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ABSTRACT

Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and
result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation.
This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology
focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial
genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this
review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using
synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations.
In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and
illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We
finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of
competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
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INTRODUCTION ingly complex and unexpected dynamics (Nowak and Sigmund
2004; Nadell and Foster 2012; Allen and Nowak 2013). More-
over, the dynamic interplay between the microbial genotypes
can result in community-level functionalities and properties
(e.g. robustness, resilience, complementarity, facilitation, com-
petition, antagonism, etc.) that might not be readily expected
from analyzing each genotype in isolation (Korb and Foster 2010;
Celiker and Gore 2012; Grof3kopf and Soyer 2014; Escalante
et al. 2015; Fredrickson 2015). Clearly, our understanding of the

Consider an ecosystem consisting of two different microbial
genotypes that live within close spatial proximity to each other.
Given the apparent simplicity of this ecosystem, one might
presume that the dynamic behaviors of these two microbial
genotypes are relatively easy to predict and explain from basic
principles and measurable properties. Recent theoretical and
experimental investigations, however, suggest that even a sim-
ple assemblage of two microbial genotypes can exhibit surpris-
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general rules and principles that govern the dynamics and emer-
gent properties of microbial assemblages is at its infancy.

This knowledge gap has, at least in part, inspired a devel-
oping discipline of synthetic microbial ecology (Brenner, You
and Arnold 2008; Wintermute and Silver 2010b; Momeni et al.
2011; Chuang 2012; Mee and Wang 2012; Bacchus and Fusseneg-
ger 2013; De Roy et al. 2013; Grofskopf and Soyer 2014; Zomor-
rodi and Segré 2015; Lindemann et al. 2016). Synthetic micro-
bial ecology can be viewed as an extension or subdiscipline of
synthetic biology. While synthetic biology typically focuses on
designing, building, quantitatively analyzing, and predicting the
dynamic behavior of metabolic and regulatory circuits (i.e. a set
of interacting molecules), synthetic microbial ecology focuses
on designing, building, quantitatively analyzing and predicting
the dynamic behavior of ‘ecological circuits’ (i.e. a set of inter-
acting microbial genotypes). In addition, whereas synthetic bi-
ology seeks to understand how cellular-level properties emerge
as a consequence of molecular interactions, synthetic microbial
ecology seeks to understand how community-level properties
emerge as a consequence of microbial interactions.

From an experimental perspective, synthetic microbial ecol-
ogy can be broadly delineated into bottom-up and top-down ap-
proaches (however, see alternative delineations by De Roy et al.
2013; Grofskopf and Soyer 2014). Bottom-up approaches focus
on the ‘design and build’ principle, which is elegantly summa-
rized by Richard Feynman in his statement that ‘What I cannot
create, I do not understand’. The main approach is to assem-
ble different microbial genotypes with pre-determined proper-
ties together in order to achieve a desired set of interactions.
The researcher then measures the dynamics and properties of
both individual genotypes and the synthetic assemblage itself
and attempts to understand or control specific features or higher
level properties that emerge as a consequence of those interac-
tions. It therefore closely aligns with conventional synthetic bi-
ology, where the researcher often assembles genes, enzymes or
other molecules together within a cell, measures the dynamics
and properties of individual molecules and the cell itself, and at-
tempts to understand or control specific features or higher level
properties that emerge as a consequence of the molecular inter-
actions (Smolke and Silver 2011; Lanza, Crook and Alper 2012).
Top-down approaches, in contrast, are not based on designing
and building a set of particular ecological interactions. Instead,
genotypes are selected from a predefined set and assembled to-
gether randomly to obtain a set of synthetic assemblages with
certain compositional aspects (e.g. assemblages with varying
levels of functional, taxonomic or phylogenetic diversity) (Bell
et al. 2005; Cardinale et al. 2006; Wittebolle et al. 2009; Cardi-
nale 2011; Reich et al. 2012; De Roy et al. 2013). The researcher
then measures the properties of the synthetic assemblages (e.g.
resource consumption rates, biomass production, susceptibility
to invasion, response to perturbations etc.) and tests whether
the controlled aspects relate to those properties. In some cases,
the measured properties can provide insight into the interac-
tions within those synthetic assemblages and how those inter-
actions affect specific features of the assemblages (e.g. Foster
and Bell 2012; Zuppinger-Dingley et al. 2014). We note that syn-
thetic microbial ecology is not an entirely new discipline, but
instead builds upon many decades of research with microbial
isolates and defined assemblages (Fredrickson 1977; Fredrickson
and Stephanopoulos 1981; Schink 2002). Nevertheless, modern
mathematical modeling and genetic tools together with insights
from the last three decades of research on environmental mi-
crobiology and experimental ecology are transforming synthetic
ecology into a distinct and exciting new discipline.

