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Abstract

New types of sanitation services are emerging to tackle the sanitation crisis in informal settlements.
These services link toilet facilities to semi-decentralized treatment plants via frequent, road-based
transport of excreta. However, information for the planning of such sanitation services is scarce, and
their future operating conditions are highly uncertain. The key questions of this paper are therefore: a)
what are the drivers behind success or failure of a service-based sanitation system in informal
settlements and b) on what scales and under which conditions can such a system operate successfully?
To answer these questions, already at an early stage of the planning process, we introduce a stochastic
model to analyze a wide range of system designs under varying technical designs, socio-economic
factors, and spatial condition. Based on these initial results, we design a sanitation service and use the
numeric model to study its reliability and costs over a wide range of scales, i.e., system capacities, from
very few to many hundred users per semi-decentralized treatment unit. Key findings are that such a
system can only operate within a narrow, but realistic range of conditions. Key requirements are toilet
facilities, which can be serviced rapidly, and a flexible workforce. A high density of facilities will also
lower the costs. Under these premises, we develop a road-based sanitation service and model its
functionality in different settings and under many scenarios. Results show that the developed sanitation
system using a single vehicle is scalable (100 — 700 users), can provide reliable service, and can be
cheap (< 1.5 c/p/day). Hence, this paper demonstrates opportunities for road-based sanitation in

informal settlements and presents a quantitative framework for designing such systems.

1. Introduction

Deficient sanitation poses a major risk to human health (Priiss et al.,, 2002) and environmental
sustainability (UNDP, 2014). The problem is pronounced in informal urban settlements where poor
accessibility, the uncertain legal status of the inhabitants, and fast, unplanned development impede the
implementation of sustainable sanitation systems. This is the case for the toilet infrastructure, and even
more for the reliable transport of human waste, a precondition for later safe discharge and treatment

(Katukiza et al., 2012; Liithi et al., 2010).
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2

Traditionally, there are two approaches to sanitation system design: On-sife treatment systems with
long-term storage, or off-site treatment systems based on immediate transport of human waste via sewer
lines (Katukiza et al., 2012), and subsequent (semi-) centralized treatment. Currently, on-site solutions
serve up to 2.4 billion users, especially in low-income contexts where the installation of capital-
intensive off-site solutions such as sewers is out of reach (WHO/UNICEF, 2012). Most on-site solutions
require long retention of human waste and large storage volumes to ensure sufficient waste stabilization.
This is a major challenge in informal settlements due to scarce space, unclear ownership, and the
prohibitive costs of constructing appropriate on-site storage volumes (Paterson et al., 2007). A new
generation of sanitation services has emerged to address the needs of the growing population that is
served neither by off-sife solutions (i.e. no access to sewers) nor on-site treatment (i.e. there is
insufficient space for long-term storage). Sanitation services connect toilet facilities to semi-centralized
treatment units through a frequent (e.g. weekly) demand-driven transport and service system (e.g.
Loowatt, 2014; XRunner, 2014; Sanergy, 2015). The small amount of excreta accumulating between
services allows the use of sealable storage containers for the safe and nuisance-free handling of excreta.
Smaller amounts of excreta may be transported with standard vehicles on the existing road
infrastructure, thus reducing investments while increasing system flexibility.

However, the required regular emptying of sanitation facilities and the transport of excreta to a
treatment facility via the road network poses new challenges. Service systems are now common in
informal settlements, e.g. for the distribution of consumer goods (Gates, 2010), but the level of service
available for individual households is often limited (Kariuki and Jordan Schwartz, 2005), as is the
information about these systems (UNHABITAT, 2013; Sharholy et al., 2008; Langenhoven and Dyssel,
2007). The planning of transport-based sanitation services is challenging with regard to: (1) the a-priori
specification of system design parameters based on very sparse information (e.g. performance of the
service vehicle, working habits); (2) expected large fluctuations in future operating conditions, e.g.
fluctuating use of toilets or the future expansion of the sanitation system. All these unknown factors lead
to a situation of deep uncertainty where neither potential future risks (e.g. system overloads or financial
failure) nor the probability of their occurrence can be readily estimated. Such a situation of deep

uncertainty impedes the application of typical planning approaches (Lempert et al., 2003). As a
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3

consequence, sanitation services in informal settlements are commonly based on ad-hoc organization,
resulting in low service quality and ultimately in system failure (Murungi and van Dijk, 2014).

New approaches, such as bottom-up or robust decision-making (e.g. Brown et al., 2012), enable
planning under conditions of deep uncertainty, e.g. regarding future climatic conditions. These
approaches are increasingly promoted as an appropriate response to the planning challenges in emerging
economies and dynamically growing mega-cities (Ranger and Garbett-Shiels, 2012). Bottom-up
planning strategies are often based on numerical system models which allow the a-priori identification
of risks and validation of systems functioning over a wide range of uncertain future operating conditions
(Brown et al., 2012; Hallegatte, 2009). Such approaches identify trade-offs between competing goals as
well as risks within and outside the system in order to develop robust designs and to foresee and avoid
critical future conditions (Lempert et al., 2006; Lempert and Collins, 2007).

In this paper, we demonstrate how such a bottom-up approach can be beneficial for planning robust
sanitation services in urban informal settlements. We implement a planning framework for sanitation
services based on a flexible, stochastic model. The model is contextualized to specific informal
settlements via a probabilistic analysis of spatial data derived from widely available, free-of-charge,
satellite imagery. In the planning framework, the initial design of a sanitation service system is based on
an exhaustive analysis of possible future operating conditions and potential risks, resulting in a system
design that balances system cost and performance and is robust under a wide range of operating
conditions. Performance of that system is then modelled under a large number of different conditions
and for different system scales. The purpose of the modeling method is thus to identify a transport
system, which will work under a large number of possible (uncertain) conditions.

The stochastic model allows the high uncertainty relating to sanitation planning at early planning stages
to be addressed. Potential future critical conditions are identified a-priori by analyzing a high number of
future scenarios. In the early steps of the modeling process, we only learn which parameters are most
important and how they roughly influence the viability of a given transport system (e.g. we learn how
costs depend on the emptying time of toilet facilities). In the later steps of the model, we include more

site-specific information, e.g. about the transport distances in a given settlement.
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4

The methodology was developed within a project on the Blue Diversion Toilet (Larsen et al., 2015),
financed by the Bill & Melinda Gates Foundation. We thus use the financial constraints formulated in
this call (maximum costs of 0.05 US$/person/day for the entire sanitation service) for measuring the
possible success of a transport system. However, the methodology is equally valid for all other

sanitation services intended for informal urban settlements, albeit the specific model may look different.

