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Abstract

The Dagstuhl Seminar 15492 on Computational Metabolomics brought together leading experi-

mental (analytical chemistry and biology) and computational (computer science and bioinform-

atics) experts with the aim to foster the exchange of expertise needed to advance computational

metabolomics. The focus was on a dynamic schedule with overview talks followed by breakout

sessions, selected by the participants, covering the whole experimental-computational continuum

in mass spectrometry, as well as the use of metabolomics data in applications. A general obser-

vation was that metabolomics is in the state that genomics was 20 years ago and that while the

availability of data is holding back progress, several good initiatives are present. The importance

of small molecules to life should be communicated properly to assist initiating a global metabolo-

mics initiative, such as the Human Genome project. Several follow-ups were discussed, including

workshops, hackathons, joint paper(s) and a new Dagstuhl Seminar in two years to follow up on

this one.
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Metabolomics has been referred to as the apogee of the omics-sciences, as it is closest

to the biological phenotype. Mass spectrometry is the predominant analytical technique

for detecting and identifying metabolites and other small molecules in high-throughput

experiments. Huge technological advances in mass spectrometers and experimental workflows

during the last decades enable novel investigations of biological systems on the metabolite level.

But these advances also resulted in a tremendous increase of both amount and complexity

of the experimental data, such that the data processing and identification of the detected

metabolites form the largest bottlenecks in high throughput analysis. Unlike proteomics,

where close co-operations between experimental and computational scientists have been

established over the last decade, such cooperation is still in its infancy for metabolomics.
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The Dagstuhl Seminar on Computational Metabolomics brought together leading ex-

perimental and computational side experts in a dynamically-organized seminar designed to

foster the exchange of expertise. Overview talks were followed by breakout sessions on topics

covering the whole experimental-computational continuum in mass spectrometry.
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3 Major topics

3.1 Data exchange

Pieter Dorrestein (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
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Much discussion over the past decade in metabolomics has been around data sharing. Several

metabolomics repositories exist. I asked how many people here have gone to those databases

and used a dataset. Only three people raised their hands, yet this it the community that is

developing tools for analysis of datasets. There are several purposes for databases:

to capture and share metabolomics knowledge,

to share data,

to make chemical knowledge accessible,

to associate metadata with the chemical knowledge.

Then one can build the computational infrastructure to retrieve metabolomics knowledge.

An argument was made that we should build an analysis infrastructure that organizes and

visualizes data while capturing the data metadata and computing in a distributive fashion.

Future opportunities are:

creation of living data, where data is transferred to users,

connection to genomic information,

assessing in silica approaches for new spectral matching functions/algorithms with a

common set of LC-MS data sets (e.g. 100,000 data sets),

relaying new information obtained with new tools to users, rather than each user doing

their own search.

3.2 Searching in Structure Databases

David Wishart (University of Alberta, Edmonton, CA)

License Creative Commons BY 3.0 Unported license
© David Wishart

The presentation described the current state of searching for compounds in metabolic data-

bases. There are three kinds of databases: general compound databases, public repositories

and spectral databases. A major problem with the general compound databases is that they

do not provide species or functional information regarding the compounds. As a result, there

are now a growing number of species-specific compound databases.

This presentation also reviewed some of the key challenges facing metabolomics with

regard to molecular structures searching. In particular:

While the size of the spectral databases is growing, the actual number of compounds is

not. How to increase these numbers?

Only a small fraction of currently known metabolites have (or will have) reference LC-MS

spectra. This is a real knowledge dichotomy!

Even if we would product MS spectra for all know compounds, we would likely only

identify 30% of the compounds in untargeted LC-MS. What are we missing?

I discussed some possible solutions to these, including:

the development of compound libraries and compound exchanges,

the development of MS/MS production tools like CFM-ID or CSI:FingerID,

the development of structure/metabolite prediction tools.
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3.3 Incorporating Experimental Knowledge

P. Lee Ferguson (Duke University, Durham, US)

License Creative Commons BY 3.0 Unported license
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Experimental knowledge can be used primarily in two ways to identify compounds in non-

targeted high resolution mass spectrometry workflows. First, data such as chromatography

retention time, ionization performance, and metadata such as reference count and chemical

production volume can be used to refine compound identification, after data acquisition.

