
A Simulated Annealing Approach to Approximate Bayes

Computations

Carlo Albert∗, Hans R. Künsch†and Andreas Scheidegger∗

August 22, 2018

Abstract

Approximate Bayes Computations (ABC) are used for parameter inference when the
likelihood function of the model is expensive to evaluate but relatively cheap to sample
from. In particle ABC, an ensemble of particles in the product space of model outputs
and parameters is propagated in such a way that its output marginal approaches a delta
function at the data and its parameter marginal approaches the posterior distribution.
Inspired by Simulated Annealing, we present a new class of particle algorithms for ABC,
based on a sequence of Metropolis kernels, associated with a decreasing sequence of tol-
erances w.r.t. the data. Unlike other algorithms, our class of algorithms is not based on
importance sampling. Hence, it does not suffer from a loss of effective sample size due to
re-sampling. We prove convergence under a condition on the speed at which the tolerance
is decreased. Furthermore, we present a scheme that adapts the tolerance and the jump
distribution in parameter space according to some mean-fields of the ensemble, which
preserves the statistical independence of the particles, in the limit of infinite sample size.
This adaptive scheme aims at converging as close as possible to the correct result with
as few system updates as possible via minimizing the entropy production of the process.
The performance of this new class of algorithms is compared against two other recent
algorithms on two toy examples as well as on a real-world example from genetics.

1 Introduction

One way of implementing parameter inference in the Bayesian framework is to generate pa-
rameter samples from the posterior distribution

fpost(θθθ|y) =
f(y|θθθ)f(θθθ)

f(y)
, (1)

where f(θθθ) denotes the prior distribution encoding our knowledge about the parameter vector
θθθ before the experiment, f(y|θθθ) is the likelihood function, that is, the probability density
of outputs given the parameter vector θθθ, evaluated at the measurement vector (data) y,
and f(y) is the corresponding prior density of the data. Numerical methods such as the
Metropolis algorithm [15] require many evaluations of the likelihood function to generate
such a sample. However, for complex stochastic models, the likelihood function is often
prohibitively expensive to evaluate. Therefore, in recent years, algorithms have been suggested

∗Eawag, aquatic research, 8600 Dübendorf, Switzerland.
†Seminar für Statistik, ETH Zürich, 8092 Zürich, Switzerland.

1

This document is the accepted manuscript version of the following article:
Albert, C., Künsch, H. R., & Scheidegger, A. (2015). A simulated annealing 
approach to approximate Bayes computations. Statistics and Computing, 25(6), 
1217-1232. https://doi.org/10.1007/s11222-014-9507-8



that generate samples from (1) by sampling model outputs from the likelihood and comparing
them with the data rather than evaluating the likelihood.

As far as we know, the origin of these algorithms is to be found in population genetics.
Tavaré et al. [24] replaced the output of a genetic model by a summary statistic and adopted
a rejection technique to generate samples from the posterior. Weiss et al. [26] extended this
method sampling a vector of summary statistics and introducing a tolerance for its distance
from the observed summary statistics. Thus, their algorithm generates samples from an
approximate posterior. Algorithms that generate samples from an approximate posterior via
sampling outputs from the likelihood are nowadays called Approximate Bayes Computations
(ABC). Marjoram et al. [14] used Markov chains to produce samples from an approximate
posterior. Their algorithm combines a random walk in parameter space with drawing from the
likelihood and an acceptance/rejection step that accounts for the prior and only accepts moves
into an ε ball around the target y. However, a small static tolerance leads to a high rejection
rate. Therefore, Toni et al. [25] suggested using a decreasing sequence of tolerances and letting
an ensemble of particles of constant size N evolve towards an approximate posterior. Their
algorithm consists of an iteration of importance sampling steps, where each iteration consists
of drawing a new ensemble from the old one with weights and subsequent re-sampling. This
re-sampling leads to a loss of effective sample size at each iteration step. There are several
adaptive versions of ensemble (or particle) ABC algorithms. Beaumont et al. [2] use the
empirical variances of the ensemble to adapt the jump distribution in parameter space. Del
Moral et al. [5] and Lenormand et al. [11] use the particles’ distance from the target to
adapt the tolerance. Recent variants of the algorithm of del Moral et al appeared in [10]
and [20]. All of the mentioned algorithms generate samples from the probability distribution
proportional to f(θθθ)f(x|θθθ)χ(ε − ρ(x,y)), where ρ is some metric on the output space and
χ denotes the Heaviside function whose value is unity if its argument is non-negative and 0
otherwise. The effect of kernels different from the Heaviside function has been considered,
e.g., in [27]. For a recent review on ABC algorithms, the reader is referred to [13].

In this paper, we present a new class of (adaptive) ensemble algorithms that are of order
O(N) and do not suffer from a loss of effective sample size. The idea is to start with an
ensemble of particles drawn from an arbitrary distribution (e.g. the prior) in the product
space of parameters and outputs and apply a sequence of Markov kernels, (Pεk), each of
which having

Z−1(εk)f(θθθ)f(x|θθθ)e−ρ(x,y)/εk

as equilibrium distribution. The key question is then how fast we should decrease εk in order
to have a fast convergence and at the same time not to acquire an additional bias due to a
too fast convergence. This problem is reminiscent of Simulated Annealing, which is one of
our sources of inspiration. We will give a convergence proof for a schedule that satisfies

εk ≥ const k−α/n ,

where n is the dimension of the output space and α > 0 is defined in (4). Furthermore, we will
present an adaptive schedule that attempts convergence to the correct posterior while mini-
mizing the required simulations from the likelihood. Both the jump distribution in parameter
space and the tolerance ε are adapted using mean fields of the ensemble.

The adaptation of ε we suggest is motivated from non-equilibrium thermodynamics, where
this control parameter is naturally interpreted as a temperature. We adapt ε according to
the particles’ distance to the target (energy) in such a way that the entropy production in

2



the system, which is a measure for the waste of computation, is minimized. A first order
approximation of the entropy production is calculated using the so-called endoreversibility
assumption, which states that the system undergoes only reversible changes, and which is
approximately satisfied if either the mixing in parameter space is fast enough or annealing
is slow enough. Under this assumption the only source of entropy production is the flow of
energy (or rather heat) from the system to the environment, the latter being defined by the
control parameter ε that is used for the transitions and can be interpreted as the temperature
of a heat reservoir the system is in contact with. In cases where the influence of the prior on the
posterior is strong, we actively control this prior influence with a second control parameter,
which allows us to extend the scope of the endoreversibility assumption. Necessary and
sufficient conditions for the minimization of entropy production, for endoreversible processes,
have been derived in [22]. For sufficiently slow processes, for which a linearity assumption
holds, the condition is a constant entropy production rate [19], which has been applied to
Simulated Annealing, e.g., in [18]. In cases where the prior influence on the posterior is small,
we go beyond the linearity assumption and suggest a scheme with non-constant entropy
production rate.

The tolerance ε that can be achieved in reasonable time is limited by the dimension of the
output space. This deficiency is inherent to all ABC algorithms simply because drawing an
output from an ε-ball around y scales like εn. Methods to reduce this bias are investigated
elsewhere (see, e.g., [7], [12]).

The paper is organized as follows: In Subsect. 2.1, we explain the main idea behind our
class of algorithms. In Subsect. 2.2, the explicit scheme together with a convergence proof is
given. The adaptive scheme is developed in Subsect. 2.3. Sect. 3 contains an application to
two toy models, for which the posterior is available analytically, as well as a comparison with
two recent adaptive ABC algorithms [5], [11]. Sect. 4 contains an application in genetics.
Conclusions are drawn in Sect. 5.

2 A new class of ABC algorithms

2.1 Basic idea

Our aim is to sample from the posterior distribution (1), without evaluating the likelihood
function. The basic idea behind ABC is to rewrite (1) as the marginalization

fpost(θθθ|y) ∝
∫
f(x|θθθ)f(θθθ)δ(x− y)dx (2)

and sample from the joint density f(x|θθθ)f(θθθ)δ(x−y) in the (θθθ,x)-space, Θ×X, which means
to sample a parameter vector from the prior and an associated output from the likelihood
and accept the particle iff the drawn output happens to coincide with the data. If the output
space has a high cardinality or is continuous, sampling from f(x|θθθ)f(θθθ)δ(x − y) becomes
inefficient or impossible, respectively. In these cases, we approximate it by the following
family of distributions

πε(θθθ,x) =
1

Z(ε)
f(x|θθθ)f(θθθ)e−ρ(x,y)/ε , (3)

3



where ρ(x,y) measures how close x is to the observation y. For simplicity, we set X = Rn
and

ρ(x,y) =
1

α

n∑
i=1

|xi − yi|α , (4)

for some α > 0, but our results could easily be extended to more general manifolds equipped
with distance measures obeying suitable regularity conditions. This might become necessary
if summary statistics are used to map the output space to some smaller-dimensional manifold
(see, e.g., [7], [24] and [26]).