GOALS AND SCOPE

The goals of this review are the following. First, we introduce
typical objectives of synthetic microbial ecology and review the
main advantages and rationales of using synthetic microbial as-
semblages. We primarily focus on bottom-up approaches, as in
our view these approaches align most closely with the ‘design
and build’ principle that has been central to the broader field of
synthetic biology (Church et al. 2014; Way et al. 2014). Second, we
briefly summarize the main methodologies of synthetic micro-
bial ecology, including experimental, theoretical and mathemat-
ical techniques. We emphasize that synthetic microbial ecology
often benefits when experimentation and mathematical mod-
eling are combined. Third, we summarize the main findings of
current synthetic microbial ecology investigations. Namely, we
focus on the causes and consequences of the dynamic interplay
between different microbial genotypes. Finally, we propose al-
ternative terminology for defining interactions that may stimu-
late new perspectives and discussions. Throughout the review,
we illustrate how simple ecological interactions can create com-
plex dynamics, and how those dynamic behaviors can lead to
community-level functionalities that might not be readily pre-
dicted from analyzing each genotype in isolation. We do not at-
tempt to define the scope of synthetic microbial ecology, but to
instead provide a perspective for discussing the main concepts,
approaches and questions relevant to the field.

WHAT ARE TYPICAL OBJECTIVES OF
SYNTHETIC MICROBIAL ECOLOGY?

The typical objectives of a synthetic microbial ecology investi-
gation can often be assigned to one of the following two types.

(i) Understand the general principles and rules that govern the
dynamics, functioning and higher-order community-level
properties of microbial assemblages. How do community-
level properties emerge from the dynamic interplay be-
tween different microbial genotypes (e.g. ecological and
evolutionary feedbacks)?

(ii) Rationally engineer synthetic microbial assemblages to en-
able, control or optimize a desired biotransformation, such
as the production of a valuable product from a low-cost
source material or the transformation of a pollutant into an
innocuous end product.

The objectives are therefore broad and encompass both fun-
damental questions and tangible applications. While these ob-
jectives are not mutually exclusive, the main focus of this review
is on objective i. We acknowledge that applications (objective ii)
have been a major driving force for the field, and we therefore re-
fer the reader to previous reviews and perspectives that provide
more emphasis on applications (e.g. Markx, Andrews and Mason
2004; De Roy et al. 2013; Ortiz-Marquez et al. 2013; Jagmann and
Philipp 2014; Song et al. 2014; Lindemann et al. 2016).

Why use synthetic microbial assemblages?

To achieve the objectives listed above, the following features of
synthetic assemblages are of significant value.

(i) Microbial interactions can be controlled and monitored.
Different microbial genotypes can be obtained or geneti-
cally engineered that interact with each other in a desired
manner.
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(ii) Experimental conditions can be controlled. Synthetic mi-
crobial assemblages can be propagated under carefully
maintained experimental conditions where the physical
and chemical properties of the environment are well de-
fined. Experimental conditions can also be modified to per-
turb, promote or prohibit specific types of microbial interac-
tions, thus, allowing for carefully controlled manipulation
experiments.

(iii) Synthetic microbial assemblages are less complex than
natural microbial communities, and are therefore generally
more amenable to mathematical modeling. The growth and
metabolic properties of each genotype can be measured in
isolation and, in some cases, within the assemblages them-
selves. It is therefore easier to obtain a comprehensive de-
scription of their dynamic properties, which is important
for accurate and reliable model predictions. Moreover, be-
cause the frequencies of each genotype can typically be
monitored over time, it is possible to compare model pre-
dictions with experimental observations at a high level of
detail.

