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Highlights 16 

- A procedure for Bayesian inference for agent-/individual-based models (AMBs/IBMs) 17 

- Implementation based on Particle Markov Chain Monte Carlo (PMCMC) 18 

- Good performance and insights into model behaviour for simple IBM with virtual data 19 

- Bayesian inference for AMBs/IBMs promotes advances in ecological research 20 

 21 

Abstract  22 

Parameter estimation for agent-based and individual-based models (ABMs/IBMs) is often performed 23 

by manual tuning and model uncertainty assessment is often ignored. Bayesian inference can jointly 24 

address these issues. However, due to high computational requirements of these models and technical 25 

difficulties in applying Bayesian inference to stochastic models, the exploration of its application to 26 

ABMs/IBMs has just started. We demonstrate the feasibility of Bayesian inference for ABMs/IBMs with 27 

a Particle Markov Chain Monte Carlo (PMCMC) algorithm developed for state-space models. The 28 

algorithm profits from the model’s hidden Markov structure by jointly estimating the system state and 29 

the marginal likelihood of the parameters using time-series observations. The PMCMC algorithm 30 

performed well when tested on a simple predator-prey IBM using artificial observation data. Hence, it 31 

offers the possibility for Bayesian inference for ABMs/IBMs. This yields additional insights into model 32 

behaviour and uncertainty and extends the usefulness of ABMs/IBMs in ecological and environmental 33 

research.  34 

 35 

Keywords  36 

parameter estimation; calibration; agent-based model (ABM); individual-based model (IBM); Particle 37 

Markov Chain Monte Carlo (PMCMC); approximate Bayesian computation (ABC) 38 

 39 

Software availability 40 

The IBM and the particle filtering were coded in Java using jdk 1.8, the MCMC algorithm was 41 

implemented in R 3.1. The Java Development Kit is freely available for various operating systems at 42 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html; R is 43 

freely available for various operating systems at https://cran.r-project.org/. 44 

All programming was performed by the authors if not stated otherwise and the code can be found in 45 

the SI. 46 

47 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://cran.r-project.org/
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1. Introduction 48 

Agent-based or individual-based models (ABMs/IBMs; used synonymously here) were introduced to 49 

consider the finite number of and variability among the entities modelled (e.g. animals, plants, 50 

farmers, households), their individual behaviour, and the local nature of their interactions in ecological, 51 

environmental, and socio-economic systems (Huston et al., 1988; Grimm, 1999; Brown, D.G.  et al., 52 

2004). IBMs describe all individuals in a population as individual entities and consider the stochastic 53 

nature of processes such as birth and death for which we can only estimate a probability. Additionally, 54 

in contrast to other stochastic models (e.g. stochastic population models), IBMs  explicitly incorporate 55 

individual characteristics (e.g. mass, life stage, phenotype) that differ among the individuals, they 56 

enable consideration of the spatio-temporal arrangement of organisms, and interactions among 57 

individuals (DeAngelis and Mooij, 2005). Hence, they contribute to the understanding of how system 58 

dynamics emerge from the variability and behaviour of individual organisms (Grimm and Railsback, 59 

2005). 60 

Typically, IBMs are more complex than other, in particular analytically tractable model types (Grimm 61 

and Railsback, 2005). They usually require Monte Carlo simulation even for forward modelling and 62 

common issues are longer runtimes and computer memory demands of IBMs compared to other 63 

model types. Hence, both model description and analysis may be impeded. In particular, when 64 

modelling is used for prediction, in research as well as in real world decision support, the assessment 65 

of model uncertainty is a very important task (Refsgaard et al., 2007; Reichert et al., 2015). Recently, 66 

much progress has been made in how to systematically describe and document IBMs, which facilitates 67 

their reproducibility and testing (Grimm et al., 2006; Grimm et al., 2010; Grimm et al., 2014). Despite 68 

the complex structure of these models, propagation of parameter uncertainty and of stochasticity of 69 

the modelled processes to model results is conceptually simple and numerically easy to implement by 70 

means of Monte Carlo simulation. This is, however, not the case for parameter inference (i.e. model 71 

calibration). Thiele et al. (2014) give an extensive overview of the possible approaches to analyse and 72 

calibrate IBMs, including practical examples. Additionally, pattern oriented modelling (POM, Grimm et 73 

al., 2005) has been suggested for constructing and calibrating IBMs (Topping et al., 2012) and other 74 

model types. Nevertheless, parameter estimation is often still performed in an ad-hoc manner, 75 

regularly relying on manual tuning, and assessment of model output uncertainty is frequently ignored.  76 

Bayesian inference offers a consistent framework for updating the current state of scientific knowledge 77 

about a system (model parameters and potentially also model structure) based on observed data 78 

(Ellison 2004; Gelman et al., 2014). As, in a Bayesian context, knowledge is described by probability 79 

distributions, this procedure intrinsically contains an assessment of uncertainty. Formally, Bayesian 80 

inference is based on the formulation of the model as a probability distribution of model outcomes for 81 
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given parameter values, the so-called likelihood function of the model, and another probability 82 

distribution describing prior information about parameter values. The posterior distribution of model 83 

parameters combines this prior knowledge on model structure and parameters with information from 84 

observed data corresponding to model outcomes. It is calculated as the normalized product of the 85 

prior distribution of the parameters and the likelihood function of the model with actual data 86 

substituted for the model outcomes.  87 

Except for very simple cases, Bayesian inference cannot be done analytically. For this reason, numerical 88 

schemes have been developed to sample from the posterior distribution of model parameters. 89 

Properties of the posterior distribution, such as its mean, variance-covariance structure, and marginal 90 

distributions of individual parameters, can then be derived from this sample. Commonly applied 91 

techniques to sample from a posterior for Bayesian inference are Metropolis or Metropolis-Hastings 92 