Under the assumption that f(x|θθθ) is uniformly bounded and, as a function of x, continuous
at y, πε converges weakly to f(x|θθθ)f(θθθ)δ(x − y)dθθθdx, for ε ↘ 0. Our idea is to choose a
family of Markov transition kernels (Pε) on the space Θ × X, which have πε as stationary
distribution and apply them recursively on members of a sample drawn from an arbitrary
initial distribution, for a decreasing sequence of ε’s. If ε is decreased sufficiently slowly,
we expect to end up with an approximate sample from the posterior distribution. This
is analogous to the Simulated Annealing algorithm, although in Simulated Annealing the
limiting distribution is usually concentrated on a finite set. Still, we will strongly rely on
ideas developed in the context of Simulated Annealing. The transition kernels (Pε) that we
will use in Subsects. 2.2 and 2.3.2 are defined by the transition densities

qε((θθθ
′,x′), (θθθ,x)) = k(θθθ′, θθθ)f(x|θθθ) min

(
1,

f(θθθ)e−ρ(x,y)/ε

f(θθθ′)e−ρ(x′,y)/ε

)
, (5)

combined with a multiple of a Dirac delta distribution at (θθθ′,x′) such that Pε((θθθ
′,x′),Θ×X) =

1. Here, k is a symmetric transition density on Θ. It is straightforward to check that πε is
the equilibrium distribution for Pε.

The main question now is how fast ε should be decreased. Obviously, an arbitrarily slow
decrease of ε allows to stay arbitrarily close to equilibrium at all times after, possibly, an
initial burn-in period, which guarantees convergence. However, this is clearly inefficient. On
the other hand, a too fast decrease may result in slow convergence (because the acceptance
probability decreases for decreasing ε) or convergence to a biased result. A bias can occur,
e.g., if the prior within the last factor in eq. (5) decides too seldom whether a proposal point
in Θ×X is accepted or not. In the extreme case of a constant ε = 0, the acceptance term in
(5) becomes χ(ρ(x′,y)− ρ(x,y)), thus, (θθθ,x) is accepted iff ρ(x, y) ≤ ρ(x′, y). Hence in this
case, the prior has no influence, which clearly leads to convergence to a biased result. For
this reason, in Subsect. 2.3.3, we will introduce a second control parameter to control the
influence of the prior and replace (5) by (35).

In the next subsection we will present an explicit schedule (εk) that ensures convergence
to an unbiased result. A potentially better performance can be achieved when the state of
the system is used to adapt the tolerance ε and the jump distribution k. This idea will be
developed in Subsect. 2.3.

2.2 An explicit scheme with convergence proof

In this subsection, we use a time discrete description. That is, we start with a sample from
an arbitrary distribution µ0 and then recursively make transitions of the whole sample with
the kernel Pεk , for an explicitly given decreasing sequence εk ↘ 0. In this way, we generate

4



samples distributed according to

µk+1 = µkPεk+1
=

∫
Pεk+1

(θθθ,x; .)dµk(θθθ,x). (6)

We expect that for a suitable choice of (εk), µk will converge weakly to f(x|θθθ)f(θθθ)δ(x−y)dθθθdx,
and thus in particular the marginal will converge weakly to the posterior distribution (1).

In order to ease the notation we set z = (θθθT ,xT )T and write, for the joint prior,

f(z) := f(x|θθθ)f(θθθ) .

Furthermore, w.l.o.g. we will assume y = 0 and replace ρ(x,y) by ρ(x). For our main result,
we make the following assumptions about the parameter space Θ and the functions k(θθθ′, θθθ),
f(θθθ) and f(x|θθθ) thereon:

(A1) ∃c1 > 1 such that c−11 ≤ f(θθθ)/f(θθθ′) ≤ c1, for all θθθ,θθθ′ ∈ Θ.

(A2) ∃c2 > 0 such that k(θθθ′, θθθ) ≥ c2f(θθθ), for all θθθ,θθθ′ ∈ Θ.

(A3) f(x|θθθ) is continuously differentiable w.r.t. x for all θθθ, and the function and all partial
derivatives are bounded uniformly in x and θθθ.

These conditions essentially restrict the parameter space to be compact. We will in fact
prove stronger than weak-convergence results, namely convergence in total variation of the

distributions of (θθθ, ε
−1/α
k x), with α > 0 as defined in (4). The densities of these scaled

distributions are
µ̂k(θθθ,x) := ε

n/α
k µk(θθθ, ε

1/α
k x)

and

π̂ε(θθθ,x) := εn/απε(θθθ, ε
1/αx) =

1

C(ε1/α)
f(ε1/αx|θθθ)f(θθθ) exp(−ρ(x)) ,

where

C(ε1/α) =

∫
f(ε1/αx|θθθ)f(θθθ) exp(−ρ(x))dz ,

and the transition densities for the scaled variables are

q̂ε1/α(z, z′) = εn/αqε((θθθ, ε
1/αx), (θθθ′, ε1/αx′)) .

Theorem 2.1. If the assumptions (A1) – (A3) above are satisfied and if

εk ≥ const k−α/n , (7)

for an arbitrary constant (where n denotes the dimension of X and α is defined by (4)),
then, for any absolutely continuous initial distribution µ̂0 the distribution µ̂k converges in
total variation to π̂0(z) ∝ fpost(θθθ|y) exp(−ρ(x)), for k →∞.

Proof: We will apply corollary (2.34) in [8]. We start by introducing some notation. Let

π̂k = π̂εk , P̂k = P̂εk , P̂s:t = P̂sP̂s+1 . . . P̂t ,

where P̂ε is defined by the transition density q̂ε.

5



By assumption (A3) and dominated convergence,

π̂k(θθθ,x)→ π̂0(θθθ,x) =
f(0|θθθ)f(θθθ) exp(−ρ(x))∫

f(0|θθθ)f(θθθ)dθθθ
∫

exp(−ρ(x))dx

pointwise and thus by Scheffé’s theorem also in L1-norm, that is in total variation. In order
to deduce

||µ̂0P̂0:t − π̂0||TV → 0,

we have to verify conditions (2.31) and (2.33) in [8]. These conditions are∏
k

c(P̂k) = 0 , (8)

where
c(P̂k) = sup

z,z′
||P̂k(z, .)− P̂k(z′, .)||TV ,

and ∑
k

||π̂k+1 − π̂k||TV <∞. (9)

Replacing ε1/α by ε, we may set, without loss of generality, α = 1. To get an upper bound
for c(P̂ε) we use

c(P̂ε) = sup
z′,z′′

(
1−

∫
min(q̂ε(z

′, z), q̂ε(z
′′, z))dz

)
.

By (A1) and (A2), for any z′,

q̂ε(z
′, z) ≥ εn c2

c1
f(θθθ)f(εx|θθθ) exp(−ρ(x)) .

Hence we obtain ∫
min(q̂ε(z

′, z), q̂ε(z
′′, z))dz ≥ εn c2

c1
C(ε).

Because C(ε)→ C(0) > 0 as ε→ 0, it follows that, for ε sufficiently small ε,

c(P̂ε) ≤ 1− c2
c1

C(0)

2
εn , (10)

and (8) holds for the choice (7).
In order to show (9), we start with

|π̂ε(z)− π̂ε′(z)| ≤ |f(εx|θθθ)− f(ε′x|θθθ)|f(θθθ) exp(−ρ(x))

C(ε)
+ π̂ε′(z)

|C(ε′)− C(ε)|
C(ε)

.

By (A3) and the intermediate value theorem, we obtain that

|f(εx|θθθ)− f(ε′x|θθθ)| ≤ const ||x||1|ε− ε′|

and, moreover, that C(ε) is differentiable with

|C ′(ε)| ≤ const

∫
||x||1 exp(−ρ(x))dx ,

6



where const is the bound for the partial derivatives of f(.|θθθ). Hence we find that

||π̂ε − π̂ε′ ||TV ≤
const

C(ε)

∫
||x||1 exp(−ρ(x))dx |ε− ε′| .