All three of these features are less likely to be available
when investigating microbial assemblages in their natural en-
vironment. Natural microbial assemblages often contain many
hundreds to thousands of different genotypes (Curtis, Sloan
and Scannell 2002; Pedrés-Alié 2012), most of which are not
readily amenable to isolation or phenotypic characterization.
The metabolic properties of individual genotypes and the in-
teractions between them must therefore typically be deduced
using predominantly indirect tools, such as (meta) genomic
(Ponomarova and Patil 2015; Stepanauskas 2015) or stable-
isotope probing (Neufeld, Wagner and Murrell 2007; Dolinsek
et al. 2013) methods. The interactions are consequently of-
ten hypothetical in nature, incompletely described, of high di-
mensionality (i.e. the number of interactions within a natural
assemblage may be exceedingly large), and difficult to ma-
nipulate in a desired manner, thus, creating confounding fac-
tors that make it difficult to understand how interactions af-
fect community dynamics. In addition, environmental param-
eters available for manipulation are relatively limited when
investigating natural microbial assemblages in their native
environment. For example, while one can add a resource to an
existing nutrient pool to promote or prevent a particular inter-
action, it can be difficult to completely remove a particular re-
source, which is less of an issue when working with synthetic
microbial assemblages propagated in defined medium in the
laboratory. Finally, it is typically more difficult to track the abun-
dances or frequencies of different genotypes within natural mi-
crobial assemblages, and the measured dynamics are therefore
of coarser resolution.

Imposing interactions and analyzing synthetic
microbial assemblages

There are two main approaches for imposing interactions be-
tween different microbial genotypes. One approach is to use dif-
ferent species or strains that mimic a simplified natural micro-
bial assemblage of interest. For example, if one is interested in
fermentation processes, one might assemble together a species
that ferments an organic substrate to hydrogen with another
species that consumes hydrogen (Stolyar et al. 2007). This ap-
proach is advantageous in that the synthetic assemblage may
more accurately mimic a natural community. The use of differ-
ent species also allows for a wide range of interactions. However,
the approach also suffers in that the two genotypes will likely
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have many genetic differences between them. This could cre-
ate confounding factors and lead to non-intuitive or unwanted
interactions, thus resulting in some loss of experimental con-
trol (Hansen et al. 2007). An alternative approach is to genet-
ically engineer and assemble together a set of genotypes that
were all derived from the same parental strain (i.e. isogenic mu-
tants) (e.g. Wintermute and Silver 2010a; Lilja and Johnson 2016).
Isogenic mutants have fewer genetic differences between them,
thus reducing (but not eliminating) the probability of generating
unexpected or unwanted interactions that could emerge from
numerous physiological differences between more distantly re-
lated genotypes. Interactions are therefore more controlled and
effectively limited to a few well-defined types. For example, one
can create interactions by deleting or inactivating genes en-
coding essential biosynthetic machinery (e.g. for amino acids
or nucleotides biosynthesis), thus forcing two isogenic mutants
to cross-feed specific biosynthetic building blocks (Wintermute
and Silver 2010a; Mee et al. 2014; Pande et al. 2014). A potential
disadvantage of using isogenic mutants, however, is that they
may not accurately mimic natural microbial assemblages, and
thus provide less insight into natural processes. Moreover, even
if isogenic mutants only contain a few genetic differences, these
genetic differences may have large phenotypic effects and also
lead to the generation of unexpected interactions and confound-
ing factors.

After creating a synthetic microbial assemblage, the main be-
haviors of the assemblage are measured, such as resource con-
sumption, growth, productivity, etc. Properties of the individ-
ual genotypes might also be measured, such as changes in their
abundances or frequencies and their spatial positioning relative
to each other. To quantify the abundances or frequencies of dif-
ferent genotypes, genetic or phenotypic traits (e.g. fluorescent
protein-encoding genes, antibiotic resistance genes etc.) can be
introduced into the genotypes, which are then assayed using
microscopic or phenotypic assays (e.g. by selective plating). Al-
ternatively, it may be possible to use native traits to distinguish
and quantify different genotypes, such as the production of pig-
ments, the ability to use certain resources, or the requirement
for specific nutrients (e.g. Lenski et al. 1991; Kassen et al. 2000).
Finally, for synthetic assemblages containing larger numbers
of genotypes, sequencing-based techniques may be useful for
quantifying the abundances of individual genotypes based on
engineered or natural genetic differences. The decision about
how to distinguish and quantify different genotypes depends on
the main questions and objectives of interest. If spatial arrange-
ment at the microscale or the single cell-level is central for an in-
vestigation, then the use of fluorescent protein-encoding genes
is especially powerful because one can readily quantify spatial
metrics such as intermixing and cooccurrence patterns (Daims,
Licker and Wagner 2006; Hansen et al. 2007; Momeni, Waite and
Shou 2013; Miiller et al. 2014). However, if one is interested in
spatial arrangement at the macroscale or in behaviors in com-
pletely mixed systems, then the use of native traits may be suf-
ficient and additionally avoids the possibility that the genetic
markers themselves might impact the biology of the organisms
(e.g. Lenski et al. 1991; Kassen et al. 2000).