Second, experimental data such as fates or effects of compounds can be used to prioritize data

features for subsequent identification. Frontiers such as LCxLC and X-ray crystallography

were introduced as future directions.

3.4 Using retention index information of an orthogonal filter for
compound identification in GC/MS analysis

Tom Wenseleers (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Tom Wenseleers

In this talk I gave an overview of the potential of using retention index information for

compound identification in GC/MS analysis, especially when combined with other pieces of

orthogonal information, including electron impact and chemical ionization spectra, in silico

predicted EI spectra and mass and isotope abundance information.

I provided several examples of compounds where retention index was really critical for

correct identification, even if EI mass spectral fragments and mass could be measured with

perfect accuracy. I then pointed out the potential of building combinatorial libraries with

compounds that are biologically plausible and adding in silico predicted EI spectra and

retention indices. A proof-of-concept was provided where this method was able to correctly

identify ca. 10000 methylalkanes. I finished by discussing database requirements and the

need for standardized data formats to include and more retention index information.

3.5 Utilization of retention time in LC-MS

Michael A. Witting (Helmholtz Zentrum, München, DE)

License Creative Commons BY 3.0 Unported license
© Michael A. Witting

A lot of effort is made to analyze MS, MS2, MS3 . . . spectra, but orthogonal information like

separation dimension or ion mobility are often neglected. However to improve identification of

unknown or verification of known molecules they have to be incorporated. To facilitate data

sharing a novel retention time indexing for RP-LC-MS was presented. This indexing system

will potentially allows integrated analysis of RTI data from different sources compiled on

similar systems. Additionally, de novo prediction of retention times using different published

methods was discussed. Several limitations have been identified, which have to be tackled by

the community. Lastly, ion mobility as orthogonal method was presented.
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4 Generating Spectra in silico

4.1 In Silico Mass Spectral Identification

Tobias Kind (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
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In silico methods for mass spectrometry can be used to calculate spectra directly from

chemical structures. Traditionally spectra had to be acquired by experimental measurements

only, now purely computational methods can be used. This includes ab initio methods,

machine learning methods, reaction based tools and heuristic methods. Their outputs have

to be validated and prediction accuracy has to be tuned for better performance. In the

future it will be possible to generate millions of mass spectra (hopefully highly accurate),

which then will lead to the following problem: the curse of similarity and potential database

poisoning with millions of similar spectra.

4.2 Competitive Fragmentation Modeling

Felicity Allen (University of Alberta, Edmonton, CA)

License Creative Commons BY 3.0 Unported license
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Existing methods for spectrum prediction generally produce far more peaks than actually

occur in a measured spectrum. Competitive Fragmentation Modeling (CFM) is a method

that we propose to predict fewer peaks that are more likely to occur. It uses a probabilistic,

generative model of the fragmentation process. Parameters of the model are learned from

data using expectation maximization. The method has recently been extended for use

with EI-MS. Empirical results show that the method outperforms existing computational

tools, but is still inferior to actually measuring the spectrum. Despite this short-coming,

actual measurements are often costly or infeasible, and so this methods offers an important

alternative.

5 Breakout Groups

5.1 Spectral Simulation

The discussions on spectral simulation started with a survey of who uses what: CFM-ID, QC

(quantum chemical)-EI-MS, CSI:FingerID, Mass Frontier, ACD MS Fragmenter, HAMMER,

manual interpretation, or a combination of all were mentioned. It was established that

mass spectral simulation software needs to accurately predict fragment ions and their peak

abundances. Most software produce different fragments and although better ranking results

are achieved with e.g. CFM–ID, the fragments are not always “chemically sensible” and in this

sense Mass Frontier is often more accurate because it makes use of reaction chemistry from the

reference literature. The quantum chemical simulation of Grimme (QC-EI-MS) is promising

and theoretically extendable to ESI but because of the complexity of the computational

tasks, the quantum chemical community needs to be engaged to solve this. It was discussed
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whether CFM–ID could “learn” rearrangements, but it needs the knowledge in advance

to do this; these cannot be exported from Mass Frontier. Toolkits used included RDkit

(C++/python) ChemAxon (free academic), CDK (limited reaction capabilities) – having an

active development community behind is essential. The need for more experimental data

was discussed, because more data could be used to improve modelling accuracy, once large

enough validation sets are available. It was debated whether the Markov approach behind

CFM–ID could be used to train intensities for some of the other in silico fragmenters. Last

ideas included treating the mass spectrum as a picture (picture recognition algorithm) and

whether mass spectral data should be uploaded to http://www.kaggle.com (a platform for

data prediction competitions) to get very good machine learners working on mass spectra.