Therefore (9) holds for any sequence (εk) which converges monotonically to zero.
�

Remark: Convergence of inhomogeneous Markov chains has been proved in much more
general settings than in [8], see e.g. [6], or Proposition A.1 in [3]. Using these techniques, it
should be possible to relax the assumptions (A1)–(A2).

2.3 An adaptive scheme

2.3.1 Heuristics

As stated in Section 2.1, we construct an ensemble of particles which evolve according to a
family of Markov transition kernels (Pε) with a control parameter ε = εe(t) that decreases to
zero (the reason for the notation εe(t) will become clear later). In contrast to the algorithms
in [5] and [11], we do not use importance sampling to force the distribution of the ensemble to
agree with the target distribution (3) at certain time points. This has the advantage that the
effective sample size of the ensemble does not decrease over time, but the disadvantage that we
loose control over the transient distribution of the stochastic process defined by the algorithm.
However, as Theorem 2.1 suggests, this distribution remains close to an equilibrium (3) at
all times, if either the value of the control parameter εe(t) is lowered sufficiently slowly or if
mixing in parameter space is sufficiently fast. In this section, we shall design an algorithm
that adapts εe(t) based on the average distance of the particles from the target y = 0 in
such a way that the computational effort, that is the number of draws from the likelihood, is
minimized. There is therefore a mean field interaction between particles.

The design of the algorithm will rely on the assumption that the distribution of the Markov
chain is at all times t close to an equilibrium distribution πε(t), but with a parameter ε(t)
which is somewhat higher than the value εe(t) used for the transition. How quickly we let
εe(t) go to zero as the algorithm proceeds is our decision, and it determines together with
the jump distribution k(θθθ,θθθ′) in parameter space the function ε(t). We have no analytical
expression for ε(t), but it is in a one-to-one correspondence with the expected distance, U(t),
from the target, that we can estimate.

Since the intuition behind our adaptive algorithm stems from non-equilibrium thermo-
dynamics, it might be helpful to imagine a gas, which is in contact with a heat bath whose
temperature εe(t) can be controlled. The value of ε(t) is then the temperature of the gas at
time t which is measured continuously and influences how quickly εe(t) is lowered. The super-
script e stands for ”environment” or ”equilibrium”, because it defines the equilibrium state
the system would relax to if cooling suddenly stopped, that is if εe(t) would be kept constant
after some time t0. However, if the temperature εe(t) is continuously lowered, then the gas
will at any time t be warmer than the environment. In the physics community, a system which
is always described by an equilibrium distribution even if it is externally driven, i.e., never
at equilibrium with its environment, is called endoreversible (see [17]). The system is then
described by the Gibbs state πε(t), and the distance of a particle to the target is interpreted
as the particle’s energy.

The question is then how εe(t) should be controlled, depending on the distribution of the
system given by ε(t) or U(t), so as to waste as little computation as possible. In physics’

7



terms, the cooling of the system by lowering the temperature of the environment creates a
flow of entropy from the system to the environment. It can be split into two parts. One part
is the (path-independent) reduction of the system’s entropy. This is the well invested part of
the computing effort, as it measures the information difference between prior and posterior.
The other part is the entropy production, which is a measure for the wasted computing effort.
We argue therefore that we have to choose the cooling or annealing schedule εe(t) such that
this entropy production is minimized. Using variational calculus [22], this approach leaves us
with a family of annealing schedules, parameterized by a tuning parameter v, which governs
the annealing speed and expresses the optimal εe(t) in function of the expected distance U(t)
from the target.

In mathematical terms, entropy production equals the Shannon entropy of the probability
distribution of the process, on the space of paths, relative to the time-inverted stochastic
process [21]. It can be seen as a measure for the information loss due to rejections: With a
fast cooling schedule, a typical path is likely to encounter many more rejections than a typical
path under the time-reversed (heating) schedule. Thus, the probability distribution of the
stochastic process on the space of all paths is in this case much more concentrated than the
distribution of the reverse process, which leads to a large relative entropy.

The assumption of endoreversibility is crucial for our algorithm. If it is violated, there will
be additional production of entropy due to irreversible processes. This entropy production is
beyond control if only the energy of the system is measured and is thus to be avoided. Such
additional entropy can even remain in the system indefinitely and lead to a biased convergence.
Whether the assumption of endoreversibility is justified or not will depend on the values of the
two tuning parameters of the algorithm: The covariance K of the jump distribution k(θθθ,θθθ′)
in parameter space and the tuning parameter v that arises from variational calculus. A small
value of K leads to slow mixing in parameter space, and if it is too slow compared to the
decay rate of ε(t), the endoreversibility assumption might be violated. We derive our cooling
schedule under the assumption that K is constant, but in practice it is usually advantageous
to adapt K to the current distribution of the chain. We will discuss the adaptive choice of K
at the end of the next subsection.

Similarly, a too large v can lead to a too fast cooling, compared to the mixing in parameter
space, which bears the risk of violating the endoreversibility assumption. On the other hand, a
too small value of v leads to a large amount of reversible computations which is not accounted
for by the entropy production. Running the algorithm at equilibrium, i.e. setting εe(t) = ε(t),
does neither lead to a flow of entropy nor does it generate any entropy and would thus be
considered optimal by our criterion. Because v has the dimension of an inverse time, measured
in units of N computer updates of single particles, its optimal value is expected to depend
not too much on details of the model.

The problem of choosing a good value of v is pronounced if the prior, f(θθθ), carries relevant
information. Since εe(t) is by construction of the algorithm smaller than the value ε(t) implied
by the expected distance from the target, the ρ(x,y)-dependent term in (5) tends to decide
more often than the prior-dependent term whether or not to accept a move. This may lead
to an under-representation of the prior in the final solution. Thus, if the prior is important,
we suggest introducing a second pair of “temperatures” εe2(t) and ε2(t), in order to control
the relative information contributed by the prior. Obviously, in this case, tuning will become
much more sophisticated and we only derive an optimal schedule for relatively slow annealing,
in which case the relation between forces and fluxes (to be defined below) is approximately
linear. The more information the prior contains, however, the less advantageous a sequential

8



scheme as ours appears compared to a brute-force acceptance/rejection algorithm. Therefore,
we devote the next subsection to the simpler, yet practically relevant, case of negligible prior
information.

2.3.2 The case of negligible prior information

In this subsection we consider the special case where the prior f(θθθ) doesn’t play much of a
role. This is the case if f(θθθ) ≈ const, in the area where the likelihood function, evaluated at
the data y, is not negligible.

Our system is an inhomogeneous continuous time Markov process (Zt) on the product
space of parameters and model outputs. Its transitions occur at the random times of a Poisson
process with rate 1, according to the transition kernel (5) with time dependent parameter
εe(t). This means that the density µ(z, t) of the system at time t satisfies

∂µ(z, t)

∂t
=

∫
µ(z′, t)qεe(t)(z

′, z)dz′ − µ(z, t)

∫
qεe(t)(z, z

′)dz′ , (11)

and for functions h on the product space we have

dE(h(Zt))

dt
=

∫
(h(z)− h(z′))µ(z′, t)qεe(t)(z

′, z)dzdz′ . (12)

The parameter εe which controls the cooling of the system is adaptive in the sense that
εe(t) depends on the distribution µ(z, t). In our algorithm, we will represent the system
by a sufficiently large ensemble, E, of particles, {zi = (θθθi,xi)}Ni=1 which evolve in time.
Each system update consists in choosing a random member of the ensemble and updating
it according to the transition kernel (5). The parameter εe(t) is then based on the current
empirical distribution of the ensemble at time t.

As discussed above we will assume the process to satisfy the endoreversibility assumption

µ(z, t) ≈ πε(t)(z) , (13)

where πε(z) was defined in (3). As we have discussed the legitimacy of this assumption in
the previous subsection, we take it for granted here. The system’s temperature ε(t) is in
one-to-one correspondence with the system’s energy which is the system’s expected distance
to the target. It will be measured by the average distance of the particles from the target.