Markov chain Monte Carlo (MCMC) sampling schemes (Gamerman and Lopes, 2006; Gelman et al., 93 

2014; Hastings, 1970; Metropolis et al., 1953). These schemes are often easy to apply as they directly 94 

use the product of the prior times the likelihood function and do not require normalization of this 95 

product. However, due to the complexity of IBMs that typically contain various stochastic processes, 96 

it is practically unfeasible to evaluate their complete likelihood functions. For instance, because 97 

repeated IBM runs for a given parameter set will yield different results to a greater or lesser extent 98 

one cannot just run the IBM once and calculate the likelihood based on these results.  99 

There are two general approaches to deal with analytically intractable likelihoods: Approximate 100 

Bayesian Computation (ABC) techniques sample from the posterior by using approximate conditioning 101 

of simulations on the data (Albert et al., 2014; Beaumont, 2010; Csillery et al., 2010; Hartig et al., 2011; 102 

Marjoram et al., 2003). In addition, the dimensionality of the data is usually reduced by using summary 103 

statistics, ideally constructed with a minimum loss of information (Blum et al., 2013; Fearnhead and 104 

Prangle, 2012). Alternatively, the likelihood function can be approximated numerically, e.g. by fitting 105 

a parametric distribution to an output sample simulated from the likelihood, and then be used in a 106 

standard MCMC scheme (Hartig et al., 2014). While these general approaches are applicable to 107 

stochastic models of any structure, another option for approximating the likelihood may be beneficial 108 

that benefits from a specific model structure. Most IBMs have a “hidden Markov structure”. A model 109 

has a Markov structure if the future model states do not depend on the past other than through the 110 

current state. If the states are observed incompletely, the observations do not follow a Markov 111 

structure, and the underlying Markov structure of the states is hidden (or latent). This is typically the 112 

case in IBMs with observations consisting of time-series data (e.g. of abundances). Figure 1 illustrates 113 

this hidden Markov structure of a typical IBM consisting of individuals of a predator species and a prey 114 
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species at different life stages and with different masses for which observations are only available for 115 

the abundances of individuals exceeding a certain size (proportional to the weight). 116 

 117 

Figure 1: Illustration of a two-species IBM with individuals of either prey or predator species at different life 118 

stages and with different masses as a state-space or hidden Markov model. Circles depict individuals in the 119 

individual-based simulation (preys are represented in blue, predators in grey), the states xt are represented by 120 

all properties of the individuals necessary for the evolution to the next time step (only examples of the properties 121 

are given here), the observation process h(xt) filters for individuals large enough to be detected, and the vector 122 

N(t) consists of the observed abundances of the two species in the model. Note that the observation process is 123 

incomplete by not identifying eggs, not distinguishing juveniles (juv) and adults, and not resolving masses of the 124 

individuals. 125 

 126 

Particle Markov Chain Monte Carlo (PMCMC) methods (an MCMC technique including an internal 127 

particle filtering  or Sequential Monte Carlo (SMC) step for the state space) have been developed to 128 

estimate states and parameters of state-space or hidden Markov models. Such algorithms jointly 129 

estimate the system state and the marginal likelihood of the parameters by particle filtering based on 130 

the observations. Subsequently, they use this marginal likelihood in a Markov chain with a Metropolis 131 

acceptance/rejection step to estimate the model parameters. Particle filtering consists of propagating 132 

a sample of states (particles) through the state-space model (i.e. replicate model runs of the stochastic 133 

model) and re-sampling them iteratively at each time step based on importance weights to condition 134 

them on the observations. This class of algorithms was developed by Beaumont (2003), Andrieu and 135 

Roberts (2009), and Andrieu et al. (2010). Kantas et al. (2015) provide a comprehensive review on 136 

particle methods for parameter estimation in state-space models. These techniques have been applied 137 

successfully to state-space models in many application areas (e.g. Flury and Shephard, 2011; Golightly 138 

and Henderson, 2014), but have not yet reached attention in the ABM/IBM ecological modelling 139 

community.  140 
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Compared to ABC, we expect a gain in efficiency for PMCMC due to the re-sampling of the particles at 141 

each time step and thus profiting from the known model structure by guiding the solutions for the 142 

states (for given parameter values) by the observations. Owen et al. (2015) demonstrated that this 143 

may lead to an efficiency gain in particular for long time series. On the other hand, the number of 144 

particles has to be chosen large enough to avoid a strong bias and sufficiently small to guarantee 145 

efficiency. 146 

So far there has been insufficient experience with Bayesian inference for IBMs to provide 147 

recommendations on efficient numerical algorithms, and the scientific community is currently at a 148 

stage of evaluating the feasibility of selected numerical schemes (Hartig et al., 2014; Lagarrigues et al., 149 

2015; van der Vaart et al., 2015). In this study, we present a PMCMC algorithm as described above and 150 

its application to an ecological IBM. We aim at contributing to the evaluation of different numerical 151 

schemes for parameter estimation of individual-based stochastic models by testing the feasibility of 152 

this Bayesian inference algorithm using a two species IBM and artificial observation data.  153 

 154 

2 Material and Methods 155 

First, we describe the combination of the IBM with the observation model as a hidden Markov model 156 

(Figure 1) resulting in the likelihood function of the model. Then, we briefly introduce the concept of 157 

Bayesian inference and give a step by step description of the numerical implementation scheme of the 158 

PMCMC algorithm. Finally, we describe the application used to test the algorithm. 159 