2. Materials and Methods

The proposed framework is based on a stochastic numerical model of the day-to-day functioning of a
sanitation service system (see Appendix 2). The modeling takes place in four steps starting with a rough
screening procedure and ending with the modeling of specific scenarios in specific settings (Figure 1).
In step 1, a numerical model for the sanitation system is used to analyze the functioning of a sanitation
system for a wide range of technical, socio-economic, and spatial parameters. Parameter ranges are
derived from literature or expert-based without considering a specific design. Performance targets are
defined based on certain project premises (e.g., daily cost per user as compared to purchasing power). A
sensitivity analysis identifies a) parameters that affect the system performance most and b) ranges of the
identified sensitive parameters for which performance targets are matched (section 2.3.1). Step 2
(section 2.3.2) focusses the system design on these most sensitive parameters, and results in a
preliminary design of the system. Step 2 also includes scenario development, i.e., possible future
operating conditions (e.g., in terms of user numbers), design alternatives (e.g., in terms of vehicle
selection), or operational strategies (e.g., in terms of employees and payment schemes). Step 3 (section
2.3.3) describes how spatial parameters for a specific informal settlement can be measured in a
probabilistic manner from satellite imagery. These data are used to contextualize the model for a
specific informal settlement. The probabilistic approach allows to contextualize the model even without
knowledge on the actual system layout in that settlement (i.e., where toilet and treatment facilities are to
be located), and it allows to consider scenario-specific decisions (from step 2), i.e., how many users to
connect, or how often toilets need to be emptied. Step 4 (section 2.3.4) takes up the designs and
scenarios from step 2, and uses the sanitation service model (see step 1) to model the functioning of the

sanitation service for each scenario and in each specific setting defined in Step 3 over the entire life-



118

119

120

121

122

123

5

time of the system. Step 4 estimates the system performance (e.g. in terms of costs and service capacity)
and the probability of system failure for each scenario (failure or success is defined by performance
targets set in step 1). Identifying scenarios under which the system fails or succeeds allows estimating
the functioning of the system under a wide range of conditions and identifying conditions (e.g., in terms
of system capacity, technical designs, or transport solutions) under which the system will be likely to

operate successfully.
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2.1.Numerical model development

We developed a stochastic numerical model that dynamically simulates the filling of 1 ...ng, facilities
and their emptying through a demand-driven sanitation service system (for a full list of variables see
Appendix 1, for a detailed description of the model see Appendix 2). ng,. is defined by the total system
capacity (number of users connected), and the number of users per toilet facility. The model simulates a
service vehicle traveling between facilities on service rounds. A service round begins and ends in the
central treatment unit. During each service round, the service personnel travels between full facilities,
empties them, and returns to the central treatment unit as soon as the capacity of the vehicle is reached.
The number of rounds the vehicle can complete is limited by the length of a working day. The model
results in two measures of system performance: 1) service capacity (number of users served) and 2) cost

per user.

2.2.Case Study

We demonstrate the application of the proposed framework for a sanitation system designed within the
“Reinvent the Toilet Challenge” (RTTC) program initiated by the Bill and Melinda Gates Foundation.
RTTC aimed to develop novel sanitation solutions for the urban poor based on some initial premises,
mainly competitive costs below 0.05 $/user/day and applicability in dense informal settlements. General
details are available from http://www.bluediversiontoilet.com and (Larsen et al., 2015), technical aspect
of toilet facility design are discussed in Kiinzle et al., (2015). User acceptance of the toilet facilities and
service system was high under field conditions (Tobias et al., 2017).

Within the project, a household-level sanitation service based on source-separating toilet facilities
connected to a semi-centralized treatment facility (resource recovery plant, RRP) by a corresponding
transport system was designed based on the herein proposed framework. We defined a performance
target for costs (Ctoryser»> including transport and emptying) of below 0.015 $/user/day (= 30% of total
cost limit). The limited availability of space in dense informal urban settlements led to an initial
technical design with shared, low-storage toilet facilities (each toilet facility consisting of two separate

toilet interfaces; (Larsen et al., 2015)). We targeted 20 users (approx. 4 families) per toilet facility.
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These facilities are equipped with exchangeable containers for feces that are exchanged on average
twice a week for empty ones when full. Urine is stored in built-in containers emptied by electrical
pumps. Both types of containers have a few days of storage capacity (on average 3.5 days), and both
urine and feces are transported by a small service vehicle. The facilities are equipped with basic
telemetry to signal their fill-level to the service provider at pre-defined times such that timely service
can be scheduled. We define that the system fails if not all facilities that require service are serviced on
the day that they are full. Such a failure should not occur on more than 5% of days (we selected 5 % as a
typical threshold in engineering applications; Brown et al., 2012). Full facilities that are not serviced in
time will then add to the service demand on the next day. Obviously, the call-for-service is activated
before the toilet is full: if the signal is for instance given in the morning, the toilet must be usable during
the entire day because service may only be provided in the evening. We do not explore the costs and
benefits of any safety factors, neither do we model the use of continuous real-time information on the
fill level. In reality such features could facilitate the planning process, e.g. by leading to premature
emptying of ‘nearly-full” facilities on days with otherwise little activity, but such refinements of the
model are beyond the scope of this paper. The transport system should operate within the cost limit for
small system capacities or low user densities (e.g. defined as user per hectare) to enable initial system
implementation without subsidies and reduce financial risk. Based on these premises, we derived initial
ranges for the system parameters and validated these parameters with sanitation practitioners during
various workshops (for illustrative purposes, Table 1 already introduces the results of this consultation).
Parameters are assumed to be uniformly distributed, because for many parameters, only minimum and

maximum values were available in step 1.

Table 1: Initial parameter distribution for a sanitation service system. Parameters are assumed to be
uniformly distributed between minimum and maximum values. Modeling is performed for a service system

with only one vehicle and one RRP per system. For the initial modeling in Step 1, one worker per vehicle is

assumed.
Parameter Min Max Unit
Cost of capital, interest lcap 3 6 %

Distance facility-facility rac-Fac 10 1000 m
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Distance treatment - facility drr-Fac 10 1500 m

Facility holding capacity CaPragmax 100 300 kg

Fraction of facilities on path frath 0 100 %

Fuel consumption Tfyel 0 4 |/km

Fuel price Priel 1 2 5/

distance on foot path dpan 0 0.15 km

Product accumulation rate my .

(urine) 0.4 2 l(urine)/user/d
Product accumulation rate myr

(feces) 0.2 0.5 kg(feces)/user/d
Payment, service worker s 3 8 S/worker/d
Service time per facility tserv 5 60 min/facility
Vehch.e maximum transport Ccapvmax 100 800 kg

capacity

Inltlfal capital costs (vehicle and c¢o 550 3500 §

equipment)

Vehicle speed on roads Vioad 1 5 km/h

Walking speed on paths Vpath 0.1 1 km/h

Working hours / day Umax 4 12 h/d

Three informal settlements with distinct spatial properties were selected as potential implementation
sites. Settlement S1 (32°35'20,017"E, 0°20'56,66"N) and S2 (32°35'6,422"E, 0°21'7,435"N) are located
in Kampala, Uganda, and settlement S3 (81°35'39,7"E, 21°13'30,048"N) in Raipur, India. They
represent a sparsely populated, peri-urban settlement (S1), a dense, urban settlement (S2), and a
situation where dense pockets of informal settlements are separated by areas of regular housing
development (S3). A household survey is available for S1 and S2: it states an average household size

close to five (Tumwebaze et al., 2014). The same household size was applied to S3.