5.2 Next Generation Computational Methods

The breakout group on next generation computational methods covered several topics.

A debate about identification measures covered whether the current scores for in silico

fragmenters are sufficient in separating the true from false matches and whether the score

should aim to pick the best candidate or rather show how good the prediction is, also

considering top K instead of top 1 (see also “Statistics”, below). The “Percolator approach”

was also discussed.

The next topic covered joint identification, using the presence of other substances to elevate

the ranks of “unknowns” with prior evidence, using mass differences and also clustering by

using multiple measurements as training sets to perform machine learning. Estimates included

requiring half the number of samples for the number of metabolites under investigation

(i.e. under 1000 samples for typical cases).

Finally, discussions ended with substances that are not in the databases and using

predicted transformations to help find potential candidates via biotic and abiotic reactions.

The presence of peptides, oligonucleotides, sugars and homologue series were also discussed,

including the potential to run all small poly-peptides, potentially up to 8, and add them

to the Global Natural Product Social Networking (GNPS) library. Discussions ended on a

summary figure from GNPS that showed that there is a lot of “dark matter” remaining and

very few known annotations, many of the unknowns are singletons.

5.3 Metadata and common input/output formats

The breakout group on metadata focused on what types of metadata would need to be

reported for a given study for it to be useful and discussed resurrecting an old SepML

standard using controlled vocabulary from existing ontologies. A large number of action

points were made, especially involving vendors and Proteowizard, to enable export of given

parameters into the open format. Points to discuss in the future remained most recent

separation advances: 2D LC and GC (liquid and gas chromatography) as well as ion mobility.

The group on common input/output formats discussed the need to explore common

parameters and formats between most software for small molecule identification. Two

different use cases evolved: development (simple text-based format, e.g. MGF, Mascot

Generic Format) versus pipeline integration once developed (fancy mzML-type format for

machine-readable properties). Software-specific parameters can remain flexible. The ability

of mzML to support structures may be a limitation with this format. Outputs in CSV files
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with common column headers or SDFs with common tags were discussed; developers should

not rely on a certain order in the CSV for maximum flexibility. Some discussions on potential

test data were made. These discussions will continue beyond Dagstuhl.

5.4 Integrative Omics

The breakout group on “integrative omics” discussed that the correlations between the

different omics levels are complex and the integration of metabolomics is poor, with no

computationally-feasible way to connect the layers. Several issues were discussed to address

the lack of interaction information between metabolites and genes/proteins, such as enzyme

reaction models, systematic studies of metabolite-protein binding (technically difficult to

find), collation of existing knowledge in a protein–metabolite–interaction database in a

machine-readable way, as well as computational methods needed to find novel pathways and

interactions between different levels (text-mining?).

The combination of transcriptomics with metabolomics was discussed, rather than pure

mapping, as this is more orthogonal that proteomics/metabolomics. This could be used

to find the most interesting sites in the networks and possibly even help build the network

if one could differentiate the data sufficiently. However, this may be hindered by different

time-scales as the metabolome changes extremely fast. Finally, correlation feature-based

instead of identification-based approaches were mentioned.

5.5 The Dark Matter of Metabolomics

The breakout group on the dark matter of metabolomics and in-source fragmentation

phenomena had a pretty wide ranging discussion focusing on the relatively low rates of

annotation of compounds/features from LC-MS studies using either MS level data, MS/MS

data, or infusion data. The consensus was that 30% seems to be an approximate maximum

success rate across labs. The need for a gold-standard ground truth dataset was stressed,

to evaluate the various steps in the data processing and annotation processes, from peak

picking/feature grouping through the final annotation and evaluation. The need for the

full utilization of all existing MS data, and supplementing with non-MS data (biology,

computation, NMR, etc) was reiterated to try and address the identification of real and

reproducible signals.

5.6 Statistics

The statistics breakout group discussed issues that arise when searching in larger (spectral

or molecular structure) databases. Currently, only relatively few compounds are identified in

an LC-MS run; when more compounds are putatively identified, this will come at the price

of more bogus identifications. This is independent of the fact whether we are searching in a

large spectral library, or a large molecular structure database. To this end, scores have to

be introduced that express a methods “confidence” that a certain identification is correct.