2.1 Model Description 160 

The model consists of an individual-based, stochastic model of the dynamics of a simple predator-prey 161 

system and an observation model that describes the random observation errors of the observable 162 

abundances of the two species in the community. The observation model is needed to describe which 163 

features of the states are observable (here: abundances of sufficiently large individuals) and to 164 

consider the observation error of the abundances (or other state variables; note that observations of 165 

abundances in ecological systems are often highly uncertain depending on factors including the size of 166 

the animals, patchiness of the habitat or opportunities for hiding). Combining both models leads to the 167 

overall likelihood function. 168 

2.1.1 Individual-Based Community Model 169 

We use a model of a simple aquatic predator-prey system to test and exemplify the application of the 170 

algorithm for Bayesian inference with an IBM. The model is inspired by the differential equation based 171 

dynamic food web model Streambugs (Schuwirth and Reichert, 2013; Schuwirth et al., 2015) and by its 172 
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recent application to a mesocosm experiment with aquatic macroinvertebrates (Kattwinkel et al., 173 

2016). In the IBM, the prey feeds on an inexhaustible food source while the predator exclusively feeds 174 

on the prey. The model is based on the metabolic theory of ecology (Brown, J.H. et al., 2004; Sibly et 175 

al., 2013); the basal metabolic rate (rbasal i) of all individuals, i, scales with body mass and temperature. 176 

Additional individual variability in this rate is described by the parameter sdf basal. The vital rates (i.e. 177 

respiration, mortality and ingestion) are calculated from rbasal i by multiplication with the factors fresp 178 

and fresp egg (respiration; for hatched individuals and eggs, respectively), fmort and fmort egg (mortality), and 179 

fingest prey and fingest pred (ingestion; species specific for the prey and predator species, respectively). 180 

Additionally, the ingestion rate is modified by the available food density and by a density-dependent 181 

self-inhibition factor, which depends on the parameters Kdens prey and Kdens pred, respectively. Ingested 182 

food is used for maintenance (respiration), somatic growth and, for adults, accumulating reproductive 183 

mass. Egg laying takes place if sufficient reproductive mass has been accumulated, if it is the 184 

reproductive season of the species, and if sufficient time since the last reproduction event has passed. 185 

A detailed model description based on the ODD (Overview, Design concepts, and Details) protocol 186 

(Grimm et al., 2006; Grimm et al., 2010) is given in the SI. 187 

The current state of the system at time t is described by a state vector, xt, which contains all relevant 188 

information to perform the next time step (Figure 1). In our example xt consists of the species types, 189 

life stages, somatic and reproductive masses, elapsed times since the last egg laying event, the 190 

maximum masses attained so far, and individual specific parameters of all individuals in the 191 

community. Based on this information, the dynamics of the population is Markovian, i.e. the future of 192 

the system does not depend on information from the past other than that contained in xt. This means 193 

that we can formulate the time evolution of the community over discrete time intervals from 𝑡𝑗−1 to 194 

𝑡𝑗 by an initial distribution and a stochastic, iterative time-evolution: 195 

𝑿𝑡0
 ~ 𝑓0(𝒙𝑡0

 | 𝜽) 

𝑿𝑡𝑗
 ~ 𝑓𝑗 (𝒙𝑡𝑗

|𝒙𝑡𝑗−1
, )    ,   for 𝑗 ≥ 1   . 

 (1)  

In these equations, 𝑿𝑡 is the vector of random variables representing the probability distribution of 196 

the state, xt,  is the vector of model parameters (combining the parameters of the time evolution and 197 

the observation model (see below)), f0 describes the initial distribution of the state vector, and fj, 𝑗 ≥198 

1 describes the evolution step from time 𝑡𝑗−1 to time 𝑡𝑗 according to the IBM. Hence, according to 199 

equation (1), the dynamics of the model is defined by the probability density of the initial state, f0, and 200 

the conditional probability densities of succeeding states, given the previous state, fj. Note that the 201 

conditional probability densities fj extend over state vectors 𝒙𝑡𝑗
 of different lengths because individuals 202 
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may die and eggs may be laid (Figure 1). When formulated for a constant time step, all fj for 𝑗 ≥ 1 203 

would be the same. However, to allow for irregularly spaced time steps, we make fj dependent on j. 204 

Given the model equations (1), the joint probability density of all states is given as 205 

𝑓(𝒙𝑡0
, … , 𝒙𝑡𝑛

|) = 𝑓0(𝒙𝑡0
 | 𝜽) ∏ 𝑓𝑗 (𝒙𝑡𝑗

|𝒙𝑡𝑗−1
,)    .

𝑛

𝑗=1

  (2)  

The formulation of the time stepping function, fj (𝑗 ≥ 1), in equation (1) is based on growth and 206 

respiration that affect the individual mass, on the survival probability given the death rate, on 207 

predation and on egg laying (keeping environmental influence factors constant over the time step). 208 

Several parameters in this relationship are formulated probabilistically. Due to the large and varying 209 

numbers of individuals, this leads to a probability density of the states given in equation (2), which is 210 

not easily tractable analytically but it is easy to draw samples from it, i.e. run simulations with the IBM.  211 

2.1.2 Observation Model 212 

For each observation time point, t, the observation model first extracts the vector of observable 213 

abundances of the modelled species, Nt, from the comprehensive state vector, xt: 214 

𝑵𝑡 = 𝒉(𝒙𝑡)   .  (3)  

In our example, the function h accounts for the fact that no eggs and only individuals greater than a 215 

certain minimum mass are sampled in the observation process (e.g. with a mesh of a certain mesh 216 

size). Note that in contrast to the random variable Xt, the length of which depends on the number of 217 

individuals in the community, the length of the vector Nt always equals the number of different species 218 

present in the model (in our case two) (Figure 1).   219 

Propagation of the probability distribution of the time series of states 𝑿𝑡0
, …, 𝑿𝑡𝑛

 (2) induces a 220 

probability distribution of the observable abundances at 𝑛 time points: 221 

𝑃IBM(𝑵𝑡1
, … , 𝑵𝑡𝑛

|𝜽) = ∫ 𝑓(𝒙𝑡0
, … , 𝒙𝑡𝑛

|) 𝑑𝒙𝑡0
⋯ 𝑑𝒙𝑡𝑛

    .