We derive now our algorithm for the choice of the cooling schedule εe(t) in a sequence of
steps. In the first step we modify distance by a monotone transformation to get approximate
equality of energy and temperature. We define

u(x) = G(ρ(x)), G(ρ) =

∫
ρ(x)≤ρ

f(θθθ,x)dθθθdx , (14)

and we replace ρ(x) by u(x) in the definitions of πε and qε. Because G is the cumulative
distribution function of ρ(x) under the prior f(x, θθθ), we obtain, for the mean energy under
πε,

U(ε) :=

∫
u(x)πε(θθθ,x)dθθθdx , (15)

the expression

U(ε) =

∫∞
0 G(ρ)e−G(ρ)/εG′(ρ)dρ∫∞

0 e−G(ρ)/εG′(ρ)dρ
=

∫ 1
0 ue

−u/εdu∫ 1
0 e
−u/εdu

= ε
1− e−1/ε(1 + 1/ε)

1− e−1/ε
. (16)

9



As ε goes to zero, the fraction on the right is 1 + o(εk) for any k > 0. By the endoreversibility
assumption we therefore have

U(t) :=

∫
u(x)µ(z, t) ≈ U(ε(t)) ≈ ε(t) . (17)

Our main result of this section, equation (31) below, expresses the optimal cooling schedule
εe(t) as a function of U(t) and a tuning parameter v of the algorithm. In order to estimate
U(t) we need first an approximation of the distribution function G which we construct at the
beginning of the algorithm, based on the prior sample, P , that is drawn to get the initial
ensemble E. If the sample size of P is not large enough or if we want to run the algorithm for
a very long time, we might want to use a smooth approximation of the empirical distribution
of the values ρ(xi), which, for small ρ, and for α = 2 in (4), behaves as

G(ρ) ≈ const ρn/2 . (18)

In the second step, we approximate U̇(t) = d
dtU(t), the so-called flux, as a function of ε(t)

and εe(t). For this, we cannot use directly U(t) ≈ U(ε(t)) because then the dependence on
εe(t) would be lost. Combining the endoreversibility assumption with the time evolution (12)
gives

U̇(t) =

∫
(u(x)− u(x′))k(θθθ′, θθθ)f(x|θθθ) min

(
1,

f(θθθ) exp(−u(x)/εe(t))

f(θθθ′) exp(−u(x′)/εe(t))

)
µ(z′, t)dzdz′

≈ Z−1(ε(t))

∫
(u(x)− u(x′))k(θθθ′, θθθ)f(x|θθθ)f(x′|θθθ′)

×min

(
f(θθθ′), f(θθθ)

exp(−u(x)/εe(t))

exp(−u(x′)/εe(t))

)
exp(−u(x′)/ε(t))dzdz′ . (19)

Since ε (and thus also εe) will be much smaller than 1 during most of the process, we use
a Taylor expansion of (19) to quadratic order in ε and εe. Under the assumption that the
influence of the prior is negligible, we obtain

U̇(t) ≈ U̇(ε, εe) ≈ −γ(ε2 − (εe)2) , (20)

with

γ = (f(y))−2
∫
k(θθθ′, θθθ)f(y, θθθ)f(y, θθθ′)dθθθdθθθ′ . (21)

For later use, we note that from U(t) ≈ ε(t) we obtain

εe(t) ≈
√
U(t)2 + U̇(t)/γ . (22)

In the third step we approximate the derivative of the irreversible process entropy or
entropy production. To simplify the notation, let us begin with the version in discrete time
where we have an initial distribution µ0 and a sequence of transition kernels Pi corresponding
to a sequence εei of control parameters. The probability of a path Γn = (z0, z1, . . . , zn−1) is
then

p(Γn) = µ0(z0)P0(z0, z1) . . . Pn−2(zn−2, zn−1) , (23)

whereas the probability of the same path with respect to the time-reverse schedule is

pR(Γn) = µn−1(zn−1)Pn−2(zn−1, zn−2) . . . P0(z1, z0) , (24)

10



where

µn−1(zn−1) =

∫
p(Γn)dz0 · · · dzn−2

is the distribution of the final state. The irreversible process entropy is then defined as the
relative entropy of pR with respect to p, see [21],

Sirr(n) =

∫
p(Γn) ln

p(Γn)

pR(Γn)
dΓn . (25)

From this it follows easily that

Sirr(n+ 1) = Sirr(n)

+

∫
log

(
µn−1(zn−1)Pn−1(zn−1, zn)

µn(zn)Pn−1(zn, zn−1)

)
µn−1(zn−1)Pn−1(zn−1, zn)dzn−1dzn . (26)

Passing to a continuous time limit, we therefore obtain from (11)

Ṡirr(t) =

∫
log

(
qεe(t)(z, z

′)

qεe(t)(z′, z)

)
µ(z, t)qεe(t)(z, z

′)dzdz′ − d

dt

∫
log(µ(z, t))µ(z, t)dz

=

∫
log

(
qεe(t)(z, z

′)

qεe(t)(z′, z)

)
µ(z, t)qεe(t)(z, z

′)dzdz′ −
∫

log(µ(z, t))
∂µ(z, t)

∂t
dz

=

∫
log

(
qεe(t)(z, z

′)µ(z, t)

qεe(t)(z′, z)µ(z′, t)

)
µ(z, t)qεe(t)(z, z

′)dzdz′ . (27)

Using the endoreversibility assumption and the expression (5) for qε, we arrive at

Ṡirr(t) =

∫
µ(z, t)qt(z, z

′)(u(z′)− u(z))

(
1

ε(t)
− 1

εe(t)

)
dzdz′

=

(
1

ε(t)
− 1

εe(t)

)
d

dt

∫
u(z)µ(z, t)dz = F (t)U̇(t) , (28)

where
F (t) = ε(t)−1 − εe(t)−1 (29)

is the thermodynamic force, the difference between the inverse temperatures of the system
and the environment. Because of (17) and (22) F (t) is a function of U(t) and U̇(t),

In the fourth step, we determine the necessary and sufficient criterion for minimal entropy
production, for fixed initial and final values of the energy:∫ tf

0
F (U(t), U̇(t))U̇(t)dt = min!, U(0) = U0, U(tf ) = Uf .

Using standard methods of variational calculus, see [22], one obtains the differential equation

U̇
∂F

∂U̇
U̇ = const = v . (30)

From (22) it follows that

∂F

∂U̇
= −∂ε

e(t)−1

∂U̇
≈ γ1/2

2(γU(t)2 + U̇(t))3/2
≈ 1

2γεe(t)3
.

11



If we combine this result with (20) we find the optimal cooling schedule, for small U , to be
approximated by the unique solution of the quartic equation

(U(t)2 − εe(t)2)2

2εe(t)3
=
v

γ
(31)

in the interval (0, U(t)). It can be computed efficiently with the Newton algorithm. The
leading term of the solution εe(U), for small U , is

εe(U) =
( γ

2v

)1/3
U4/3 +O(U2) . (32)

This means that the cooling is slowing down when U(t) gets small. One can derive from this
also an explicit cooling schedule,

εe(t) ∼ t−4/3 , (33)

but this will not be used in our algorithm. It shows however that the cooling schedule which
follows from Theorem 2.1 is different from the adaptive schedule here.

For convenience, the algorithm derived in this subsection is given as a pseudo-code in
Table 1.

The algorithm presented here will not only yield a sample from an approximation of the
posterior, but it will also provide information about the bias, expressed through the final value
of ε(t). This information, of course, can be used to reduce the bias, at the cost of sacrificing
some effective sample size, via attaching the weights exp(−δu(z)/ε), with δ being a small
dimensionless parameter, to the final ensemble and re-sampling a new ensemble according
to these weights. The choice of δ is arbitrary and expresses the trade-off between bias and
effective sample size of the ensemble. The weights were chosen such that the re-sampled
ensemble still represents a distribution of the form (13). Thus, such a bias correction step can
also be applied, occasionally, during the algorithm, as long as the ensemble is given enough
time to recover from the loss of effective sample size between two resampling steps.

Let us conclude this subsection with comments on the adaptive choice of the covariance
K of the jump distribution k. To this end, we choose, for k(θθθ,θθθ′), a symmetric normal jump
distribution, whose covariance is adapted to the empirical covariance of the marginal of µ(z, t),
Σ(t), according to eq.