Mathematical models are often used to generate predictions
and hypotheses that can be tested with synthetic microbial
assemblages (Zomorrodi and Segre 2015; Widder et al. 2016).
Mathematical models are powerful because interactions be-
tween different genotypes often result in non-linear behaviors
and asynchronous growth of the different genotypes, which can
lead to complex and non-intuitive predictions (e.g. Yoshida et al.
2003). Dynamical models based on differential equations have
been widely applied, where the goal is to predict how system
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features change over time. These system features may include
the abundances of different genotypes, the concentrations of re-
sources or the abundances of specific biological molecules (e.g.
enzymes, transcripts, ATP, toxins etc.). While powerful, dynami-
cal models typically require the estimation or measurement of a
relatively large number of biological parameters, such as maxi-
mum reaction rates, half-saturation coefficients, inhibition
coefficients and carrying capacities. They also model
population-level behaviors rather than individual-level be-
haviors. An advantage of dynamical models is that they have
a fixed set of equations that are typically more tractable to
mathematical analyses. The outcomes are therefore typically
easier to generalize and the main drivers of system behavior
are often easier to identify.

Alternative types of models include game theoretical or
agent-based models. In these models, individuals are treated as
agents that obey by certain rules. These rules are the processes
that govern how different individuals interact with each other
and with their environment. They determine the types of strate-
gies that individuals may take and the costs and benefits for
implementing those strategies. For example, an individual may
be a ‘cooperator’ that secretes a molecule that is beneficial for
the entire population or a ‘cheater’ that consumes the secreted
molecule but does not secrete it itself. If an individual engages in
a strategy that has greater benefits than costs, then that individ-
ualis more likely to reproduce and, in turn, increase in frequency
or abundance. Different strategies can therefore be competed
against each other and the outcomes compared. Thus, they dif-
fer from dynamical models in that they focus on individual-level
behaviors rather than on population-level behaviors. One disad-
vantage of agent-based models, however, is that they are often
complex. The outcomes are therefore sometimes more difficult
to generalize and the main drivers of system behaviors are more
difficult to identify.

More recently, metabolic models have been used to compre-
hensively predict the metabolism of a genotype and how geno-
types are likely to interact with others within synthetic assem-
blages (Stolyar et al. 2007; Klitgord and Segre 2010; Wintermute
and Silver 2010a; Harcombe et al. 2014; Chubiz et al. 2015). These
models differ from the previous two in that they are inherently
stoichiometric and/or thermodynamic in nature, and they there-
fore do not require measurement or adjustment of kinetic pa-
rameters. They are also capable of generating accurate descrip-
tions of metabolism and emergent ecological interactions from
genomic data using stoichiometric balancing and by consider-
ing thermodynamic properties of metabolic reactions. However,
they suffer from relying on questionable optimality assumptions
and are often incomplete in nature (for a detailed overview of
the utility and limitations of metabolic models, see e.g. Ataman
and Hatzimanikatis 2015; O’Brien, Monk and Palsson 2015). Con-
tinuing development of these models and ongoing translation
of genomic data into mathematically described metabolic net-
works (O’Brien, Monk and Palsson 2015) hold promise for iden-
tifying novel interactions and improving the rational design of
synthetic microbial assemblages (Zomorrodi and Segre 2015).

TYPES OF SYNTHETIC MICROBIAL
ASSEMBLAGES

An important objective of many synthetic microbial ecology ex-
periments is to create a reduced ecosystem that retains key
functionalities and properties of a more complex microbial
assemblage. This reduces confounding factors and complex-

ity that might otherwise prohibit detailed analyses and the
confident testing of hypotheses and theoretical predictions. The
first task of the synthetic microbial ecologist, therefore, is to
define the biological properties of the genotypes that will be
assembled together and how they are likely to interact in the
context of the experimentally imposed environment. This may
seem straightforward, but interactions are context dependent
and can change in strength and nature over both time and space.
The dynamics and emergent properties of a synthetic microbial
assemblage are therefore sometimes difficult to predict. Never-
theless, defining initial interactions is a typical starting point.
We therefore summarize the types of interactions that have
been imposed between two genotypes. We propose two major
criteria to distinguish different types of interactions: whether
the interaction is passive or active in nature (see below for def-
initions) and whether the interaction has positive or negative
effects on each of the involved genotypes.

