systems for all new or renovated buildings and
roads by law in 1991. This enabled source control to be studied for a limited
number of hazards originating from construction materials and motor traffic. The
concept is based primarily on reducing pollutants from roofs and facades by
either providing a catalogue of more ecological alternative materials or offering
incentives to manufacturers to change their product composition on the basis of
competition with other more ecological products on the market (Boller 2004). A
typical example of the first case is the replacement of the widely used Cu and Zn
sheets by more sustainable metallic materials such as steel and aluminium
(KBOB 2001) or by non-metallic minerals. In past years, many architects
changed their original idea of using copper on building surfaces of more than
200 m2 due to the Swiss regulations on stormwater management (VSA 2000). An
example of the second case is the use of a new bitumen isolation sheet on flat
green and gravel roofs containing 90% less of the biocide Mecoprop than the
widely used alternative (Burkhardt et al. 2008). On the other hand, new technical
barrier systems were introduced for the efficient on-site removal of water hazards
contained in the surface runoff from roofs, roads and highways. Special adsorber
systems have been developed which are now widely used, especially for the
treatment of runoff from Cu and Zn roofs and of road runoff (Boller et al. 2007,
Steiner et al. 2007).
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Source control in stormwater management is an example of a transition phase in
which the new system is gradually introduced. Another system change with more
far-reaching consequences has not yet been accepted as a state-of-the-art
technology, namely the introduction of in-house installations to control water and
waste flows, including water and nutrient reuse systems. Several pilot and
full-scale projects were realized in recent years in Switzerland to test
decentralized water and wastewater technologies in detached houses. The
introduction of NoMix toilets in particular has been studied under several
full-scale conditions (Lienert and Larsen 2007). Projects combining decentralized
energy and water management show most promise with respect to sustainability
improvement. Some examples will be presented below.

31.3 CASE STUDIES IN SWITZERLAND
Several projects have started which should demonstrate that decentralized energy
and water management concepts are ready to be transferred into practice. They all
implement new elements in the energy and water management of detached
houses designed to substantially increase environmental sustainability.

Basically, all these projects involve the reuse of decentralized greywater and/or
the use of rainwater. Potable water is taken from the public supply or in high-altitude
mountain resorts from snow melt. Only in the “Self” project is potable water
produced from roof water by membrane treatment. In three cases, NoMix toilets
and waterless urinals were installed, allowing for urine separation, storage and
processing. In the following chapter, these projects are divided into three groups
with 1) on-site wastewater treatment and reuse, 2) separate collection and
processing of urine, and 3) small-scale autarkic material and water cycles.

31.3.1 On-site wastewater treatment and reuse
31.3.1.1 Cableway station Zermatt
In 2005, the highest altitude wastewater treatment plant in Europe started operation
at a cable car station in the Zermatt ski zone. The plant treats the wastewater of up to
500 toilet flushes per day (4 L·flush 1) during the high winter season, producing a
maximum of 2 m3·d 1 of wastewater. With an average content of 130 mgNH4-N·L

1,
the nutrient composition is dominated by nitrogen components. The treatment plant
consists mainly of three reactors (Boehler et al. 2007). Firstly an equalisation tank
where urea hydrolysis, denitrification and bio-P elimination are induced by the
recycle stream from the second unit. This is a membrane biological reactor
(MBR) operated alternatively in aerobic and anoxic mode, assuring practically
complete denitrification. The third chamber is a holding tank for the effluent,
used to flush the toilets. This three chamber system (Figure 31.1) is an essential
core element of all these concepts, including the treatment of black or
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brownwater and wastewater reuse. It is also applied in the Aquarnm, Monte Rosa, 
and "Self' projects discussed in more detail below. 
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Figure 31.1 Small-scale MBR process scheme for wastewater reuse applied at the 
Zermatt -Hohtalli cableway station and other on-site treatment projects in Switzerland. 

The main lessons learned from this type of reactor is that full recycling of 
wastewater leads to the accumulation of dissolved salts and non-biodegradable 
organic matter. Within one winter season, oversaturation of salts led to 
precipitation in pipes. The organics induced strong colorization of the permeate. 
Powdered activated carbon (PAC) was consequently dosed to the MBR reactor at 
a concentration of 100 mg·L 1 for decolorization. After some preliminary 
adaptations, 80% COD removal, 100% N removal and 65 80% P removal was 
achieved in this small treatment plant. Satisfactory operation by local staff is now 
possible. Because of its small size, energy consumption is relatively high at about 
8 kWh·m 3

• In view of this positive experience, two more plants of this type 
were installed at other cableway stations in the same area. 

31.3.1.2 Aquamin detached house 
The pwpose of the Aquamin project was to demonstrate the availability of the 
in-house water technology required for decentralized treatment options. It 
involves a conventional supply of potable water for all uses with hygienic 
requirements, and rainwater as lower-grade water for the washing machine. Other 
processes are the separate collection of urine and faeces in NoMix toilets, MBR 
treatment of all wastewater except urine, struvite precipitation for phosphorus 
recovery from urine, activated carbon treatment of the permeate and reuse for 
toilet flushing and irrigation in the garden. Plus sludge dewatering in filter bags 



and infiltration of the permeate overflow into an infiltration pond. Detailed
information on this project is found in Abegglen (2008) and Abegglen et al.
(2008). The project ran successfully for three years, during which it demonstrated
its technical feasibility including the stepwise improvement of several treatment
steps and equipment changes. It was then stopped, mainly due to the excessive
commitment by the homeowner and relatively high costs.