K = βΣ(t) + s tr(Σ)1 (34)

where s is a small constant preventing (34) from degenerating and β is an additional tuning
parameter of the algorithm that mustn’t be chosen much smaller than unity in order that the
mixing in parameter space is fast enough compared to the decay of the mean distance to the
target. Note that our derivation of the optimal cooling schedule was based on the assumption
of a time-constant k(θθθ,θθθ′). The adaptation (34) makes k(θθθ,θθθ′) time-dependent, which leads
to two compensatory effects. On the one hand, due to the increased acceptance probability
ensued by this adaptation, the optimal schedule would be given by a time-dependent tuning
parameter v(t) that increases with time. This can be seen by repeating the exercise in [22],
with an explicitly time-dependent U̇ = U̇(U,F, t), and acknowledging the fact that ∂U̇/∂t < 0
if the adaptation (34) leads to an increase of the acceptance rate, relative to a schedule without
adaptation. On the other hand, typically, adaptation makes k(θθθ,θθθ′) sharper over time and,
therefore, γ tends to increase over time. Thus, if we set v/γ = const, v tends to increase over
time. In general, the optimal schedule for εe(t), if adaptation (34) is employed, cannot be

12



Input:

1. Algorithms to sample from the prior and the likelihood.

2. Ensemble size N and initial value εinit.

3. Covariance K of the jump distribution k(θθθ,θθθ′) = N (θθθ,K).

4. Tuning parameter v. The default value is v = 0.3.

Initialization:

1. Repeat, until the ensemble E constructed in (d) contains N particles:

(a) Sample a parameter vector, θθθ, from the prior.

(b) Sample an output, x, from the likelihood f(x|θθθ).
(c) Store the particle (θθθ, ρ(x,y)) in the ensemble P .

(d) With probability exp[−ρ(x,y)/εinit] store the particle (θθθ, ρ(x,y)) also in en-
semble E.

2. Estimate the distribution function G = G(ρ) defined in (14) by smoothing the
empirical distribution of ρ(x,y) in the ensemble P , and re-calculate all the distances
in ensemble E as u = G(ρ(x,y)).

3. Initialize U as the average of the redefined distance u in ensemble E.

4. Estimate γ defined in (21) using the prior ensemble P .

5. Initialize εe solving the quartic equation (31).

6. Initialize K according to (34).

Iteration:

1. Select a random particle, (θθθ, u), from the ensemble E.

2. Sample a proposal parameter vector, θθθ∗, from k(θθθ,θθθ∗).

3. Sample a proposal output, x∗, from the likelihood f(x∗|θθθ∗) and calculate its rede-
fined distance u∗ = G(ρ(x∗,y)).

4. With probability min (1, exp [−(u∗ − u)/εe]) update E, i.e., replace particle (θθθ, u)
by (θθθ∗, u∗).

5. Whenever a significant fraction of the ensemble has been updated, update the en-
semble average U , the transition temperature εe solving equation (31) and, option-
ally, the jump distribution according to eq. (34).

6. Stop the algorithm if the acceptance rate drops below a certain value.

Table 1: Algorithm I for the case of a non-informative prior.

13



determined easily. Therefore, the best strategy seems to be to turn on adaptation (34) and
check whether the gain of efficiency due to an increased acceptance rate offsets the loss due
to the deviation from the minimal entropy production path.

At this time, it would be premature to come up with too many recommendations of how
to choose the tuning parameters v and β, as we do not yet have enough practical experience
with the algorithm (but see the recommendation given in the application part of this paper).
But we want to point out again that a too large v combined with a too small β might lead to
a deviation from assumption (13) and, therefore, a bias that would be impossible to correct
for.

2.3.3 The case with an informative prior

As we have discussed at the beginning of this section, the transition rate (5) has the dis-
advantage that a too fast decrease of ε can lead to convergence to a biased result with
under-represented prior. To account for this bias, and ultimately control it, we replace (5) by
a transition rate with a two-dimensional control parameter εεε = (ε1, ε2),

qεεε((θθθ
′,x′), (θθθ,x)) = k(θθθ′, θθθ)f(x|θθθ) min

(
1, exp

[
−ρ(x)− ρ(x′)

ε1
− (1 + ε2)(ν(θθθ)− ν(θθθ′))

])
,

(35)
where

ν(θθθ) = − ln (f(θθθ)) (36)

and ρ(x) = ρ(x,y). Transition rate (35) satisfies the detailed balance condition

πεεε(θθθ
′,x′)qεεε((θθθ

′,x′), (θθθ,x)) = πεεε(θθθ,x)qεεε((θθθ,x), (θθθ′,x′)) , (37)

for the equilibrium distribution

πεεε(θθθ,x) = Z−1(εεε)f(x|θθθ)e−ρ(x)/ε1−(1+ε2)ν(θθθ) , (38)

with

Z(εεε) =

∫
f(x|θθθ)e−ρ(x)/ε1−(1+ε2)ν(θθθ)dθθθdx . (39)

As before, we distinguish between the parameter εεεe(t) that is used in the transition at
time t, thus controlling the annealing schedule, and the parameter εεε(t) which describes the
distribution of the process at time t under the endoreversibility assumption

µ(z, t) ≈ πεεε(t)(z) . (40)

Again our goal is to find a cooling schedule εεεe(t) depending on εεε(t) such that the entropy
production is minimized. In addition, we want the prior bias, measured by ε2(t), to go to
zero.

Initially, at time t = 0, the distribution is chosen as (38), with a rather large ε1(0) and
ε2(0) = 0. The corresponding ensemble is generated by adopting a rejection technique. The
first control parameter εe1(0) is set somewhat smaller than ε1(0) and εe2(0) = 0.

Under the endoreversibility assumption, the distribution at any time is now characterized
by the following two expectations (“extensive thermodynamic quantities”)

U1(t) :=

∫
ρ(x)µ(θθθ,x, t)dθθθdx , (41)

U2(t) :=

∫
ν(θθθ)µ(θθθ,x, t)dθθθdx . (42)

14



By standard results about exponential families, there is a one-to-one correspondence between
the vectors U and the parameters (intensive quantities) εεε. This allows us to describe the
system by the time-dependent vector εεε(t) = εεε(U(t)). We are however not able to achieve
approximate equality of these two vectors by a simple transformation.

As in the previous subsection, the entropy production rate can be expressed as

Ṡirr = F(t)T U̇(t) ,

where the driving forces are now

F(t) =

(
ε1(t)

−1 − εe1(t)−1
ε2(t)− εe2(t)

)
.

In order to find a necessary condition for minimal entropy production, we need as before to
express F(t) as a function of U(t) and U̇(t) and to compute in particular the matrix of partial
derivatives ∂F

∂U̇
.

In this two-dimensional setting, it seems however infeasible to establish a non-linear rela-
tionship between F and U̇ as we did in (20) for the one-dimensional setting. Therefore, we
shall make the linearity assumption

U̇ ≈ L(U)F , (43)

which is reasonable as long as F(t) is not too large. Using the detailed balance condition (37),
we find

Lij(U) = Z−1(εεε)

∫
(ui(z)− ui(z′))(uj(z)− uj(z′))k(θθθ,θθθ′)

× f(x|θθθ)f(x′|θθθ′) exp[−ρ(x)/ε1 − (1 + ε2)ν(θθθ)]

× χ
(
(ρ(x)− ρ(x′))/ε1 + (1 + ε2)(ν(θθθ)− ν(θθθ′))

)
dxdx′dθθθdθθθ′ , (44)

with u1(z) = ρ(x) and u2(z) = ν(θθθ). The U dependence of the r.h.s. of (44) is through
εεε = εεε(U). The matrix L is symmetric and positive definite (due to the Cauchy-Schwarz
inequality). In the theory of non-equilibrium thermodynamics, the entries of the matrix L
are known as the Onsager coefficients [16].

In two dimensions, eq. (30) becomes the necessary condition for minimal entropy produc-
tion

U̇T ∂F

∂U̇
U̇ = const = v . (45)

Plugging (43) into (45) we find a necessary criterion for optimality to be given by

U̇TR(U)U̇ = v , (46)

where R(U) := L−1(U) defines a metric on the (U1, U2)-plane. Equation (46) can also be
derived as follows: Under the linearity assumption (43), and due to the Cauchy-Schwarz
inequality, the entropy production satisfies the inequality

Sirr =

∫ tf

0
U̇(t)TR(U(t))U̇(t)dt ≥ K

tf
, (47)

where K is the length of the process-path in the (U1, U2)-plane, measured with the metric
R(U). The lower bound of (47) is assumed if the integrand is constant, i.e., if the entropy

15



production rate is constant [19]. Thus, finding the optimal schedule consists in (i) finding the
shortest path in the (U1, U2)-plane and (ii) traveling along this path such that the entropy
production rate is constant. Therefore, condition (46) completely determines the optimal
trajectory, which is of course a consequence of the linearity assumption (43).

In order to define our algorithm, we have to continuously estimate the following quan-
tities during run-time: (i) the ensemble means U(t), (ii) the intensities εεε(t) = εεε(U(t)) that
determine our system under assumption (40) and (iii) the metric L(U(t)). As (i) is trivial,
we now discuss (ii) and (iii).