2.3. Developing a robust planning framework for sanitation services

2.3.1. Step 1: Decision space analysis

For the analysis of the decision space, the model is run many times and the values of its input
parameters are obtained from a Monte Carlo approach (Rubinstein and Kroese, 2011) according to the

defined uniform distributions (Table 1). We identified those of the parameters shown in Table 1, to
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which system capacity and costs are most sensitive, i.e., which have the highest impact on system
performance. Correlating the most sensitive parameters and the system performance allows low-
dimensional, visually interpretable representations of system performance, known as system response
functions (Brown et al., 2012), to be derived for both system costs and capacity. The system response
functions also map critical thresholds of system performance within the decision space. For this paper,
we ran 25,000 independent simulations and derived system response functions in two steps. First, we
applied a sequential forward-feature selection algorithm (FSA) to identify the most sensitive system
parameters. We selected this approach for its relative simplicity and computational efficiency (Saeys et
al., 2007) as well as for its standard implementation in the modeling environment (The MathWorks,
Inc., 2014). Within this algorithm, we implemented a neural network as a flexible, nonlinear
explanatory model (May et al., 2008). Second, the system performance was mapped throughout the
entire parameter space for the two most sensitive parameters. For this mapping, we selected an

analytical formulation of the form

Ryp=axpy,, +bxpyy, t+c EQ1

where p; and p, define the two first parameters selected by the FSA. The subscript m refers to any
analyzed model output, i.e. cost or capacity. R,, can be evaluated analytically throughout the parameter
space for p; and p,. The response function can then be analyzed visually. From this visualization, we
identify the ranges of p; and p, that result in a system performance matching the performance target.

Obviously, accuracy is lost during the process of converting the original model into the lower-
dimensional response function (Brown et al., 2012). Additionally, a more detailed analysis of system
sensitivity, by using the Sobol or similar methods (Saltelli et al., 2008), for instance, can be
implemented in the future. However, this is not a major limitation at this point because the system
response function only provides initial guidance towards preliminary system designs (i.e. the planner
gets a rough idea of what is possible and what is not), while the actual system design is analyzed in

more detail in step 4 using the full model.
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11
2.3.2.  Step 2: Preliminary system design and scenario building

The development of a preliminary system design is a central step of the proposed methodology. Based
on the system response functions found in Step 1, the planner defines the sensitive parameters within a
range that is likely to lead to sufficient system performance. At the same time, more effort is spent on
the collection of realistic information, especially on the sensitive parameters, in order to make sure that
it is also possible to obtain a given performance in reality (‘reality check’). This work can be based on
common sense, literature, expert interviews, or even specifically designed field work and surveys. With
this information in mind, the planner will define scenarios to be tested in more detail. These scenarios
must help inform the business model and business plan of an entrepreneur wanting to start a sanitation-
service business: which vehicle is preferable, how many workers must be hired, which payment scheme
is suitable, how profitable is the business in the different stages of development, when will additional
capital be required, etc.

The specific results of Step 2 are a more detailed estimate of the system design parameters, including

uncertainty, and a set of relevant scenarios to be simulated.

2.3.3.  Step 3: Contextualization

The aim of the contextualization step is to represent the spatial characteristics of a specific informal
settlement in the stochastic model by measuring the empirical probability distributions of the spatial
parameters defined in Appendix 1 (drgc-rac> Arr—Fac) Apach, and fpqen) from remote sensing data.
These parameters are relevant, a) because they directly impact system performance while in turn being
b) a function of certain design decisions or variable between scenarios (e.g., users per facility and thus
total facility number and distance between facilities)). Hence, step 3 takes up results from step 2, and
uses them in a geo-spatial analysis based on free-of charge remote sensing data. Since the location of
toilet facilities and treatment plants are unknown at this early planning stage, the geo-spatial analysis
(referred to as contextualization) approach has to be probabilistic.

The analysis is performed in a standard Geo Information System (e.g. ESRI ArcGIS, or the (open-

source) QGIS). Most GIS software allow to access high resolution satellite imagery, e.g., from Google
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Maps, or Bing Maps (this analysis was based on imagery derived from Bing Maps in ArcGIS). With the
increasing availability of satellite data, it is likely that such data are now available for nearly all
geographic settings, and will remain free of charge in the foreseeable future. The satellite images are
used to delineate the road network of the settlement and to identify dwellings and potential locations for
the treatment plants (open areas > 200 m’, close to major roads) in the settlement. The road network is
classified visually either as footpaths (unusable by larger service vehicles) or larger roads. The result is
a digital representation of the roads in a settlement as a network structure. Please note that informal
settlements are characterized by very simple infrastructure and that even larger roads will mostly be
unpaved and not subject to much traffic.

For the interpretation of the satellite images, we assumed that each dwelling accommodates one
household and is a potential location for a toilet facility (however, toilet facilities are to be shared
amongst multiple households; see section 2). Candidate locations for toilet facility are selected as a

subset of size lf4. of the dwellings, where ¢, is defined by

Lige = £@Psys_ EQ 2

Nyger, fac

e.g. if the system capacity is 200 users (capsys = 200) and one facility is shared among 20 users (see
section 2, Nyger rac = 20), then ten of the mapped dwellings are randomly selected to represent a toilet
facility. Next, we identify for each toilet facility the nearest point in the road network and determine if it
is on a road, or on a footpath. On this basis, we calculate the fraction of toilet facilities on footpaths,
f path-

A shortest-path algorithm (Dijkstra, 1959, as implemented in ArcGIS 10.0) can then be used to measure
the shortest route between any pair of system elements based on the digitized road network. For
facilities that are assigned to a footpath, we use the same routing algorithm to determine the distance on
that footpaths to the next road, dp,:,. We also use the routing algorithm to measure the mean distance
from each candidate site for the treatment plant to all accessible (i.e., located on roads) toilet facilities.

We select that location for the treatment facility that minimizes the distance to all accessible facilities.
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The application of this shortest path algorithm is based on the assumption that the worker is able to find
a good route based on his/her experience.