ℎ(𝒙𝑡1)=𝑵𝑡1
,…,ℎ(𝒙𝑡𝑛)=𝑵𝑡𝑛

 (4) 

This distribution represents our knowledge of the observable abundances as estimated by the model. 222 

Note that we allow for an initialization time of the model and thus start predicting observations at time 223 

t1 rather than at t0. 224 

As the observation process induces additional uncertainty due to errors related to sampling, identifying 225 

and counting organisms, we need a probabilistic model that describes the observation uncertainty for 226 

true abundances given. Following Kattwinkel et al. (2016) and references cited therein, we use a 227 

negative binomial distribution to describe this process for aquatic invertebrates. Due to patchiness of 228 
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individuals observations of abundances are often overdispersed (i.e. the variance, , is larger than the 229 

mean, ) compared to a Poisson distribution (with 2 = ) that would be adequate to describe counts 230 

of uniformly distributed individuals. We parameterize this negative binomial distribution using the 231 

parameter k, according to Elliot (1971): 232 

𝑘 =
𝜇2

𝜎2 − 𝜇
    . (5) 

The observation process is described by: 233 

 234 

𝑃obs(𝑵𝑡
obs|𝑵𝑡, 𝜽) = ∏

Γ(𝑁𝑡,𝑖
obs + 𝑘)

Γ(𝑘) ⋅  𝑁𝑡,𝑖
obs!

 ⋅ (
𝑘

𝑘 + 𝑁𝑡,𝑖
)

𝑘

⋅ (
𝑁𝑡,𝑖

𝑁𝑡,𝑖 + 𝑘
)

𝑁𝑡,𝑖
obs𝑚

𝑖=1

   , (6) 

where  is replaced by the modelled abundance of species i, Nt,i, m is the number of species, and k is 235 

an element of the overall parameter vector . 236 

2.1.3 Marginal Likelihood Function 237 

To predict observations, we have to combine the individual-based model (1) or (2) with the observation 238 

model given by the equations (3) and (4). This leads to the marginal likelihood function (i.e. integrated 239 

over the not directly observed states at the observation time points) for the observed abundances: 240 

𝑃marglikeli(𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs|𝜃)

= ∫ 𝑓0(𝒙𝑡0
 |) ∏ 𝑓𝑗 (𝒙𝑡𝑗

|𝒙𝑡𝑗−1
, )

𝑛

𝑗=1

∏ 𝑃obs (𝑵𝑡𝑗

obs |𝒉(𝒙𝑡𝑗
), 𝜽) d𝒙𝑡0

… d𝒙𝑡𝑛
    .

𝑛

𝑗=1

 
(7) 

As mentioned above, the joint density of the states is not easily tractable analytically. This is even more 241 

difficult for the marginal integral (7), which requires approximate treatment. 242 

2.2 Bayesian Inference 243 

2.2.1 Concept 244 

The aim of Bayesian inference is to update prior knowledge about model parameters using 245 

observations (measurements) of some model output. To this end, we formulate the conditional 246 

probability distribution of the parameters given observations using the model likelihood function 247 

(section 2.1.3) and the prior probability distribution of model parameters. 248 

Applied to the present context, the posterior probability density of model parameters, 𝑓post, after 249 

learning from the observed abundances of species, 𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs, is proportional to the product of 250 
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the marginal likelihood, 𝑃marglikeli, with the actual observations substituted for 𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs, and 251 

the prior probability density of the parameters, 𝑓pri: 252 

𝑓post(𝜽|𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs) ∝ 𝑃marglikeli(𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs|𝜽) 𝑓pri(𝜽)    . (8) 

This equation is very difficult to evaluate due to the complicated structure of 𝑃marglikeli (see equation 253 

(7)). For this reason, we have to rely on numerical techniques to derive properties of 𝑓post from a 254 

sample drawn approximately from this distribution. 255 

2.2.2 Numerical Implementation 256 

The observable abundances, Nt, are functions of the states, Nt= h(xt), which are observed with an 257 

observation error (equations (3) and (6)Error! Reference source not found.). As these abundances are 258 

not a complete description of the states, the model does not have a Markov structure for Nt. To profit 259 

from the hidden Markov structure of the model, we chose a Particle Markov Chain Monte Carlo 260 

algorithm (PMCMC) for estimating the states and approximating the marginal likelihood by particle 261 

filtering, and estimating the parameters with a Metropolis sampler based on the approximated 262 

marginal likelihood. This algorithm was developed by Beaumont (2003), Andrieu and Roberts (2009), 263 

and Andrieu et al. (2010) for state-space models (with constant lengths of the states, 𝒙𝑡𝑗
). 264 

 265 
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  266 

Figure 2: Flowchart of the PMCMC algorithm combining MCMC for model parameters with particle filtering for 267 

states. Numbers refer to the steps in the scheme given in the text. Blue dots visualize the particle filtering.  268 

 269 

The PMCMC algorithm is based on the steps (Figure 2): 270 

1. Set m = 0 (index for Markov chain sample of parameters). 271 

2. Choose initial parameter values, 𝜽0. 272 
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3. Sample np replicates (particles), 𝒙𝑡0