Given a small change, ∆U, of the ensemble means, the corresponding change of the
intensities, ∆εεε, is estimated by means of

∆εεε ≈
(
∂U

∂εεε

)−1
∆U , (48)

where the Jacobi matrix

∂U

∂εεε
:=

(
1
ε21

Var(ρ) −Cov(ρ, ν)
1
ε21

Cov(ρ, ν) −Var(ν)

)
(49)

is estimated using the empirical covariance matrix of the ρ and ν components of the ensemble.
However, the neglected higher order corrections will eventually lead to large deviations from
the ”true” state. Therefore, occasional corrections have to take place estimating U(εεε) without
using the ensemble E. Such an estimate can be calculated using the ensemble P drawn
initially from the joint prior f(x, θθθ). Once εεε is estimated, we need to estimate L(U) in order
to determine the adaptive tuning parameters εεεe. Inspecting equation (44) reveals that this
can be done using the prior sample P as well as the ensemble E. This estimate relies on
assumption (40). At the end of this subsection we will discuss a way of improving both
estimates, U(εεε) and L(U), for small ε1, when the effective sample size of P is low.

Since, at the beginning of the algorithm, neither is the target value for U2, at ε1 = ε2 = 0,
known exactly nor is the metric R(U) = L−1(U) known globally. Therefore, it appears
difficult to come up with an optimal path in the (U1, U2)-plane. However, it appears reasonable
to force the process to be on a path such that ε2 remains small. Practically, this can be
achieved by applying a counter force, setting

εe2 = −aε2 , (50)

where a is some positive constant. Finally, in order to find the optimal trajectory, under
these restrictions, we need to choose εe1 such that (46) is satisfied. Using (43), we obtain the
quadratic equation

FTL(U)F = v . (51)

The easiest version of the algorithm presented in this subsection is summarized in Table 2.
Note that the prior-bias in the final ensemble, as expressed through ε2(t), can be com-

pletely corrected via a weighted re-sampling, in much the same way as the bias due to a
non-vanishing ε1(t) was reduced in the last subsection.

In the remainder of this subsection, we outline two alternative ways of estimating εεε(U)
and L(U), using the information gathered during the course of the algorithm. They can be
used when ε1 gets very small and the prior sample P yields poor estimates. Both methods,
however, will depend on the assumption (40) being satisfied. One way is to simply correct the

16



ensemble E with weights proportional to e−ρ(x)/ε1−ε2ν(θθθ), in order to get a new prior sample,
which has a better resolution where ε1 is small. The other way is to populate, during the
course of the algorithm, a transition matrix, Q, of attempted moves [1]. That is, we partition
an area of interest in the (U1, U2)-plane (which will contain the small distances ρ) into nU1nU2

bins and increment the matrix element Qij i′j′ , whenever a particle in bin U1,i′×U2,j′ attempts
to move into bin U1,i×U2,j . In order to get the correct transition matrix the diagonal entries
Qi
′j′
i′j′ must be incremented whenever a particle from bin U1,i′ × U2,j′ attempts to jump

outside the area of interest. Furthermore, the columns of Q must be normalized so that their
sums equals unity. Under assumption (40) it holds that

Qij i′j′ =

∫
ρ(x)∈U1,i ,ρ(x′)∈U1,i′ ,ν(θθθ)∈U2,j ,ν(θθθ′)∈U2,j′

k(θθθ,θθθ′)f(x|θθθ)f(x′|θθθ′)dxdx′dθθθdθθθ′∫
ρ(x′)∈U1,i′ ,ν(θθθ

′)∈U2,j′
f(x′|θθθ′)dx′dθθθ′

.

The eigenvector, g, corresponding to the largest eigenvalue, 1, of Q, is a discretization of the
likelihood function on the (U1, U2)-plane:

gi′j′ =

∫
ρ(x′)∈U1,i′ ,ρ(θθθ

′)∈U2,j′
f(x′|θθθ′)dx′dθθθ′∫

f(x|θθθ)dxdθθθ
. (52)

This holds true even if k is adapted during the algorithm. At a later stage of the algorithm,
when the prior sample becomes insufficient but Q is sufficiently well populated to estimate
(52), the latter can be used to estimate both U(εεε) and L(U), for small values of ε1. Further-
more, if k is not adapted, the matrix Q can be used directly to estimate L(U), without the
need of calculating the jump density matrix K.

Of course, a similar matrix of attempted moves can also be used in the one-dimensional
setting, subsection 2.3.2, to replace prior sample P at a later stage of the algorithm.

3 Toy examples

In this section, we apply our adaptive scheme to two examples. The prior of the first one has
almost no influence on the posterior, in the second this influence is large. As a shorthand for
our adaptive scheme we use the acronym SABC, which merges SA, for Simulated Annealing,
with ABC.

SABC is compared against the sequential Monte Carlo samplers (SMC) from del Moral et
al. (2012) [5] and adaptive population Monte Carlo (APMC) from Lenormand et al. (2013)
[11]. For the latter two the implementations in the R-package “EasyABC” [9] were used.

For SMC and APMC the same tuning parameters were used for both examples. The
population size N for all algorithms was 1000. The parameter α of APMC was set to 0.5
following the recommendation of Lenormand et al. (2013). The tuning parameters for SMC
are the same del Moral et al. (2012) used for the first toy example (α = 0.95, M = 1,
NT = 500).

In real applications the computational costs are often dominated by sampling from the
likelihood. Therefore, the number of samples drawn from the likelihood was used as measure
of the computational effort.

17



Input:

1. Algorithms to sample from the prior and the likelihood.

2. Ensemble size N and initial value εinit.

3. Tuning parameters β, s, v and a with default values, β = 2, s = 0.01, v = 0.3 and
a = 2.

Initialization:

1. Repeat, until the ensemble E in (d) contains N particles:

(a) Sample a parameter vector, θθθ, from the prior.
(b) Sample an output, x, from the likelihood f(x|θθθ).
(c) Store the vector (θθθ, ρ(x,y), v(θθθ)) in ensemble P .
(d) With probability exp[−ρ(x,y)/εinit] store the vector (θθθ, ρ(x,y), ν(θθθ)) also in

ensemble E.

2. Initialize metric L(U) defined in (44), using the prior ensemble P .

3. Initialize U as the ensemble E averages.

4. Initialize εe2 = 0 and εe1 solving the quadratic eq. (51).

5. Initialize K according to (34).

Iteration:

1. Select an arbitrary particle, (θθθ, ρ, ν), from the ensemble E.

2. Sample a proposal parameter vector, θθθ∗, from k(θθθ,θθθ∗) and a proposal output, x∗,
from the likelihood f(x∗|θθθ∗).

3. With probability r = min (1, exp [−(ρ∗ − ρ)/εe1 − (1 + εe2)(ν
∗ − ν)]), update E, i.e.,

replace (θθθ, ρ, ν) by (θθθ∗, ρ∗, ν∗).

4. Whenever a significant fraction of the ensemble has been updated, perform the
following mean-field updates:

• Save the old ensemble means Uold and denote the new ones by Unew.
• Update the Jacobi matrix (49) via calculation of the empirical covariance ma-

trix of the ρ and ν components of E.
• Save the old intensities εεεold and calculate the new ones iterating the following

two steps:

(a) Compute the change ∆εεε = εεεnew − εεεold according to equation (48).

(b) If U is close (say within a relative error of 1%) to the theoretical ensemble
averages, U(εεεnew), as calculated from P , set εεε = εεεnew and stop, otherwise,
replace εεεnew → εεεold and U(εεεnew)→ Uold and go back to (a).

• Update the metric L(U), according to εεε, using prior ensemble P .
• Update εe2 = −aε2 and εe1 solving (51).
• Optionally: update K according to (34).

5. Stop the algorithm if the acceptance rate drops below a certain value.

Table 2: Algorithm II, for the case of an informative prior.