Measuring the distance distributions between toilet facilities is more complex, because it requires the
service interval of the toilet facilities to be considered in the measuring procedure. This is because the
facilities are not emptied daily, so it is not sufficient to measure the distance from each facility to its
direct neighbor. When the service person has finished servicing a toilet facility, he/she has to travel to
the next full toilet facility. However, there is a high probability that the next facility will not require
servicing. This probability, P, is defined by

P=1- EQ3

lserv

where ig., 1S the mean service frequency for the facilities. The probability that none of the nextny

toilet facilities requires service is approximated by:

P =(1- i:ﬁ)"" EQ4
Where i, is the average service interval (in our system 3.5 days, see section 2), and ny was determined
such that P’;< 0.05 (meaning that that there is a 95% probability to find a full facility within the nearest
ny facilities). Based on EQ 5, there is thus a 95 % probability that for our system, the next full facility
will be found amongst the neighboring 9 facilities (ny = 9). On that basis, the routing algorithm
determines the travel distance (i.e.,dpqc_Fqc) from each accessible toilet facility to its ny neighbor
facilities. This method allows us to consider the impact of service frequency on inter-facility distances:
the higher the service frequency (which is defined in the system design step by setting the holding
capacity and user number of facilities) and the more facilities are installed in a given area (which is
defined by the scenarios, i.e., how many users are to be connected to the system), the lower will be the
travel distances between facilities.

These procedures yield empirical distributions for drge_fac, drr—pac, and dpgen. Empirical

distributions are transformed to analytical ones to represent spatial characteristics within the stochastic
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system model. In this study, the selection of an analytical distribution that best represents the measured
empirical distribution was performed according to the methodology proposed by (Sheppard, 2012). If
the stochastic model is used to simulate systems of different sizes (i.e. the number of users connected to
the system), the measurement of the spatial parameters must be repeated for each system capacity.

The specific results of Step 3 are the optimal position of the treatment plant and stochastic formulations
of the empirical distances between plant and facility and between full facilities, the number of facilities

on paths, and the distances from facilities on paths to the next road.

2.3.4.  Step 4: Scenario analysis

We parametrized the model according to the preliminary design defined in Step 2 and the spatial
parameters derived in Step 3. The model simulates the system behavior for different scenarios for a
large number of future conditions. For our case study, we ran the model for 15 years of continuous
system operation (5,475 times) for each scenario. Values of model parameters that can change from day
to day (e.g., excreta accumulation in each facility is very likely to vary from day to day) or from round
to round, are re-sampled in each run or in each round. The model results identify scenarios for which the
sanitation system matches the performance targets in terms of reliability and costs.

If the performance is insufficient for all scenarios, step 2 would be repeated: The system design must be
changed and/or new scenarios developed. Step 4 should be repeated during system implementation
when practical experience will allow the model parameters to be updated, thus enabling a continuous re-

evaluation of long-term system performance under observed field conditions.

3. Results

Step 1: Decision space analysis

As first step, we performed a Monte Carlo simulation with 25000 runs. We applied the FSA to the
results and identified those input parameters (i.e., all parameters listed in Table 1) that correlate most to

system cost and capacity (i.e., to which cost and capacity are most sensitive).
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Table 2 shows the results of this analysis, i.e., the cumulative R? that is reached by adding additional
input variables to the explanatory model in the FSA (see section 2.3.1). The FSA selected four variables
for capacity and seven for costs and the final, cumulative R? is above 0.9 for both capacity and costs. It
should be noted that we considered system capacity in the analysis of system costs, even though system
capacity is an output of the model and not an input variable. We did this because system capacity (i.e.,
how many users are connected to the system) strongly impacts cost per user through the split of fixed

costs amongst all users.

Table 2: Input parameters selected by the FSA and resulting cumulative R’ for system capacity and costs

a) SYSTEM CAPACITY (caps,;) [USERS]

1. 2. 3. 4.
Added input Maximum Service time Vehicle Vehicle
parameter working  per facility speed on capacity
hours/day roads
tmax Z‘Serv VRoads Cap V,max
Cumulative R’ 0.579 0. 854 0.937 0.980

b) SYSTEM COSTS (Cioruser) [$/USER/DAY]

1. 2. 3. 4. 5. 6. 7.
Added input Fuel Distance System Fuel price  Distance Vehicle Payment,
parameter consump- facility- capacity RRP to capacity service
tion facility facility person
7_' fuel dF ac-Fac cap, Sys p fuel d Tr-Fac Capy,max S
Cumulative R’ 0.376 0.685 0.753 0.820 0.862 0.896 0.934

Service capacity correlates strongly with operational (working hours) and technical (service time per
facility) parameters. Vehicle parameters (i.e. speed or capacity) are of less importance. Costs correlate
above all with fuel consumption and inter-facility distances. System capacity, i.e. how many users are
connected within a given area, was selected as a third parameter.

Based on Table 2, graphical system response functions were generated from EQ 1 to illustrate the
dependence of system capacity and costs on the first two variables selected in each case (Figure 3a.b).
For system costs, a second response function was derived (Figure 3¢) considering the second and third
selected variables (inter-facility distances, system capacity), in order to qualitatively evaluate the impact

of different strategies for system up-scaling on the costs per user.
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In accordance with the results of the feature ranking (Table 2), the response function for system capacity
(Figure 3a) has a higher correlation (R*=0.85) with the model results than the cost response function
(Figure 3b; R*=0.65). The second cost response function reaches only a low R* (0.35). This response
function represents general trends rather than giving an accurate picture of the system behavior (Figure

3c).
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Figure 2: System response functions for capacity (a) and cost (b and c). To assess scale effects, a second
cost response function (c) was derived. The dashed red line in b and b indicates the cost limit. Lower-case
letters and arrows in c refer to different expansion strategies and their impact on costs as discussed in the

text.
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System capacities up to 2000 users (Figure 3a) are attainable with one vehicle and one service person
per vehicle and the costs are below the threshold value (< 0.015$/p/d) for a wide range of system
conditions (Figure 3b). Nevertheless, high system capacities require long working hours (> 8 hours/day)
and very rapid (<5 min/facility) servicing of facilities. With eight working hours per day available and
reasonably fast (15-20 min) emptying of facilities, the system can reach a capacity of 1250 users. A
system with such fast-emptying facilities, but a lower user number does not require a full-time worker.
For instance, a system for 750 users and with facilities that can be emptied in 20 minutes requires only 5
hours of daily labor. In turn, a system for which the service time of facilities is longer (~40 min) can still
reach a capacity of 750 users if one full-time (i.e., 8 hours/day) worker is available. The cost target
(0.015 $/user/day) is not exceeded for a wide range of system conditions, indicating high flexibility with
respect to vehicle selection, spatial characteristics, and user number of the servicing system (Figure 3b).
For systems with short distances between facilities (< 100 m) and a relatively fuel-efficient vehicle (< 1
L/h), servicing can be provided at around one third of the maximum cost. The second cost response
function (Figure 2¢) demonstrates how changing system capacity and the spatial distribution of users
(i.e., distances between facilities) impact costs. In comparison to a system that just meets the cost limit
(Figure 2c, point a), costs could be decreased by decreasing the distances between facilities, i.e., by
connecting the same user number within a smaller area (moving from point a to b in Figure 2¢). Cost
can also be decreased by increasing the system capacity. System capacity can be increased through two
strategies, either by spatial expansion, i.e., increasing system capacity without decreasing travel
distances (moving from point a to ¢ in Figure 2c¢), or by densification, i.e., increasing system capacity by
including new users within a given area (moving from point a to d in Figure 2¢). It is evident from

Figure 2c that densification has the highest potential to reduce costs per user.