1 , … , 𝒙𝑡0

𝑛𝑝 from 𝑓0(𝒙𝑡0
 |𝜽𝑚). 273 

4. Set j = 1 (index for time points). 274 

5. For all replicates, l=1,…,np, sample 𝒙𝑡𝑗

𝑙  from 𝑓𝑗 (𝒙𝑡𝑗
|𝑿𝑡𝑗−1

= 𝒙𝑡𝑗−1

𝑙 , 𝜽𝑚). 275 

6. For all replicates, l=1,…,np, calculate 𝑤𝑗
𝑙 = 𝑃obs (𝑵𝑡𝑗

obs |𝒉(𝒙𝑡𝑗

𝑙 ), 𝜽𝑚) using the actually 276 

observed data for 𝑵𝑡𝑗

obs. 277 

7. Resample 𝒙𝑡𝑗

1 , … , 𝒙𝑡𝑗

𝑛𝑝 using normalized importance weights proportional to 𝑤𝑗
𝑙 to get an 278 

equally weighted sample 𝒙𝑡𝑗

1 , … , 𝒙𝑡𝑗

𝑛𝑝 of 𝑿𝑡𝑗
. 279 

Note that this is an unweighted sample of 𝑓 (𝒙𝑡𝑗
|𝒙𝑡0

, … , 𝒙𝑡𝑗−1
, 𝑵𝑡1

obs, … , 𝑵𝑡𝑗

obs, 𝜽𝑚) ∝280 

𝑃obs (𝑵𝑡𝑗

obs |𝒉(𝒙𝑡𝑗
), 𝜽𝑚) 𝑓𝑗 (𝒙𝑡𝑗

|𝒙𝑡𝑗−1
, 𝜽𝑚) according to equation (9)Error! Reference 281 

source not found. since we draw from 𝑓𝑗 (𝒙𝑡𝑗
|𝒙𝑡𝑗−1

, 𝜽𝑚) and resample using weights 282 

proportional to 𝑃obs (𝑵𝑡𝑗

obs |𝒉(𝒙𝑡𝑗
), 𝜽𝑚). 283 

8. If j < n increase j to j+1 and continue with step 5, otherwise continue with step 9. 284 

Note that after reaching j = n we have a sample of size 𝑛𝑝 of the states conditional on the 285 

observed abundances and the parameters (𝑿𝑡0
, … , 𝑿𝑡𝑛

|𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs, 𝜽𝑚). 286 

9. Calculate the approximate marginal likelihood as 𝑃̂marglikeli(𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs|𝜽𝑚) = ∏ 𝑤𝑗̅̅ ̅𝑛
𝑗=1  287 

with 𝑤𝑗̅̅ ̅ =
1

𝑛𝑝
∑ 𝑤𝑗

𝑙𝑛𝑝

𝑙=1 . 288 

See below for a derivation of this step. 289 

10. If m = 0, continue with step 13, otherwise with step 11. 290 

11. Accept 𝜽𝑚 with probability min (1,
𝑃̂marglikeli(𝑵𝑡1

obs,…,𝑵𝑡𝑛
obs|𝜽𝑚)𝑓pri(𝜽𝑚)

𝑃̂marglikeli(𝑵𝑡1
obs,…,𝑵𝑡𝑛

obs|𝜽𝑚−1)𝑓pri(𝜽𝑚−1)
) , otherwise set 𝜽𝑚 291 

to 𝜽𝑚−1. 292 

Note that this is a standard Metropolis acceptance/rejection step except that the marginal 293 

likelihood was replaced by its numerical estimate calculated with the particle filter. 294 

12. Stop if Markov chain of parameters is sufficiently long (check convergence). 295 

13. Set m to m+1, sample a new parameter vector 𝜽𝑚 from a normal distribution around 296 

𝜽𝑚−1 and continue with step 3. 297 

Note: Another symmetrical proposal distribution would also work. A conventional 298 

adaptive scheme, e.g. by adapting the step length based on the current acceptance rate 299 

and manually updating the covariance matrix based on the samples accepted so far, can 300 

be used initially to find a proposal distribution that leads to an efficient Markov chain 301 
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sampler. A Metropolis-Hastings scheme could also be used; the non-symmetrical proposal 302 

distribution would then have to be considered in the acceptance probability in step 11. 303 

 304 

The approximation of the likelihood in step 9 is based on the following: We need to derive conditional 305 

probability distributions to iteratively condition the states, 𝒙𝑡𝑗
, on the data, 𝑵𝑡1

obs, … , 𝑵𝑡𝑗

obs, and to 306 

factorize the marginal likelihood. First, the state at time 𝑡𝑗 can be conditioned on the previous state at 307 

time 𝑡𝑗−1 and the observation at time 𝑡𝑗 as follows (the interpretations of functions f and P without 308 

indices are defined by their arguments): 309 

𝑓 (𝒙𝑡𝑗
|𝒙𝑡0

, … , 𝒙𝑡𝑗−1
, 𝑵𝑡1

obs, … , 𝑵𝑡𝑗

obs,) = 𝑓 (𝒙𝑡𝑗
|𝒙𝑡𝑗−1

, 𝑵𝑡𝑗

obs,)

=
𝑃 (𝑵𝑡𝑗

obs |𝒙𝑡𝑗−1
, 𝒙𝑡𝑗

, 𝜽) 𝑓𝑗 (𝒙𝑡𝑗
|𝒙𝑡𝑗−1

, 𝜽)

𝑃 (𝑵𝑡𝑗

obs |𝒙𝑡𝑗−1
, 𝜽)

∝ 𝑃obs (𝑵𝑡𝑗

obs |ℎ(𝒙𝑡𝑗
), 𝜽) 𝑓𝑗 (𝒙𝑡𝑗

|𝒙𝑡𝑗−1
, 𝜽)    . 