Passive interactions refer to interactions where the growth
of one genotype is affected by the inadvertent activities of a sec-
ond genotype. For example, one genotype may produce a waste
product (i.e. the passive promoter) that is then consumed by an-
other genotype (i.e. the beneficiary), which is sometimes called a
by-product interaction (Sachs et al. 2004; West, Griffin and Gard-
ner 2007) or a commensalism (i.e. accidental effect, see Mitri
and Foster 2013). Here, we use the term ‘passive’ to emphasize
that the passive promoter does not actively invest metabolic re-
sources into promoting the growth of the beneficiary, but instead
promotes the growth of the beneficiary as an inadvertent conse-
quence of its own metabolism. Another example of a passive
interaction is the inadvertent leakage of metabolites from one
cell and consumption of those metabolites by another cell.

Active interactions refer to interactions where one genotype
actively invests resources into metabolic processes or behaviors
that affect other genotypes. When positive in nature, such in-
teractions are sometimes classified as cooperative interactions
(West, Griffin and Gardner 2007; Mitri and Foster 2013) or di-
rected reciprocation (Sachs et al. 2004). For example, one geno-
type may divert cellular resources away from its own growth to
produce a metabolite or provide a service that promotes or sup-
ports the growth of a second genotype, while the second geno-
type may divert cellular resources away from its own growth
to produce a different metabolite or provide a service that pro-
motes or supports the growth of the first genotype. There is
therefore a reciprocal exchange of resources or services. Because
of their active nature, these interactions pose interesting evo-
lutionary dilemmas. How do active investments of resources
into partner genotypes emerge in the first place? What prevents
genotypes that benefit from active investments but do not pay
any of the costs (i.e. ‘cheater’ genotypes) from exploiting and dis-
rupting an active interaction? The susceptibility of active inter-
actions to cheating has therefore stimulated a large amount of
research into how active interactions originate and persist over
time (West et al. 2006; West, Griffin and Gardner 2007; Mitri and
Foster 2013).

We emphasize that strictly positive interactions (active or
passive) are unlikely to occur and that most positive interac-
tions will have competitive elements at the same time, as the
genotypes may simultaneously compete for other shared re-
sources (e.g. oxygen, nitrogen and phosphorous; see Fredrick-
son 1977, Fredrickson and Stephanopoulos 1981 or Mitri and
Foster 2013). In order to achieve a strictly positive interaction,
each genotype must occupy a non-overlapping ecological niche
that prevents competition for shared resources, which is exper-
imentally difficult to implement (however, see Weber, Daoud-El
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Baba and Fussenegger 2007, for a successful implementation).
Importantly, it may not be immediately clear whether the posi-
tive or the competitive elements have the dominant effect on the
dynamics and behaviors of the assemblage (Hansen et al. 2007).
We therefore do not describe resource competition in a separate
section but instead try to identify competitive elements in the
examples we provide below.

Passive unidirectional positive interactions
(commensalisms)