Beyond that, False Discovery Rates (q-values, p-values) would be very helpful to navigate the

putative identifications and to find reasonable thresholds of what to accept and what to reject,

similar to Shotgun Proteomics. We also discussed the problem of p-value corrections for
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repeated testing. Finally, we discussed how to combine orthogonal information for compound

identification into a single, statistically meaningful measure.

5.7 Metabolite Prediction

The metabolite prediction breakout group discussed two approaches to metabolite prediction:

1. iteratively: start from a set of known compounds, predict, confirm the existence and use

this information to refine predictions

2. databases: generate predicted metabolites from large sets of known compounds and filter

these “on the fly” – with the risk of combinatorial explosion

The consensus was that a combination of both approaches would be the most practical. As

only a fraction of the metabolites in a metabolic network are observed, multiple prediction

steps are need to be applied before a path can be confirmed, adding to the combinatorial

explosion issue. On the other hand instruments are becoming more sensitive and larger

fractions of (predicted) metabolites can be expected to be seen.

Big differences exist in the amount of data available in different “domains of metabolism”.

In some domains there is enough data to train probabilities (drugs), while in other domains

data is scarce and rules are more literature based. In the case of gut transformations rules

may represent what goes into a microbe and what comes out, rather than substrates and

products of an enzyme. The same may be true for environmental applications.

In addition to empirical or trained likelihoods of biotransformation, kinetic parameters

(from simulations) and thermodynamic parameters (which can be calculated) are useful

additional parameters to evaluate and prune predicted networks.

5.8 Data visualization

The data visualization group discussed the visualization of complex data in a biological

context. Interactive visualization allowing the navigation and exploration of data, going back

and forth between the data and the outcomes, was a main topic. The output devices were to

be “papers”/software/web apps. Another visualization challenge is looking at the large “lists”

of metabolite structures, for instance the hierarchical clustering of metabolite structures in

MetFragBeta, also shown in Figure 2 of Schymanski et al. 2014. Molecules in chemical space

can also be plotted in a PCA format using chemical descriptors, as done in Figure 4 from

Kuhn et al. 2009.

5.9 The CASMI contest

Steffen Neumann (Leibniz Institute of Plant Biochemistry – Halle, DE)

License Creative Commons BY 3.0 Unported license
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This breakout session discussed the Critical Assessment of Small Molecule Identification

(CASMI) contest, founded in 2012 (http://www.casmi-contest.org). The protein equival-

ent, CASP, has many more participants but took several years to establish and receives

considerable funding each year to run the contest. Several suggestions for future CASMIs
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were discussed. Participants requested raw data in addition to peak lists, with future peak

lists to be provided as MGF as a new standard format for identification tools, with chal-

lenges submitted to MassBank. A “spectrum-only” category was discussed, where common

candidate lists could be provided and no additional scoring criteria would be allowed, to

focus on only in silico fragmentation techniques. A detailed description of the analytical

conditions (chromatography, mass spectrometry) should be provided. The participants also

indicated that they would like a CASMI workshop to discuss the results after closure of the

contest; the current “outlet” is in the form of publications, with mixed success. A workshop is

under consideration for the 2016 contest. Ideas for future CASMIs included a staged contest

(automatic approaches first, results are then published on the website and then manual users

have a few more weeks), assigning manual users a sub-category of automatic categories,

to enable bigger automatic datasets for statistical robustness, and a “whole box” category

where all information sources are allowed. Nuclear Magnetic Resonance spectroscopy was

discussed as a new category, as there have been interesting developments recently. The idea

of a GNPS/CASMI continuous evaluation dataset was also received positively and there are

several challenges (unsolved) available on GNPS already.

5.10 Workflows

The workflow breakout group discussed standardized formats (see also Section 5.3) and that

mzTab and mzML would be the potential file types to incorporate all information needed.

Participants were strongly encouraged to pass on their ideas for standardization to the

Proteomics Standards Initiative (PSI) and ask them to integrate them (and also participate

in the initiative). The Spring PSI meeting (April 2016, Ghent) would be an opportunity

for this. There were some additional discussions on the contents of the standards as well.