Step 2: Preliminary system design and scenario building

On the basis of the findings in step 1, we designed a system with input parameters that would have a
high chance of leading to a successful transport system. We targeted a system based on a single service
vehicle and a service time of around 25 minutes, aiming at a system capacity of 700 to 1000 users

(Figure 3a). We focused the scenario development on vehicle selection, payment schemes and upscaling
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of the system (i.e., increasing system capacity), all parameters of high importance for the financial
viability of the transport system. We considered only vehicles commonly used in informal settlements,
specifically a manual pushcart (requiring two workers) and a motorized two-wheel tractor (requiring
only one worker) with a detachable trailer (Coffey and Coad, 2011). We again assumed that there is
only one vehicle and one RRP per system. Each vehicle needs to be equipped with a small wheelbarrow
to access narrow footpaths. The capacity of such a wheelbarrow is assumed to be around 200 kg,
defining the upper limit for the holding capacity of the facilities (Larsen et al., 2015). We represented
the uncertainty in all parameters by using a normal distribution with ¢ = 0.1-p, as no empirical data on
the distributions of these parameters were available.

We included ten different system capacities in the scenario analysis. The area covered by the sanitation
service is fixed, i.e. users are distributed in the entire area for low system capacities, and the area is not
expanded for high system capacities (i.e., densification is simulated). In total, we analyzed 120
scenarios (2 vehicles*2 payment schemes*3settings*10 user densities). For each scenario, we evaluated
the cost per user, the actual capacity (i.e. how many facilities are serviced in a day?) as well as the
service demand (i.e. how many facilities need to be serviced in a day for a given system capacity?). We
calculated the failure probability by comparing service capacity and service demand on each day, i.e.
this probability measures the number of days during which service demand exceeds service capacity.
The model considers that unserved facilities add to the next day’s service demand. Hence, unserved
facilities accumulate in the system if service demand constantly exceeds service capacity. A system that
can service unserved facilities from the previous day on the next day can display an increased failure

probability, but the average service demand and capacity should not diverge.

Table 3: Parameter distribution for the proposed sanitation service system resulting from the preliminary
system design process. Distributions of spatial parameters will be derived empirically for selected case

study sides in Step 3 and are thus left undefined here.

Parameter i c Unit Reference
Cost, Labor
Payment scheme 1 S1 0.5 S/facility #
Payment scheme 2 S5 5 S/worker/day
Distance betw. facilities  dracrac Empirical m *

Distance RRP facility drr-rac Empirical m
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Facility holding capacity = capracmax 200 kg !
Fraction of facilities on Lpath Empirical % *
path
Fuel demand I'fuel ?
2-wheel tractor 2 0.2 I/h
Pushcart
Fuel price Druel 1.6 0.16 S/I }
Length of path dpath Empirical km *
Product accumulation my 1.1 0.11 /(urine)/user/d
Product accumulation mpr 0.23 0.023 kg(feces)/user/d N
Service time tserv 25 2.5 min/facility !
User number Nyser 100-1000 user !
Vehicle capacity capy,max 2
2-wheel tractor 600 60 kg
Pushcart 300 30 kg
Vehicle maximum speed  Vioaa #
2-wheel tractor > 0.5 km/h
Pushcart 2 0.2 km/h
Speed on paths Vpath 0.3 0.03 km/h #
Working hours lmax 8 0.8 h/d !

T Larsen et al. (2015); (Coftey and Coad, 2011); * World Bank (2015); * Porto and Steinfeld 2000;
Schouw et al. 2002; * Field interviews (Kampala, Uganda), or expert based; * from contextualization
(Section 4, Step 3)

Step 3: Contextualization

Figure 3 shows satellite images of the three settings and clarifies their various spatial characteristics.
Table 4 summarizes the basic spatial characteristics of each setting. Key findings are that increasing
facility density and user number effectively shortens travel distances between facilities independently of
settlement structure and road infrastructure. This is of relevance for the sanitation-service system
because the results in Step 1 indicate that both user number and inter-facility distances affect the costs
(see Figure 3c). Increasing user density thus acts on two central controls and has a major potential to
decrease costs per user.

For S1, there are multiple candidate RRP positions and a low fraction of dwellings on footpaths.
Distances are longer than for the other settings because the total settlement area is larger. S2, in contrast,
is characterized by a small settlement area, a high settlement density, and poor road connections. There
is a single candidate RRP position, and many dwellings are located on footpaths. However, distances
between dwellings on paths and the next road are relatively short. The spatial characteristics of S3

represent conditions between S1 and 2 with regard to all parameters.
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We measured the distances between facilities (dpy.—pqc) and between treatment plants and facilities
(dry—pqc) for system capacities of 100 to 1000 in steps of 100 users (equivalent to 5 to 50 facilities in
steps of 5 facilities). We report the results in terms of user density for a better comparison between
settings (Figure 4). RRP-facility distances (Figure 4a) are longest for S3 and shortest for S1. RRP-
facility distances do not decrease with increasing facility numbers as new facilities are added at random
locations throughout the settlement. Increasing the system capacity from 100 to 1000 users results in an
average reduction of 74% in inter-facility distances (Figure 4b). In addition, the variability of these

distances decreases strongly with increasing user numbers.
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429 Figure 3: Satellite image of the three settings, including households, the potential and optimal RRP position
430  and road infrastructure.
431

432 Table 4: Characteristics of three selected study areas in terms of population density, spatial setup and

433 accessibility to households.

Settlement Total Population density Candidate % of houses Path length
area [ha] Population [p] Ip ha'] RRP positions on paths Mean/Max [m]
S1 28.9 3700 128 9 46 34.1/177
S2 6.0 3120 520 1 83 26.6/68
S3 9.8 3163 320 7 55 21.4/81
434
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436 Figure 4: Correlation between increasing user densities (i.e. user per hectare) and required travel distances
437  between RRP and facilities (a) and in between facilities (b) for the three settings shown Figure 3.
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Step 4: Scenario analysis

We evaluated the performance for 15 years (5475 runs) of each of the 120 scenarios in terms of service
capacity (limit: service capacity < service demand at less than 5% of runs) and costs per user (limit:

0.015 $/user/day).