Passive unidirectional positive interactions refer to interactions
where the growth of one genotype (designated as the benefi-
ciary) is promoted by the growth of a second genotype (des-
ignated as the passive promoter) (Fig. 1). Among the most
extensively investigated examples of a passive unidirectional
positive interaction is acetate cross-feeding within populations
of Escherichia coli. When clonal populations of E. coli are propa-
gated with glucose as the growth-limiting resource, intermedi-
ate metabolites (such as acetate) transiently and inadvertently
leak from the cell and accumulate in the medium (for recent in-
sight of this phenomenon; see Basan et al. 2015, and references
therein). However, over evolutionary time, metabolically special-
ized genotypes repeatedly emerge (Helling, Vargas and Adams
1987; Rosenzweig et al. 1994; Treves, Manning and Adams 1998;
Rozen and Lenski 2000; Rozen et al. 2009). In one case, two coex-
isting genotypes emerged that compete for glucose and acetate,
but one genotype consumes glucose more effectively while the
other consumes the secreted acetate more effectively (Rosen-
zweig et al. 1994; Treves, Manning and Adams 1998). Further, ex-
periments identified the genetic basis of these two genotypes,
where genetic changes in a single gene are sufficient to increase
glucose uptake while simultaneously decreasing acetate uptake
(Treves, Manning and Adams 1998). Thus, the intrinsic tradeoff
between glucose and acetate uptake creates a dynamic interplay
between the two genotypes that enables their coexistence and
results in accelerated glucose consumption via substrate cross-
feeding without abolishing competition for shared resources.
Such interactions were recently engineered de novo in syn-
thetic assemblages of E. coli strains, where the spatial struc-
ture of the environment was experimentally controlled. An
acetate-consuming specialist genotype was genetically engi-
neered in the laboratory, where glucose consumption was com-
pletely abolished by introducing loss-of-function mutations into
E. coli (Bernstein, Paulson and Carlson 2012). When the acetate-
consuming specialist genotype was then assembled together
with its glucose-consuming parental genotype, the two geno-
types coexisted via cross-feeding acetate and other metabo-
lites (Bernstein, Paulson and Carlson 2012). Moreover, the cross-
feeding assemblage achieved 15% greater biomass than the
parental strain when grown in batch culture and 50% greater
biomass than the parental strain when grown in biofilm. The
two cross-feeding genotypes self-organized within the biofilm,
where the upper well-oxygenated layer of the biofilm was pop-
ulated predominately with the acetate-consuming genotype,
while the glucose-exposed base of the biofilm was populated
predominantly by the glucose-consuming genotype (Bernstein,
Paulson and Carlson 2012). This structuringis therefore an emer-
gent property of the interaction and likely improved the produc-
tivity of the biofilm, emphasizing the benefits of compartmen-
talizing different metabolic processes into different cell types.
Thus, if conflicts are known to exist between different metabolic
processes [e.g. in this case between glucose and acetate con-
sumption; see Rosenzweig et al. (1994) and Treves, Manning
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and Adams (1998)], then one can engineer and assemble geno-
types together that prevent the emergence of those conflicts and
consequently accelerate community-level metabolic processes
(Bernstein, Paulson and Carlson 2012).

Passive unidirectional positive interactions need not always
be based on cross-feeding of metabolic waste products or inad-
vertent cell leakage. An example is the depletion of a growth-
inhibiting molecule, such as an antibiotic (Yurtsev et al. 2013).
Antibiotic-resistant genotypes can create ‘antibiotic-free’ local
environments thorough their metabolic activities, where a re-
sistant genotype secretes an enzyme such as g-lactamase that
inactivates the antibiotic and enables the growth of a sensitive
genotype (e.g. Perlin et al. 2009). In one study with ampicillin-
resistant and -sensitive strains of E. coli, the frequencies of the
two populations reached equilibrium over time (Yurtsev et al.
2013). However, the equilibrium frequencies of the resistant
strain were dependent on the initial ampicillin concentration
(proportional dependence) and on the initial population size
(inverse-proportional dependence). When resistant cells were
initially rare, their relative abundance ‘overshot’ the equilibrium
point and then descended back towards it. The authors proposed
a model that recapitulated the system dynamics and revealed
non-intuitive and unexpected behaviors. For example, the addi-
tion of a B-lactamase inhibitor (which is used in clinical practice)
increases rather than decreases the proportion of ampicillin-
resistant cells (Yurtsev et al. 2013).

An important feature of the interaction described above is
thatitinvolves the production of a public good (i.e. f-lactamase).
There is therefore an active ‘cooperative’ intrapopulation in-
teraction between genetically identical cells that produce -
lactamase. The interpopulation interaction (i.e. the interac-
tion between the g-lactamase-producing and the non-producing
genotypes), however, is nevertheless a passive unidirectional
positive interaction with competition. The genotype that pro-
duces B-lactamase did not evolve this trait because it provides a
benefit to the genotype that does not produce g-lactamase. In-
stead, that trait was likely selected to benefit the g-lactamase
producing strain itself. The interaction between the two geno-
types is therefore passive, which in turn permits competition
between the two genotypes for other metabolic resources. We
therefore emphasize that the terminology discussed here refers
to interactions between different genotypes and not to interac-
tions between cells of a single genotype.