(9) 

This equation allows us to sequentially sample the states 𝒙𝑡𝑗
 (from one observation time point to the 310 

next). Second, the marginal likelihood can be factorized as follows: 311 

𝑃marglikeli(𝑵𝑡1

obs, … , 𝑵𝑡𝑛

obs|𝜽) = 𝑃1(𝑵𝑡1

obs|𝜽) ∏ 𝑃𝑗 (𝑵𝑡𝑗

obs |𝑵𝑡1

obs, … , 𝑵𝑡𝑗−1

obs , 𝜽)

𝑛

𝑗=2

    , (10) 

with 312 

𝑃1(𝑵𝑡1

obs|𝜽) = ∫ 𝑓0(𝒙𝑡0
 |)𝑓1(𝒙𝑡1

|𝒙𝑡0
,)𝑃obs(𝑵𝑡1

obs|𝒉(𝒙𝑡1
), 𝜽)d𝒙𝑡0

d𝒙𝑡1
 

𝑃𝑗 (𝑵𝑡𝑗

obs |𝑵𝑡1

obs, … , 𝑵𝑡𝑗−1

obs , 𝜽)

= ∫ 𝑓𝑗 (𝒙𝑡𝑗
|𝒙𝒕𝒋−𝟏

, ) 𝑓 (𝒙𝑡𝑗−1
|𝑵𝑡1

obs, … , 𝑵𝑡𝑗−1

obs , 𝜽) 𝑃obs (𝑵𝑡𝑗

obs |𝒉 (𝒙𝑡𝑗
) , 𝜃) d𝒙𝑡𝑗−1

d𝒙𝑡𝑗
     , 

𝑗 > 1    . 

(11) 

This equation allows us to calculate a numerical approximation to the marginal likelihood as it is 313 

needed for parameter inference (see equation (8)). Hence step 9 is an approximation to the equations 314 

(10)Error! Reference source not found. and (11)Error! Reference source not found. in which the 315 

integrals have been replaced by averages over all replicates, the terms 𝑓𝑗 (𝒙𝑡𝑗
|𝒙𝑡𝑗−1

, 𝜽𝑚) and 316 

𝑓 (𝒙𝑡𝑗−1
|𝑵𝑡1

obs, … , 𝑵𝑡𝑗−1

obs , 𝜽𝑚) are considered by using the sample of 𝑿𝑡𝑗−1
 after resampling and that of 317 

𝑿𝑡𝑗
 before resampling, and 𝑃obs (𝑵𝑡𝑗

obs |𝒉 (𝒙𝑡𝑗
) , 𝜽𝑚) is equal to the weights 𝒘𝑗

𝑙. 318 

 319 
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2.3 Application 320 

To test the proposed algorithm, we ran the IBM to generate a sample of artificial data. To this end, 321 

parameter settings were chosen resulting in stable population dynamics (SI, Table S1). For 322 

environmental input we used water temperature measurements of an outdoor stream mesocosm 323 

experiment, interpolated to daily values. We chose on observation period of two years and sampled 324 

every 37 days, resulting in 20 data points. In this example, we assume the observation parameter k 325 

(=20) to be known. For real world applications, it could be estimated from independent observations 326 

or be part of the model parameters inferred.   327 

To test the dependence of the algorithm’s performance regarding the number of inferred parameters 328 

and their identifiability, we chose nine parameters that modify the individual vital rates and are easy 329 

to interpret: five parameters describing general aspects (fresp, fmort, fresp egg, fmort egg, sdf basal) and four 330 

species specific ones (fingest prey, fingest predator, Kdens prey, Kdens predator). We inferred the parameters 331 

individually, in pairs of two, and jointly. We used log-normally distributed priors with the mean given 332 

by the true value used for data generation and a relative standard deviation of one. We approximated 333 

the marginal likelihood in the particle filtering step based on 100 particles (i.e. replicate model 334 

simulations). Model initialization is described in the SI. For joint estimation of all nine parameters, we 335 

applied 20 replicate chains of the PMCMC algorithm, and for estimation of one or two parameters at 336 

a time we used three replicates. These replicates were used to test for convergence (based on Gelman 337 

and Rubin’s potential scale reduction factor using the function gelman.diag in the R package coda 338 

(Plummer et al., 2006)) and to improve the numerical accuracy of the result. 339 

We assessed the impact of the number of particles on the marginal likelihood approximation by 340 

comparing the mean and variance of the marginal likelihood estimate for 10, 20, 50, 100, 500 and 1000 341 

particles. To this end, we repeated the marginal likelihood estimation (i.e. the particle filtering steps 342 

3-9) 100 times for 22 different parameter sets of nine parameters (true value, maximum posterior and 343 

20 random samples from the MCMC chains).  344 

The IBM and the particle filtering steps were coded in Java, and the MCMC algorithm was implemented 345 

in R (R Core Team, 2015). Parallelization was used to run several MCMC chains in parallel but not for 346 

the IBM or the particle filtering step. 347 

3 Results 348 

3.1 Algorithm performance 349 

The suggested PMCMC algorithm performed well in our example, hence convergence was reached 350 

(Gelman and Rubin’s potential scale reduction factor ≤ 1.02, upper confidence limit ≤ 1.03 for all 351 
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parameters). To achieve convergence in the MCMC chains with nine inferred parameters, more than 352 

15000 iterations with 20 chains in parallel were necessary after a burn-in period of 1000 iterations (the 353 

burn-in period was short due to optimised starting values and covariance matrices from preliminary 354 

runs). The whole process required more than three weeks. One iteration within the algorithm 355 

consisting of 100 replicates, 20 observation time points and 2604 simulation time steps took 356 

approximately 90 s on 2.5 GHz CPUs.  357 

To keep the computational burden within acceptable limits, we ran the algorithm with the minimum 358 

number of particles that led to an acceptable bias in the marginal likelihood. In our case, we used 100 359 

particles to reduce the bias in the estimates (Figure 3; see SI Figure S1 for similar plots for all 22 360 

parameter sets). Obviously, the use of more particles would increase the accuracy of the calculation.  361 