31.3.2 Urine separation and processing
31.3.2.1 Office building Forum Chriesbach at Eawag
The Eawag headquarters were constructed as a “zero energy building” for 150 office
workplaces including a new water supply and disposal concept. This large building
was opened in 2006 (www.Forum.Chriesbach). It uses no conventional heating, but
the water concept comprises a conventional water supply for drinking, hand
washing and the canteen. The rest of the water is supplied from the green flat
roof covered with a calcite-free substrate for extensive plant growth to maintain
low hardness in the roof runoff (avoiding staining tanks and toilets). The roof
water is stored in an open tank with a capacity of 80 m3 as part of the landscape,
treated via textile cartridge filters and used for flushing toilets. The urine from
waterless urinals and NoMix WCs is collected, while the brownwater is
discharged to the public sewer system. A dry fertilizer is produced from the urine
not needed for research purposes (www.eawag.ch/vuna). The 37 NoMix toilets
and seven waterless urinals produce on average of 90 110 Lurine·d

1. Substantial
amounts of N (about 50%) are lost as NH3 via the ventilation pipe on the roof, so
the urine storage has to be improved in order to benefit from the full nutrient value.

31.3.2.2 Urine processing at the Liestal public library
A urine processing plant was installed close to the public library of the town of
Liestal from where the urine was collected via NoMix toilets. It was stored and
transported to the processing plant, which consisted mainly of an electrodialysis
and an ozonation unit. The 3.9 m2 electrodialysis stack allowed the nutrients N
and P contained in the urine to be almost completely separated and used for
liquid fertilizer. Ozonation guaranteed a virtually micropollutant-free product.
The plant achieved high and stable performance with concentration factors in the
electrodialysis stage of between 2.7 and 3.5. More than 90% of the investigated
pharmaceutical products and estrogens were removed (Pronk et al. 2006; Pronk
et al. 2007). It was shown that the proposed technical process designed to
produce a marketable fertilizer containing up to 12 gN·L 1, 0.6 gP·L 1, and
5.6 gK·L 1 could be operated under full-scale conditions. The “Urevit” product
was tested on field maize crops and compared with other approved fertilizers in
Switzerland, showing almost equal performance to a commercial ammonium
nitrate fertilizer (Boller 2007). Taking into account the energy needed for the
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industrial N and P fertilizer production, the net energy consumption amounts
to 0.379 MJ·p 1·d 1, while advanced wastewater treatment consumes
0.375 MJ ·p 1·d 1, that is, virtually the same amount of energy.

Unfortunately, the urine processing plant was stopped after problem-free
operation of more than a year. Urine insufficiency did not allow the plant to be
operated full time, causing substantial fouling during standstill and consequently
requiring cleaning which was considered an excessive additional effort for the
operating staff.

31.3.3 Energy and water autarky
31.3.3.1 High alpine resort Monte Rosa
The new Monte Rosa hut, opened in 2009, was built in spectacular high Alpine
scenery 2883 m above sea level. It was designed as a showcase for pioneering
architectural technologies in terms of materials, energy and water management.
An energy autarky of up to 90% was initially to be reached, rising to 100% at a
later stage. The system concentrates on the water cycle and is similar to that
described above for the cableway station. A description of the project is available
(Menti et al. 2007; Ambrosetti 2010). The popularity of the hut led to
overloading of the wastewater treatment system and a large number of
operational problems. These are currently being addressed.

31.3.3.2 Self-sufficient housing “Self” (www.empa.ch/self)
The “Self” project is designed to demonstrate the feasibility of living on the basis of
the latest building concepts virtually without an external energy supply and with an
internal water cycle. Almost nothing in the project is state of the art, being
essentially made up of individually designed components. Potable water is
recovered from rainwater on the roof. For this purpose, a promising new
gravity-operated method of ultrafiltration without the need for high-maintenance
and energy-intensive pumps was developed at Eawag (Peter-Varbanets et al.
2010). Drinking water is stored in a 200 l container equipped with an UV unit.
The wastewater is separately collected from different sources. Greywater from
cooking and washing is treated in a MBR reactor with subsequent UV radiation
in the storage tank. The permeate is recycled to the dishwasher, shower and toilet.
The blackwater from the water-saving toilet is stored in a 400 l tank and is
regularly removed from the cycle.

31.4 WHAT DID WE LEARN?
From a technical point of view, decentralized water schemes performed
satisfactorily over the observed operating time of a few months to years. All new
equipment was operated successfully and showed promise for further applications
and developments. However, there is still much work to be done with respect to
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planning, design, construction and operation. First, private households and
institutions must be willing to invest in construction work that may prove
unsuccessful. Second, environmental authorities must be convinced of the new
concepts, even if in conflict with current regulations. In addition, it is essential
that architects, construction workers as well as energy and water experts share an
interest in creating innovative buildings which may not pay off initially.

The technology should only be installed when sufficient experience has been
gained on at least a pilot scale. Maintenance, control and operation are further
important aspects. Experience shows that failures are mainly due to
underestimating the maintenance and operation efforts by local and inadequately
skilled personnel. Decentralized water treatment and reuse systems currently still
require greater operational efforts than conventional systems and provide
inadequate user comfort. Reliable, robust automation and monitoring of water
storage and treatment processes is a step forward but cannot yet replace manual
control. Service contracts with professionals may guarantee appropriate operation
and maintenance more effectively than leaving it up to homeowners.

It is vital that all stakeholders involved in developing and realizing alternative
energy and water concepts at detached-house level maintain their efforts to
improve the current technology and devise innovative new ideas despite
occasional failures. It may be hoped that the vision of a considerable gain in
environmental sustainability will be the motivating force behind further action by
homeowners, architects and engineers to develop new promising projects.
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