System Capacity

The pushcart-based service system is suitable for systems with a capacity of up to 400 — 500 users. It is
evident from Figure 5 (left y-axis) how the number of serviced facilities, N (boxplots in Figure 5),
increases with increasing system capacities. However, N reaches a limit at 12 (S3), 11 (S1) and 10 (S2)
facilities, translating into a system capacity of 840 (S3), 770 (S1) and 700 (S2) users (20 users per
facility). This means that a pushcart-based service system is suitable for up to 700 — 840 users. For
higher user numbers, the number of serviced facilities, N, and service demand, D (triangular markers in
Figure 5), start to diverge, indicating that full facilities accumulate in the system (see cutout in Figure
5). However, the failure probability already exceeds 5% for much lower system capacities (Figure 5,

circle markers, right y-axis): 400 users in S1 and S2, and 500 users in S3.

The motorized service system is suitable for up to 700 — 800 users (Figure 6). N increases with system
capacity, reaching a maximum of 14 facilities (corresponding to 840 users) per day independent of the

setting (
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Figure 6). The failure probability is close to 0 for system capacities between 100 and 600 users and

exceeds the 5% threshold only above system capacities of 700 (S1 and S2) and 800 users (S3),

respectively. By comparing service demand D (triangle markers in Figure 6) and the median of serviced

facilities, N (box plot in Figure 6) it is evident that there is only a small (< 0.5 facilities/day) divergence

between service demand and the number of serviced facilities even for large system capacities. Hence,

the motorized service system cannot guarantee on-time service in 15% (S3) to 35% (S2) of the time for

the maximum system capacity, but it could service unserved facilities on subsequent days.
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Figure 6: Serviced facilities and service demand (left y-axis) , and the resulting failure probability (right y-

axis) for a motorized service system for 100 — 1000 users.

System Cost

The median costs of a pushcart-based service system with performance-based payment scheme (PS 1)
meet the cost limit for all system capacities and settings (Figure 7a). The 95% confidence interval of
costs is below the cost limit for all settings above a system capacity of 200 users. The pushcart-based
service system with fixed daily payment scheme (PS 2) is not economically viable below system
capacities of 700 users (Figure 7a). This is due to high labor costs (two service workers per vehicle).
The costs for the two payment schemes converge at higher system capacities, when the fixed costs of PS
2 are split amongst an increasing number of users.

The median costs of a motorized service system match the cost limit for PS 1 from system capacities of
300 (S2) and 400 users (S1 and S3) respectively (Figure 7b). From system capacities of 500 (S2) and
600 users (S1 and S3) respectively, the 95% confidence interval of costs also falls below the cost limit.
The motorized service system with PS 2 requires a minimum system capacity of 600 to 700 users

(Figure 7b) to match the cost frame. For motorized systems, the median costs for all system capacities
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are different between settings. This is because of the fuel demand that links travel distances to costs, and
hence to different spatial characteristics of settlements. The lowest costs occur in S2, where distances
are shortest (see Table 4). Nevertheless, the resulting difference between the settings is not significant.
Variability in costs decreases with increasing system capacity, which is in line with the decreasing

variability in inter-facility travel distances for higher user densities (Figure 5).
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Figure 7: Cost incurred for the sanitation service using a pushcart (a) or a two-wheel tractor (b) and PS 1

and 2. The solid line indicates the cost limit.

Conditions for successful system implementation

The previous analyses indicate a strong trade-off between costs and failure probability. Increasing
system capacity reduces system costs (Figure 8) but increases failure probability, especially for the
manual service system (Figure 5). By analyzing the tradeoffs between cost, system capacity and failure

probability, we identify conditions under which the system attains the performance targets. We report
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aggregated results over the three settings in terms of median cost and failure probability, and
differentiate between two performance levels (PL): (1) performance above the target (i.e., <5 % failure
probability and < 0.0158/user/d) on 95% of the days, (2) performance above target on 50% of the days.
Under PS 1, a pushcart-based transport system meets PL1 up to 400 users, above which the failure
probability rises so rapidly that there is no interval where only PL2 is met (Figure a). The two-wheel
tractor meets PL2 from 300 users, and PL1 for 500-700 users (Figure b).

Under PS 2, a pushcart-based transport system does not meet PL1 or PL2 (Figure c). A motorized

system meets PL2 only for a single system capacity (600 users), and never PL1.
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Figure 8: Tradeoffs between costs and system capacity for different user numbers, payment schemes (PS)

(PS1inaandb, PS 2in c and d), and transport solutions (pushcart in a and c, 2 wheel tractor in b and d).
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4. Discussion

Demand-driven service systems have the potential to improve sanitary conditions in informal
settlements. With this paper, we present a first example of how such a demand-driven sanitation service
system can be designed on the basis of a quantitatively robust planning framework, rather than with ad-

hoc planning.

4.1.Critical parameters for successful sanitation services

The presented modeling is based on rough parameters and simplified assumptions. However, the results
still identify general critical features in transport-based sanitation service systems. Such systems require
toilet facilities that are fast to service and highly efficient workers, they apply strict cost management
(as exemplified by the different payment schemes), and if possible, they have a flexible work force.
Obviously, fast-to-service toilet facilities contribute to high work efficiency. When designing the toilets,
important factors are thus the accessibility of the feces container and a simple feature for pumping urine.
The objective is to make emptying fast and less tedious for the workers. Especially for sustaining hard
physical work over a longer time period, the ergonomics of the working situation is extremely important
(Halim et al., 2014). Since informal settlements are often situated in countries with high temperatures in
summer, the heat effect on work efficiency has also to be taken into account (Lundgren et al., 2014).
Apart from being essential for the economics of transport logistics, the payment scheme based on the
number of serviced facilities may also have an effect on work productivity. Despite methodological
challenges, some authors were able to empirically demonstrate the positive effect of performance-based
payment on work productivity (Oah and Lee, 2011). The advantage of a flexible workforce arises from
the principle of service-on-demand and the intrinsic variability of toilet filling, but will have physical
limits based on the length of the day and possibly also on the fact that heat may be prohibitive for hard
physical work in the middle of the day.

Vehicle selection has a major impact on the performance of the service system. The results shown in
Figure indicate that a pushcart is the only feasible solution for smaller system capacities (i.e. below 400
users) because of the high costs of motorized systems. For higher user numbers, a second pushcart,

which would double the system capacity, could be deployed to avoid common challenges relating to
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motorized vehicles (e.g. maintenance cost and skills and the availability of spare parts (Coffey and
Coad, 2011)). A motorized vehicle can be considered in specific cases, particularly if it proves difficult
to find a qualified workforce to man additional vehicles. It has to be taken into account that whereas a
pushcart demands harder physical work, two workers will be available for emptying the facilities — an

effect that we did not consider in this article.