In stochastic models, model simulations for a particular set of parameter values might by chance result 362 

in an exceptionally good fit, even if the number of particles is high. To prevent the MCMC algorithm 363 

from getting stuck when the marginal likelihood by chance was very high, the approximate marginal 364 

likelihood was recalculated if no new parameter set was accepted for 20 iterations, i.e. the particle 365 

filtering step was repeated for the last accepted parameter set. Note that this step should be avoided 366 

if possible as the convergence proof relies on not resampling the marginal likelihood. However, in the 367 

current application, this recalculation was necessary in only 0.38 % of all iterations (approx. 1100 times 368 

in more than 300000 iteration steps). Hence, we accept this small bias in order to speed up the 369 

parameter inference process. Increasing the number of particles would decrease the frequency of such 370 

an event, while it would further increase the computation time of each MCMC step (Figure 3). 371 

 372 
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 373 

Figure 3: Boxplots of samples of the approximate marginal log likelihood for the maximum posterior data set as 374 

a function of the number of particles. The numbers on top give the variance based on 100 repetitions for each 375 

number of particles.  376 

 377 

3.2 Comparison of prior and posterior distributions 378 

When comparing marginal posterior with marginal prior distributions, a narrowing in the posterior 379 

indicates a gain in information resulting from new data. Additionally, the maximum of the posterior 380 

may be shifted compared to the prior. A small difference between a marginal prior and posterior 381 

indicates insufficient information in the data to learn about this parameter value, possibly due to 382 

correlations between parameters or due to insensitivity of the model results to the parameter.  383 

When parameters were inferred individually (one at a time), the identifiability of most parameters was 384 

good. This is reflected in a narrow posterior around the true value, e.g. for the parameter Kdens prey, 385 

which describes the half-saturation constant for self-inhibition of prey (similar to Figure 3 A). When 386 

two or more parameters were inferred jointly, the identifiability depended on the parameter 387 

combinations. For instance, Kdens prey was easy to infer if estimated together with Kdens predator (Figure 4 388 

left). However, Kdens predator was not identifiable (very similar prior and posterior marginals) because the 389 

model is insensitive to this parameter at the chosen values for the other parameters. There was only 390 

a weak correlation present between these two parameters. Kdens prey was no longer identifiable when 391 

inferred jointly with the parameter fingest prey, the multiplication factor of the basal metabolic rate for 392 

ingestion, due to the strong correlation of these two parameters (Figure 4 right). 393 
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  394 

Figure 4: Comparison of marginal prior and posterior probability densities (A, B, D, E) and visualization of joint 395 

two dimensional posterior probability densities and the corresponding correlation coefficients (Spearman’s ρ; C, 396 

F). Left: joint inference of parameters Kdens prey and Kdens predator; right: joint inference of parameters Kdens prey and 397 

fingest prey; all other parameters were fixed at the values used for data generation. Grey area: marginal prior 398 

probability density; black line: marginal posterior probability density; grey line: true value used for data 399 

generation, black dashed line: parameter value at the maximum posterior density (A, B, D, E). Grey to blue colour 400 

gradient: posterior density at sample points; black line: local smoother (C, F). 401 

 402 

When we inferred nine parameters jointly, some were clearly identifable and the parameter values at 403 

the overall maximum posterior density was in accordance with the true values used for data generation 404 

(fmort, fmort egg, fingest prey, fingest predator; Figure 5). For fingest predator, the maximum posterior estimate was slightly 405 

shifted toward smaller values. Other parameters were not identifiable. Again, some strong parameter 406 

correlations were present (fresp – fingest predator Spearman’s ρ = 0.79, fmort – fmort egg ρ = -0.85, fingest prey – 407 

Kdens prey ρ = -0.78; SI, Figure S2).  408 
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 409 

Figure 5: Marginal prior and posterior probability densities for the joint inference of nine parameters; all other 410 

parameters were fixed at the values used for data generation. Grey area: marginal prior probability density; 411 

black line: marginal posterior probability density; grey line: true value used for data generation; black dashed 412 

line: parameter value at the maximum posterior density. 413 

 414 

3.3 Comparison of observations and simulations 415 

The simulation results of the particle filtering run with the parameter values at the maximum posterior 416 

density corresponded well with the observations (Figure 6 dark grey area; joint estimation of nine 417 

parameters). By conditioning the simulations on the observations, the particle filtering algorithm 418 

“dragged” the simulations towards the observations (particularly visible in the predator simulation). 419 

The range of the simulation outputs of the run with the maximum posterior density indicated the 420 

stochasticity of the model. The simulations using a sample from the posterior were slightly wider than 421 

those at the maximum posterior, as would be expected (Figure 6 medium grey area). Moreover, 422 

simulations without particle filtering (posterior check) using a sample from the posterior were still 423 

wider but also captured the pattern in the dynamics and the observations lay within the simulation 424 

results (Figure 6, light grey area). 425 
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  426 

Figure 6: Population dynamics over time displaying the posterior knowledge of the true predator and prey 427 

abundances. Observed abundance used for parameter inference (white dots); distribution of predicted 428 

abundances conditioned on the observations at the maximum of the posterior of the parameters, 429 

𝒉(𝑿𝒕|𝑵𝒕𝟏
𝐨𝐛𝐬, … , 𝑵𝒕𝐧

𝐨𝐛𝐬, 𝜽𝐦𝐚𝐱 𝐩𝐨𝐬𝐭), visualized by the 5 – 95% quantile range of 100 particles used (dark grey area) 430 

and the median (black line); analogous distribution considering the full posterior, 𝒉(𝑿𝒕|𝑵𝒕𝟏
𝐨𝐛𝐬, … , 𝐍𝐭𝐧