18



3.1 Example 1

The first example is a traditional example of the ABC literature (e.g. [5], [11]). The prior is
uniformly distributed on the interval [−10, 10], and the likelihood is given by the sum of two
normal distributions with very different standard deviations:

f(x|θ) ∝ exp

[
−(x− θ)2

2

]
+

1

σ
exp

[
−(x− θ)2

2σ2

]
, (53)

with σ = 0.1. Thus, the posterior for y = 0 is given by

f(θ|y) ∝ 1 [−10,10]

(
exp

[
−θ

2

2

]
+

1

σ
exp

[
− θ2

2σ2

])
. (54)

As the prior has almost no influence on the posterior, the non-linear algorithm from
Table 1, with one final bias correction, has been employed. Furthermore, k(θθθ,θθθ′) has been
continuously adapted according to (34). Since the prior has a much bigger variance than the
posterior, this turns out to be beneficial, for the convergence of the algorithm. The optimal
choice for the dimensionless parameter β, defined in (34), is expected to depend little on
details of the model. For our examples we choose β = 2, which is large enough to ensure a
fast enough mixing in parameter space compared to the decay of the mean distance to the
target. The tuning parameter v/γ governs the annealing speed. As this example is so simple,
its choice is not very critical. With the choice β = 2 a violation of the endoreversibility
assumption is not to be expected, even for high annealing speeds. A slowing down of the
convergence due to a trapping of particles is observed only at very high values of v/γ. We
choose the value v/γ = 3.

Figure 1 shows the results for all three samplers after, approximately, 10 000 and 40 000
simulations from the likelihood. It is clearly visible that SMC has not yet converged, while the
results of APMC and SABC look much better. After 40 000 likelihood samples, the histogram
of SABC looks slightly smoother than the one of APMC. As APMC is an importance sampling
algorithm, the sample generated after 40 000 simulations is an exact sample from a closer
approximation of the posterior than the sample generated after 10 000 simulations. Therefore,
we attribute the slight deterioration of the histogram to the loss of effective sample size (ESS)
due to resampling. The ESS, for APMC and SABC, are summarized in Table 3. For APMC,
the ESS was calculated under the optimistic assumption that, before the last resampling is
made, the ensemble has completely recovered from the loss of ESS. For SABC, the loss of
ESS after 10000 simulations is due to the final bias correction step. The parameter δ, used
for the final bias correction as described towards the end of subsection 2.3.2, was chosen such
that the ESS of SABC and APMC are comparable.

APMC SABC

10 000 simulations 306 240
40 000 simulations 323 1000

Table 3: Comparison of effective sample sizes of the APMC and the SABC algorithm for
example 1, after 10 000 and 40 000 likelihood simulations.

19



Figure 1: Histograms of an ensemble of 1000 particles for example 1 generated with SMC,
APMC and SABC. The solid curve is the exact posterior density. Note that ”simulations”
refers to single draws from the likelihood.

3.2 Example 2

In contrast to the first example, the prior in the second example has a large influence on the
posterior. The prior shall be given as the normal distribution

f(θ) =
1√
2π

exp

[
−θ2

2

]
,

and the likelihood as the normal distribution

f(x|θ) = 1√
2π

exp

[
−(x− θ)2

2

]
.

Thus, the posterior is given as

f(θ|y) = 1√
π
exp

[−(θ − y/2)2
]
.

To investigate if the algorithms can handle severe prior-data conflicts, we set y = 3.
In this example it is important for SABC to properly control ε2(t) while annealing ε1(t)

as prior and likelihood ”pull from opposite directions”. Therefore, we employ the linear
algorithm as described in Table 2, with one final bias correction. The tuning parameter v,
which now has the interpretation of an entropy production rate, was chosen to be 0.3. For
β we chose the same value as in the previous example, namely β = 2. In this example,
continuously adapting k(θθθ,θθθ′) has a negligible effect on the convergence speed.

20



The results are shown in figure 2. Again, the results from SMC have not yet converged
and are heavily biased towards the prior. APMC seems to converge slightly faster then SABC
(compared at 10 000 simulations). However, the quality of the APMC sample decreases for
more simulations, which is attributed to the loss of ESS. As SABC is avoiding resampling,
this effect is not observed. Effective sample sizes, for APMC and SABC are summarized in
Table 4. After 10000 simulations, we chose the bias-correcting parameter δ such that the ESS
of SABC and APMC are similar. After 40000 simulations, the loss of ESS for SABC is due
solely to the correction of the prior bias, expressed through the final value of ε2.

APMC SABC

10 000 simulations 404 408
40 000 simulations 322 982

Table 4: Comparison of effective sample sizes of the APMC and the SABC algorithm for
example 2, after 10 000 and 40 000 likelihood simulations.

Figure 2: Histograms of an ensemble of 1000 particles for example 2 generated with SMC,
APMC and SABC. The solid curve is the exact posterior density.

4 Real-world example: tuberculosis bacteria

Tanaka et al. [23] analyzed genotype data of tuberculosis bacteria with a stochastic model
to infer death, birth and mutation rates by means of ABC. In the 473 analyzed tuberculosis
bacteria cultures, 326 distinct genotypes where found. Cultures with the same genotype form
a cluster. The data in table 5 describe how many clusters with a certain number of cultures

21



were found. For example one cluster consisting of 30 cultures with the same genotype was
observed, two clusters with five cultures each, and so forth.

This data contains only information on the rates relative to each other, because no time
information is available. Therefore, only birth, death, and mutation events are simulated
until the population reaches a (arbitrarily defined) size of 10 000 living bacteria (see [23] for
details). Therefrom a random sample without replacement of size 473 is taken. We used
the parametrization proposed by Fearnhead and Prangle [7] which reduces the inference to a
two dimensional problem with a = P (birth|event) and d = P (death|event). The probability
that an event is a mutation is given by 1 − a − d. Also the same flat prior is used π(a, d) ∝
1a>d10<a+d≤1.

The data are summarized by two statistics as described by [23]: the number of distinct
genotypes g in the sample and a measure of gene diversity H = 1 −

∑g
i=1 (ni/473)2, where

ni is the number of bacteria in the ith cluster. The distance between simulated and observed
data is measured as |g∗− g|/473 + |H∗−H|, where the asterisks indicate the statistics of the
simulated data.

Because of the flat prior the non-linear version of the SABC, Table 1, was used, with a
final re-sampling step, with δ = 0.2. As in the previous examples, we chose β = 2 and tuned
v/γ. A high convergence speed is achieved with v/γ = 7 but we found that the algorithm is
remarkably robust w.r.t. the choice of this tuning parameter.

We compared the performance of our algorithm with the adaptive population Monte Carlo
(APMC) from Lenormand et al. [11], which we ran with the same sample size N = 200 and
with the choice of the tuning parameter α = 0.5, as recommended in [11]. Similarly to the
results from the previous section, we found that, for short simulation times, APMC shows a
slightly better performance than SABC due to a faster convergence, but, for longer simulation
times, APMC suffers from a deterioration of the sample due to a loss of ESS, which is not
observed with SABC. Figure 3 shows the results after 3800 iterations (approximately 2000
simulations from the likelihood). The result of SABC is in excellent agreement with the result
reported in [7], whereas the final sample from APMC shows some signs of deterioration, which
is attributed to the loss of ESS, in each iteration step. The time-course of the ESS, for APMC,
is shown in Figure 3. The jump to an ESS of about 80, before the last resampling step, is
based on the (presumably unrealistic) assumption that each population update leads to a
complete recovery of the ESS. For SABC, the final ESS is 129 and due to the final resampling
step.

5 Conclusions

We have presented a framework of particle algorithms for Approximate Bayes Computations
that is inspired by Simulated Annealing. Its main advantage compared to the sequential
ABC algorithms the authors are aware of is the fact that it is not based on importance
sampling. Therefore, the effective sample size of our algorithms does not decrease over time.
As the interactions between the particles in the adaptive algorithm are of mean-field type, the

Table 5: Tuberculosis genotype data.
number of cultures per cluster 30 23 15 10 8 5 4 3 2 1
number of clusters 1 1 1 1 1 2 4 13 20 282

22



statistical independence of the particles is preserved (see, e.g., [4]).
The cost for this gain of efficiency is the fact that our system is necessarily out of equi-

librium. That is, in addition to the bias due to non-zero equilibrium tolerances εe1 and εe2, we
have a bias due to our system being out of equilibrium (i.e. ε1 being larger than εe1). There
is a trade-off between these two kinds of bias reflected in the choice of the tuning parameter
v. Choosing a larger v might result in a smaller εe1, for a given computation time, but in a
larger bias of the second kind. Choosing v too large, in combination with too slow mixing
in parameter space, expressed through a too small β, might lead to a third kind of bias, a
violation of the endoreversibility assumption (13) or (40). This kind of bias is impossible to
correct for and has to be avoided by a careful choice of tuning parameters.