4.2.Robust planning of sanitation services

We show that under certain conditions, regular and reliable logistics of human waste is feasible in
informal settlements even within an ambitious cost frame and over a range of system scales. In general,
this paper also provides insights into the drivers behind the performance and sensitivity of demand-
driven service systems in informal settlements, making the results of general interest for service
planning in informal settlements. With regard to system sensitivity, the model results agree with field
observations (Coffey and Coad, 2011) in the sense that they identify the importance of work
productivity and vehicle selection. Increasing system capacity (i.e. number of connected users),
especially combined with densification of the facilities, has several positive effects on costs, mainly
because of economies of scale and because it reduces distances. Nevertheless, our results point out that
system expansion involves a major risk because of the strong trade-off between reliability and system
capacity. This requires either a shift to a motorized transport solution or the purchase of an additional
pushcart at a given point of expansion. This will, in turn, require sufficient reserves for financing the
additional vehicle and training service personal. As Lempert et al. (2006) generically point out, “robust
strategies are often adaptive” and similar findings hold for sanitation services. Our results indicate that
adding some extra storage, which would allow for a delayed service, and more flexible working hours
(i.e. work continues until all facilities are serviced on days with high service demand) could further
increase system reliability and capacity. However, more detailed modeling is necessary to assess the
optimal combination of flexible working hours and storage size.

Although we applied the framework to the collection of human excreta, it can be similarly applied to
waste collection or the distribution of consumer and health goods in informal settlements. The

development of the framework was strongly motivated by the rise of novel planning strategies that
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encourage quantitative planning approaches and numerical models to make use of uncertain but
potentially useful information, such as from remote sensing. Similar to Brown et al. (2012), we base this
framework on an inverted design process that begins with the identification of general thresholds, and
their model-based mapping into the parameter space. These results then guide the further design steps,

with each step being validated by the numerical model.

4.3.Future developments and potentials

This approach can be improved in future, for example by applying spatial parameter estimation or using
spatially explicit scenarios (Urich and Rauch, 2014). The expert-based delineation procedure is
potentially subject to measurement biases, requires a certain expertise and is based on some assumptions
(e.g. number of households per dwelling, number of persons per household). Such limitations could be
overcome by automated mapping from remote sensing data and crowd-mapping of informal settlements
(Kohli et al., 2012; Mattioli, 2014). Our proposed approach helped us to prioritize parameters that
should be studied in more detail in the field (e.g. working habits). Also, additional system dynamics
could be included in the model, e.g. the effect of multiple workers on the service time (see above), or
using on-line information to optimize the service route (e.g. emptying nearly-full facilities on days with
otherwise little activity). It should be kept in mind that the modeling approach presented in this study is
not a stand-alone tool, but has many links to participative sanitation approaches. Implementing such a
robust approach in wider planning frameworks can support more accurate model parameterization while
helping to structure the various stages of a broader sanitation planning process, or to sensitize
stakeholders and planners to system criticalities (Luethi et al., 2011; Tilley et al., 2014). During the
implementation, parameter uncertainty can be continuously reduced by updating the model with new,
better parameters estimates. The model can then be re-run and it can be re-evaluated if the reduction of
uncertainty has an impact on the functioning of the service system and would imply any adaptive
measures.

We thus hope that this paper will provide evidence for how numerical modeling and robust approaches

can improve the ability to plan and analyze services for informal settlements in situations where typical
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top-down engineering approaches are not applicable due to the large uncertainty, and a reliance on ad-

hoc self-organization often results in poor quality of services.

5. Conclusion

This paper presents the development of a framework for the planning and analyses of service-based
sanitation systems in informal settlements through four distinct steps. The framework is based on the
application of a stochastic model of the sanitation system and a probabilistic analysis of remote sensing
data. The level of detail evolves during the design process, from an initial generic assessment (step 1) to
the analysis of a specific sanitation service system (step 2), its contextualization for specific informal
settlement (3) and an analysis of system performance for numerous scenarios and system scales (step 4).
The planning framework is robust in the sense that it bases the design of sanitation systems within a
generic, quantitative risk analysis. The resulting design of the system is subsequently tested for a wide
range of scenarios and system scales. The planning framework is applied to the design of a novel,
transport-based sanitation service with toilets shared on the household-level. We required the system to
work economically (below 1.5 c/user/day) with a single vehicle and for as little as 100 users (5
facilities). We find that such a system is feasible and highly scalable, in the sense that it can provide
service from 100 (5 facilities) up to 700 users (35 facilities). We identify a strong trade-off between
costs per user, as larger systems can provide the sanitation service cheaper, and reliability of the system,
as more users also imply a higher probability of failure. Independent of the system capacity, work
productivity and facilities that are fast to empty are most relevant. These two factors ensure that a high
number of users can be serviced reliably, which then results in lower costs per user. Performance based
payment, i.e., workers that are paid per serviced facility, and density of facilities, are other key factors to
ensure financial viability and scalability of the system. The example given in this paper demonstrates
that road-based services can provide a high level of service quality for sanitation in informal settlements
under a wide range of operating conditions, spatial settings, and system scales. However, there is also a
substantial risk for failure as sanitation services are sensitive to internal and external factors. We suggest
that adaptive planning supported by quantitative frameworks, such as presented in this paper, will

support service planning in informal settlements and reduce the risk of failure, even with limited field
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data and in conditions where nearly all parameters are deeply uncertain at the beginning of the planning

process.
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Appendix 1: Full list of variables and abbreviations

Sanitation service model (see Appendix 2 for the full definition of the model)

Unit Description
ce 3/d Costs, capital
cco $ Initial capital costs (vehicle and equipment)
Ck $/d Costs, energy

capFac, max kg

Facility maximum holding capacity

capsys user System capacity

Capy,max kg Vehicle maximum transport capacity

Co 3/d Costs, total

Crotuser Stuser/d Costs per user, total

D Facilities/d Service demand (number of facilities requiring servicing)
Apac-Fac m Distance facility-facility

IServ d Mean service interval of facilities

Icap - Interest rate, cost of capital

mp kg(feces)/user/d  Product accumulation rate, feces

My kg/user/d Product accumulation rate, total

my l(urine)/user/d Product accumulation rate, urine

N Facilities/d Total number of serviced facilities

NFac - Total number of facilities

Aim - Number of simulated days

Ayser Fac User/facility User number per facility

Nyser User/d Number of served users

Ny - Number of workers in a vehicle crew

Dricel /1 Fuel price

fuel l/hr Fuel consumption

S $/facility Payment, service person, payment scheme 1
S5 S$/d Payment, service person, payment scheme 2
Skac kg Storage level of a facility

Sy kg Storage/Load of the vehicle

T h/d Spent working hours

t h Total (service and travel) time per facility
Fac-fac h Travel time between facilities

o h/d Maximum working hours

tparh h Travel (walking) time on path

IProject yr Project life span

sery h Service time per facility

tTr-Fac h Travel time from treatment to facility and vice-versa
V parn Km/h Service person’s walking speed on paths
VRoads km/h Vehicle speed on roads