Finally, although many pipelines try to get an “all in one” workflow, it was discussed about

whether to split workflows into parts, with the large divide (everything before you start to

work with statistics) and (after).

5.11 Feature Finding, Quantification, Labelling

Several topics merged into one breakout session. The computational challenges of quantifica-

tion were discussed, including

finding all features is challenging (needs to be more flexible/robust, e.g. slow-release

substances, presence of m/z and intensity shifts, physical interferences).

summing the signal to quantify.

feature alignment across samples is considered essentially solved.

still no clear idea what is the best normalization method, as this is dependent on

experimental design.

that experimental data contains no real ground truth, but while synthetic data is not

appreciated by experimentalists, this is essential for computational people.

reference datasets are available on the CompMS website.

From the experimentalists point of view, concentrations/quantification is needed to translate

detected metabolites to the biology; quantification can be used to model metabolic networks

and see fluxes. Instrument ionization is complex and formation of ions varies greatly with

structure. Internal standards (preferably isotopically-labelled) are needed; at least one per
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compound class. Standard additions also possible. The solvent composition can have a huge

influence on signal intensities, while the influence of acidity and polarity was also discussed.

Questions included whether to sum intensities from all adducts, or remove/ignore smaller

signals, how to extract response factors from runs and using ion current measurements to

correct for ESI spray fluctuation. Can adduct species be predicted? Labelling experiments

can yield even more information, including qualitative and quantitative flux measurements

and thus tracking origin and fate of metabolites, yet over 65 % of signals remain unidentified

despite labelling proving they have biological origin – see Section 5.5.

6 Hands-on Sessions

A number of small hands-on sessions were run during the meeting. The environmental

and xenobiotic session on Tuesday discussed data from different sources in detail and the

surprising complementarity observed in the production volume and patent data. At the same

time, a breakout on the SPectraL hASH (SPLASH) introduced this concept and determined

that these are now google-searchable. One participant now has a roadmap to contribute

his substances to MassBank, using MetShot and RMassBank. On the last day, a software

demonstration and feedback session was run across the whole morning and was enjoyed by

all participants with very honest and constructive feedback and discussions about different

approaches.

7 Wrap-ups

The seminar wrap-up started with expressions of interest for a commentary/perspectives

paper as a partial summary of discussions – over half of the participants were interested

and Pieter Dorrestein will take the lead. Focus on metabolomics and the extension to the

exposome and small molecule characterization (chemical genomics? chenomics?). Michael

Witting advertised a special issue about unknown identification coming up in J. Chrom. B

(deadline mid 2016). Lee Ferguson announced the Nontarget 2016 conference in Switzerland,

May 29 to June 3. A couple of new ideas such as a society for small molecule characterization

or a new open source journal were considered unlikely to get off the ground, but alternative

meetings such as in conjunction with the Metabolomics Society conference were considered

positively. All participants indicated that they had enjoyed the meeting and would come

again; none raised their hand for the opposite. The seminar wrap-up concluded with two

main questions:

1. Where do we want to be in a year?

Establishment of benchmark datasets and standard in/out data structure, improved data

and spectral sharing as well as using bioboxes for modular workflows.

2. How to we encourage more people?

Offer machine learning challenges, expose students to metabolomics, increase the data

availability, improve the community building efforts (with workshops such as this Dagstuhl

Seminar) and initiatives such as Computational Mass Spectrometry (CompMS), which

has coursework on computational metabolomics and proteomics.
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Excursion

The excursion on Wednesday afternoon was to Trier, including a city tour and the Christmas

market, before dinner near the cathedral. A good time was had by all.

8 Conclusion

The first Dagstuhl Seminar on Computational Metabolomics was a huge success with positive

feedback from all participants. A general observation was that metabolomics is in the state

that genomics was 20 years ago and that while the availability of data is holding back progress,

several good initiatives are present. The importance of small molecules to life should be

communicated properly to assist initiating a global metabolomics initiative, such as the

Human Genome project. Several follow-ups were discussed, including workshops, hackathons,

joint paper(s) and a new Dagstuhl seminar in two years similar to this one.

The organizers wish to acknowledge the contributions of Tobias Kind, who attended on

behalf of Oliver Fiehn, Franziska Hufsky and Céline Brouard who collected and typed the

hand-written abstracts as well as all participants for their contributions.
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