𝐨𝐛𝐬, 𝜣𝐩𝐨𝐬𝐭) 431 

(medium grey area), using 5000 samples from the posterior of the parameters and one sample simulation from 432 

100 particles from each of these; posterior check depicted by the 5 – 95% quantile range of one run each without 433 

particle filtering using 5000 samples from the posterior of the parameters (light grey area). 434 

4 Discussion 435 

In this study, we successfully demonstrate the applicability of a PMCMC algorithm for parameter 436 

inference for IBMs with time-series data. The MCMC chains converged and yielded interpretable 437 

posteriors distributions. Additionally, predictions from the posterior covered well the observations. 438 

Due to the lack of studies using alternative techniques for Bayesian inference of IBMs in ecological 439 

research, we cannot quantitatively validate our results. However, due to the good performance of the 440 

algorithm we are confident that the PMCMC approach chosen is a feasible way of doing Bayesian 441 

inference for IBMs. One drawback of the approach is the relatively long computation time of one 442 

MCMC step (~90 s, depending on the number of particles) and thus the long runtime necessary to 443 

reach convergence in the MCMC chains. Hence, the approach is not yet applicable to more complex 444 

IBMs with longer runtimes. Long runtimes and high resource demand are general problems of IBMs, 445 
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increasingly attenuated, however, by ever-growing computing capacity. Parallelization of both the IBM 446 

as well as the algorithm (i.e. running the replicate simulations in parallel) would increase the 447 

computation speed and thereby enhance the range of applicability of the approach. This should be 448 

kept in mind when implementing the IBM. Another technical difficulty might be the particle sampling 449 

at each observation time step. To this end, the complete state of the IBM, including all individuals and 450 

their current properties, needs to be stored and replicated. This can require considerable storage 451 

capacity.  452 

A sufficiently large number of particles used for inference is crucial to avoid bias of the likelihood 453 

approximation. On the other hand, the number has to be limited to keep the run time in feasible limits. 454 

A compromise can be found by testing the stability of the likelihood approximation based on a sample 455 

of parameter sets (e.g. from the prior) with various numbers of particles as demonstrated in Figure 3. 456 

The optimal number of particles needs to take into account both the efficiency of the algorithm 457 

(including acceptance rate; i.e. not getting “stuck”) and the computing time and it depends on the bias 458 

and variance in the approximated likelihood for one particular parameter set. The variance found with 459 

100 particles tested for several parameter sets (Figure 3 and Figure S1) was in general below the value 460 

of 3.28 recommend for this variance under the assumption of unbiased estimates of the likelihood 461 

(Sherlock et al., 2015). Due to the typically longer run times of IBMs compared to other stochastic 462 

models, the overall run time of the inference process might still be large even for an optimised number 463 

of particles.  464 

As this was one of the first proofs of a concept concerning a numerical implementation of Bayesian 465 

inference of model parameters for IBMs, there are several research directions that should be explored. 466 

One direction is to test the potential of alternative approaches and compare them directly for the same 467 

IBM. One option are rejection methods that sample from the prior to propose new parameter values, 468 

including rejection ABC (Marchand et al., 2015; van der Vaart et al., 2015). These techniques have the 469 

disadvantage that they can be expected to be much less efficient than the algorithm presented, 470 

particularly if there is significant information gain. This disadvantage may be partially offset by the ease 471 

with which extreme parallelization can be utilized (Marjoram et al., 2003). ABC can also be applied 472 

within an MCMC approach (Foley et al., 2015). Both may profit from the fact that only one run per set 473 

of parameter values is needed in contrast to several ones in the particle filtering approach. Additional 474 

options are other ABC techniques, e.g. the simulated annealing approach to ABC (Albert et al., 2014). 475 

All these ABC approaches do not explicitly make use of the hidden Markov model structure and 476 

therefore may have a disadvantage in terms of efficiency but might over-compensate for that by other, 477 

more efficient aspects. An additional advantage of the PMCMC presented is that it does not rely on 478 

summary statistics, which can lead to a substantial loss of information (Robert et al., 2011). Owen et 479 
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al. (2015) concluded that for stochastic kinetic models, PMCMC was mostly more efficient than ABC in 480 

particular for longer time-series data with fine temporal resolution. This advantage may decrease with 481 

increasing stochasticity of the model behaviour between consecutive observation time steps that 482 

decreases the efficiency of the particle filtering process. In such cases, in addition to a finer temporal 483 

resolution of the observations, ideas to increase the efficiency of the particle filtering process, such as 484 

the use of a fast approximation (Golightly et al., 2015) may become important. Another research 485 

direction is to try to improve the efficiency of the approach presented and compare the PMCMC 486 

approach chosen with an SMC-SMC approach that also applies particle filtering for parameter 487 

inference (Chopin et al., 2013). Eventually, performance comparisons of different approaches for 488 

different IBMs may lead to guidelines regarding which method to choose for which inference problem.    489 

In conclusion, the algorithm presented was capable of estimating the parameters of a two-species IBM 490 

from artificial data. Hence, the PMCMC algorithm offers a new possibility for parameter estimation 491 

and uncertainty assessment for IBMs. It demonstrates the feasibility of Bayesian inference for IBMs, 492 

at least currently for IBMs with relatively short runtimes. We hope that our study will stimulate the 493 

development of even more efficient numerical implementations of Bayesian inference for IBMs and 494 

their application. This may significantly advance environmental and ecological research with IBMs due 495 

to additional insights into model behaviour and uncertainty in particular when compared to forward 496 

simulations to which ecological studies with ABMs/IBMs are currently often limited. 497 
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