Probabilistic spatial analysis for contextualization (see section 2.3.3 for a description of the probabilistic
spatial analysis)

dpan m Distance on foot path

Aryrac m Distance treatment point to facility

frath - Fraction of facilities on path

lrae - Number of candidate locations for toilet facilities

I7, - Number of candidate locations for treatment facilities

ny - Number of neighboring facilities considered for probabilistic route analysis
P - Probability of finding the next facility full

P’ - Probability of finding the next facility empty

738
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Abbreviations

FSA Feature selection algorithm

PS1 Payment scheme 1 (performance based payment)

PS2 Payment scheme 2 (fixed daily payment)

RRP Resource Recovery Plant

S1 Setting 1, Kampala (high housing density), Uganda

S2 Setting 2, Kampala (low housing density), Uganda

S3 Setting 3, Raipur, India

PLI Performance level 1. Performance above the target (i.e., < 5 % failure
probability and < 0.015%/user/d) on 95 % of the days

PL2 Performance level 2. Performance above the target (i.e., < 5 % failure

probability and < 0.015%/user/d) on 50 % of the days

739  Appendix 2: Numerical sanitation service model

740  This section presents the numerical model that describes the servicing of 1 ...ng, facilities. Facilities
741 are serviced by a demand-driven sanitation service system. The service system consists of one or
742 multiple workers traveling with a service vehicle between full facilities and emptying them during one
743 or multiple daily service rounds. During a service round, j facilities are visited and emptied (until the
744 vehicle is full) and k service rounds are performed on day i until the daily maximum working hours,
745 tmax,i are reached, or all full facilities are serviced. Hence the subscripts i, j indicate variables or
746  parameters that change within the stochastic model between days (e.g. daily working hours), or from
747  facility to facility (e.g. facility fill level, service time). This section introduces how the two key outputs

748  of the model, system capacity and system costs are calculated

749  Modeling system capacity

750  The storage level Spqc; ; of the facilities 1 ... ngq. on day i is generated by

751

752 SFacij = SFaci-1j T Miot,i-1,j EQ 6

753

754 where my,p;_q,; is the product accumulation in a facility and Sgqc;—1,j the storage level, both on the
755 previous day. My ;_q,; is the accumulated mass of both, feces and urine,

756

157 Myopi—1j = (Myi—1j + Mpi_1;) * NuserFac EQ7

758
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where 1y ger pqc 1S the user number per toilet facility. The service demand D; (i.e. number of facilities
with depleted storage capacity) is defined at the beginning of each day. D; considers both, facilities
that reached their maximum storage capacity on day i and the full facilities that remained un-serviced
on the previous day i — 1 (D;_1).

Di=2 SFac,i,j > capFac,max + Di—l EQ 8

where capr,c.max 1S the maximum filling level of the storage container.

Times are calculated as follows in the model. ¢; ;. the time to service a facility, is defined as

ti,j:tServ,i,j+ tFac—Fac,i,j EQ4

where tgey, i j 18 the service time required to empty a facility and tpgc_pqc i, j 1S the travel time between
two facilities. If a facility is located on a footpath the service time increases to the time required to

travel from the road network to the facility on a footpath:

Lservij = tservij t trath,ij EQ 5

Travel times are calculated from travel distances and the velocity of the vehicle on roads

dFac—Fac,i,j
tFac—Fac,i,j = Y Roadst EQ6

or from the velocity of the service worker on a footpath (in case facilities are located on footpaths)

__dpath,ij
tPath,i,j N VPath,i EQ7

Whether a facility is on a footpath or not is determined according to a probability value that equals the

measured fraction of households located on the footpath (fpqen)-
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The model equations M1-M12 shown in Table 5 explain the simulation of a service day. M defines
the number of users that are served on a day 7 From this number, also a hypothetical system capacity
on that day can be calculated by multiplying the Ny with the service interval isen, which is 3.5 days

for the proposed system, i.e., twice per week.

Table 5: Numerical sanitation service model. Variables in their order of appearance are: ny;,, — simulation
period, nyc serveax — facilities served on service round k. T; — spent working hours, t7,_gq;j — travel time
from treatment point to facility, Sy, — vehicle load, capy ;,4,; - maximum vehicle load, t,,,,; - maximum
working hours, D; — service demand, t;; — facility service time (including travel), Sg,.;; — storage in
facility, N; — number of serviced facilities, N, ; — user served per day

. Equation -
Code representation 9 Description
number
fori <ngmn, Loop through all simulated days
if Nrqcservedk = 1;
Ty = trr—racij M1 Calculate travel time to 1" facility

Continue service round if: (4)
working hours, (B) vehicle
capacity are not exceeded and,

while Sy < capy max,; (condition A)
and while T; < t,,,; (conditionB) M2

and while D; > 0 (condition () (C) there are full facilities left
T;=Ti+ t;; M3 Increase time
Syk = Svx+ SFac,i,j M4 f:;’igzec;lolzlcontent to
Sracij =0 M5 Reset facility storage
Di=D;—1; N=N;+1 M6 Decrease facility counter
if Syx = capy max,i Vehicle capacity exceeded
T; =T + trr—racij M7 Return to treatment point
elseif T; = tyay; Daily working hours exceeded
T; =T + trr—racij M8 Return to treatment point
i=i+1 M9 Begin new day
elseif D; =0 All facilities emptied
T, =T; + trr_pac,, i M 10 Return to treatment point
i=i+1 M1l Begin new day
endif
end while
Naseri—Ni* Huserzac M12 Calculate number of users served

ondayi
end for

Modeling system costs
The calculation of daily costs includes the calculation of fixed (e.g. equipment) and variable costs (e.g.

labor, energy), divided by the number of serviced users

Croti = (cw,i * Cgi + €¢i)/Nusers,i EQ8
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Capital costs are calculated as an annuity for the equipment (Sasmita, 2010):

EQ9

tproject
1+, Jelsie 1
Cec = cC,O * ( up) e —

(1+lCap)tproje“_1 365
Energy costs are a function of daily travel times [hr] and the fuel consumption rate [l/hr]

cE,i= rfuel,i * (Z tTr—Fac,i,j + Z tFac—Fac,i,j) * pfuel,i EQ 10

We implement two payment schemes for the workers (PS 1: performance based payment. Payment is a
function of the number of serviced facilities,N;. PS 2: fixed, daily payment). Cost for paying a service
person is

_ Sl*Ni*nw(P51)
CWi _{ SZ *nW (PS 2) . EQ 11



Transport-based sanitation services in informal settlements are modeled

The framework identifies most sensitive parameters for successful implementation
The stochastic numerical model is contextualized using satellite imagery
Scenarios can be developed and tested for a large number of future conditions

The framework is tested for three informal settlements in Africa and India