In Sect. 2.2 we proved convergence to the correct posterior, for cooling that is slower than
a certain inverse power of time. In Sect. 2.3 we presented an adaptive cooling scheme that
is designed to achieve convergence to the correct posterior with a minimum of computational
effort. Therefore, the control variable εe1 is adjusted according to the particles’ distance to
the target in such a way that the entropy production in the system, which is a measure for
the waste of computation, is minimized. If the prior is important, a second control variable
is used to control its influence. Using this adaptive scheme, tuning essentially reduces to the
choice of β, related to the mixing speed in parameter space, and v, related to the annealing
speed.

In our scheme the characteristic function χ(ε − ρ(x,y)), which is often used in ABC
calculations, is replaced by the Boltzmann factor exp(−ρ(x,y)/ε). With this replacement,
moves are not only accepted if they end up in an ε-ball around the target but they are more
likely accepted if they move closer to the target.

Finally, our algorithm is of the order O(N), with some overhead due to occasional mean-
field updates needed for the update of the tolerance(s) and the jump distribution. Importance
sampling algorithms are typically of the order O(N2), due to the weighting step, but see
the algorithm by del Moral et al [5], which scales like O(N). However, all the algorithms
mentioned in this article scale like O(N) with the number of simulations from the likelihood,
which is usually the most costly step. Like all sequential ABC algorithms, our scheme is well
suited for parallelization.

The overhead, in our scheme, is significantly larger if the prior is informative. Furthermore,
in this case, we can only derive an optimal schedule for relatively slow annealing (linearity
assumption). For strongly informative priors, a simple ABC rejection algorithm should be
considered as an alternative to a sequential schedule.

The biggest disadvantage inherent to all ABC algorithms is that the tolerance leads to
a bias that grows with the dimension of the output space n. Therefore, it is important to
use summary statistics to reduce the output dimension or employ local approximations of the
likelihood, for ABC to be useful for problems with large output dimensions (see, e.g., [7] and
[12]).

Drawing the initial sample for our adaptive algorithm generates, as a side product, a larger
sample from the joint prior. In our adaptive scheme we use this prior information, for the
redefinition of the metric (14) or to estimate the sample average U(εεε) and the metric L(U).
Note that, at the same time, this information can be used to establish appropriate summary
statistics, as described in [7].

23



Acknowledgements

The first author is indebted to Bjarne Andresen for valuable comments on the adaptive
algorithm.

References

[1] B. Andresen, KH. Hoffmann, K. Mosegaard, J. Nulton, JM. Pedersen, and P. Salamon.
On lumped models for thermodynamic properties of simulated annealing problems. J.
Physique., 49(9):1485–1492, 1988.

[2] M. A. Beaumont, J.M. Cornuet, J.M. Marin, and C. P. Robert. Adaptive approximate
Bayesian computation. Biometrika, 96(4):983–990, 2009.

[3] A. Beskos, D. Crisan, and A Jasra. On the Stability of Sequential Monte Carlo Methods
in High Dimensions. arXiv: 1103.3965v2, 2012.

[4] D. Burkholder, E. Pardoux, and A. Sznitman. Topics in propagation of chaos. In Ecole
d’Ete de Probabilites de Saint-Flour XIX — 1989, volume 1464 of Lecture Notes in
Mathematics, pages 165–251. Springer Berlin / Heidelberg, 1991. 10.1007/BFb0085169.

[5] P. Del Moral, A. Doucet, and A. Jasra. An adaptive sequential Monte Carlo method for
approximate Bayesian computation. Statistics and Computing, 22(5):1009–1020, 2012.

[6] R. Douc, E. Moulines, and J.S. Rosenthal. Quantitative bounds on convergence of time-
inhomogeneous Markov chains. The Annals of Applied Probability, 14(4):1643–1665,
2004.

[7] P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian
computation: semi-automatic approximate Bayesian computation. J. Roy. Stat. Soc. B,
74(3):419–474, 2012.

[8] H. Föllmer. Random fields and diffusion processes. In Ecole d’Ete de Probabilites de
Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Mathematics, pages
101–203. Springer Berlin / Heidelberg, 1988.

[9] F. Jabot, T. Faure, and N. Dumoullin. EasyABC: EasyABC: performing efficient ap-
proximate Bayesian computation sampling schemes, 2013. R package version 1.2.2.

[10] A. Lee. On the choice of MCMC kernels for approximate Bayesian computation with
SMC samplers. In Proceedings of the 2012 Winter Simulation Conference (WSC 2012),
page 12 pp. IEEE Syst., Man, Cybernetics Soc., 2012 2012. 2012 Winter Simulation
Conference (WSC 2012), 9-12 Dec. 2012, Berlin, Germany.

[11] M. Lenormand, F. Jabot, and Deffuant G. Adaptive approximate Bayesian computation
for complex models. Comp. Stat., 28(6):2777–2796, 2013.

[12] C. Leuenberger and D. Wegmann. Bayesian computation and model selection without
likelihoods. Genetics, 184(2):243–252, 2010.

[13] J.M. Marin, P. Pudlo, C.P. Robert, and R.J. Ryder. Approximate Bayesian computa-
tional methods. Statistics and Computing, 22(6, SI):1167–1180, 2012.

24



[14] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without
likelihoods. Proc. Natl. Acad. Sci. U.S.A., 100(2):15324–15328, 2003.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation
of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092, 1953.

[16] L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37(4):405–426,
1931.

[17] M.H. Rubin. Optimal Configuration of a Class of Irreversible Heat Engines I. Phys. Rev.
A, 19(3):1272–1276, 1979.

[18] G. Ruppeiner, Pedersen J.M., and Salamon P. Ensemble approach to simulated anneal-
ing. J. Phys. I, 1:455–470, 1991.

[19] P. Salamon, A. Nitzan, B. Andresen, and RS. Berry. Minimum Entropy Production and
the Optimization of Heat Engines. Phys. Rev. A, 21(6):2115–2129, 1980.

[20] M. Sedki, P. Pudlo, Marin J.M., C.P. Robert, and J.M. Cornuet. Efficient learning in
ABC algorithms. arXiv: 1210.1388v2 [stat.CO], 2013.

[21] U. Seifert. Entropy production along a stochastic trajectory and an integral fluctuation
theorem. Phys. Rev. Lett., 95, 2005.

[22] W. Spirkl and H. Ries. Optimal Finite-Time Endoreversible Processes. Phys. Rev. E,
52(4, A):3485–3489, 1995.

[23] M.M. Tanaka, A.R. Francis, F. Luciani, and S.A. Sisson. Using approximate bayesian
computation to estimate tuberculosis transmission parameters from genotype data. Ge-
netics, 173(3):1511–1520, 2006.

[24] S. Tavaré, D.J. Balding, R.C. Griffiths, and P. Donnelly. Inferring Coalescence Times
From DNA Sequence Data. Genetics, 145:505–518, 1997.

[25] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate Bayesian
computation scheme for parameter inference and model selection in dynamical systems.
J. R. Soc. Interface, 6(31):187–202, 2009.

[26] G. Weiss and A. Haeseler. Inference of population history using a likelihood approach.
Genetics, 149:1539–1546, 1998.

[27] R.D. Wilkinson. Approximate Bayesian computation (ABC) gives exact results under
the assumption of model error. Stat. App. in Gen. and Mol. Biol., 12(2):129–141, 2013.

25



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

Posterior SABC

P(birth|event)

P
(d
ea
th
|e
ve
nt
)

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●●

●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

Posterior APMC

P(birth|event)

P
(d
ea
th
|e
ve
nt
)

0 1000 2000 3000

0.02

0.04

0.06

0.08

Epsilon SABC

iteration

εe

500 1500 2500 3500

20

40

60

80

100

ESS APMC

iterations

E
S
S

Figure 3: Top row: Final population of 200 particles after a total of 3800 updates (approx-
imately 2000 simulations from the likelihood, the rest were jumps into forbidden parameter
regions), for SABC (left) and APMC (right). Bottom row: Time-course of εe(t), for SABC
(left) and time-course of the ESS, for APMC (right). The final ESS, for SABC, is 129 and
due to a single resampling step.

26


	1 Introduction
	2 A new class of ABC algorithms
	2.1 Basic idea
	2.2 An explicit scheme with convergence proof
	2.3 An adaptive scheme
	2.3.1 Heuristics
	2.3.2 The case of negligible prior information
	2.3.3 The case with an informative prior


	3 Toy examples
	3.1 Example 1
	3.2 Example 2

	4 Real-world example: tuberculosis bacteria
	5 Conclusions