Passive unidirectional positive interactions based on the se-
cretion or leakage of metabolites from one genotype and ex-
ploitation by other genotypes may be pervasive in the natu-
ral environment as predicted by the Black Queen hypothesis
(Morris, Lenski and Zinser 2012). The Black Queen hypothe-
sis states that if one genotype provides a reliable source of a
metabolite (e.g. via inadvertent cell leakage) or a service (e.g. the
consumption or inactivation of a growth-inhibiting molecule),
then another genotype may exploit those metabolites and ser-
vices, and cease to biosynthesize or perform those services it-
self (Morris, Lenski and Zinser 2012; Morris, Papoulis and Lenski
2014). One outcome, then, is the origin of a passive unidirec-
tional positive interaction between the two genotypes (Morris,
Lenski and Zinser 2012; Morris, Papoulis and Lenski 2014). Syn-
thetic microbial ecology has successfully tested some of the
main predictions of the Black Queen hypothesis (Morris, Pa-
poulis and Lenski 2014). Namely, genes should be continuously
lost from a community, and thus passive unidirectional positive
interactions should originate (Fig. 2) as long as at least one geno-
type performs a leaky function that other genotypes can reliably
exploit (Morris, Lenski and Zinser 2012).
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Figure 1. Dynamics of binary assemblages. We simulated population dynamics for binary assemblages with different interactions between the two distinct genotypes.
The initial ratio of both genotypes was 1:1 (cell number:cell number). The first column describes the interaction type, the second column shows how populations
change over time, the third column shows how growth rate depends on the partner’s abundance and the last column refers to studies where similar dynamics took
place. Arrow thickness corresponds to the interaction strength. All models are based on the limited substrate model for microorganisms growing in batch culture,
with the exception of the predator-prey interaction where microorganisms are growing in chemostat culture. The model includes a constant mortality term, and thus
results in the decline of all abundances at later time points. Our models assume that evolution does not occur over the time scale of the simulations. A full description
of the models, an explanation of the underlying assumptions for each model, and further discussions of the dynamics are provided in the Supporting Information.
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Passive bidirectional positive interactions
(non-cooperative mutualisms)

Passive bidirectional positive interactions refer to interactions
where the growth of one genotype (designated as passive pro-
moter A) is promoted by the growth of a second genotype (des-
ignated as passive promoter B), while the growth of passive
promoter B is also promoted by the growth of passive promoter
A (Fig. 1). Thus, there are reciprocal beneficial effects. We again
use the term ‘passive’ to emphasize that the passive promoters
do not actively invest metabolic resources into promoting the
growth of others, but they instead promote the growth of oth-
ers as inadvertent consequences of their own metabolism (e.g.
generating waste products or inadvertent leakage of molecules
that can be consumed by others). The interactions therefore
do ‘not’ constitute as cooperative interactions in the sociologi-
cal sense, where active investments in partners are necessary
(West, Griffin and Gardner 2007). A typical example is unidi-
rectional cross-feeding of a self-inhibiting waste product. One
genotype produces a metabolic waste product that can inhibit
its own growth if it accumulates to sufficient concentrations,
while another genotype consumes the waste product and re-
lieves inhibition of the first genotype. The main dynamic behav-
ior of such a system is typically the approximate convergence of
growth rates between the two interdependent genotypes (Fig. 1).

A canonical example of this type of interaction is interspecies
hydrogen transfer. Some microorganisms ferment organic sub-
strates to hydrogen. However, if hydrogen accumulates to suf-
ficient concentrations, then the metabolic reaction can become
thermodynamically unfavorable and stop. Thus, a partner mi-
croorganism is required that consumes the hydrogen to suffi-
ciently low concentrations to maintain thermodynamically fa-
vorable conditions (McInerney et al. 2008; Morris et al. 2013).
In one synthetic microbial assemblage, the sulfate-reducing
bacterium Desulfovibrio vulgaris was grown together with the
methanogenic archaeon Methanococcus maripaludis (Stolyar et al.
2007). In the absence of sulfate, D. vulgaris can ferment lac-
tate to hydrogen, while the methanogen M. maripaludis main-
tains the metabolic activity of D. vulgaris by transforming the
hydrogen into methane. Thus, the growth rates of the two geno-
types spontaneously converge based on the production and con-
sumption rates of hydrogen. Initially, the growth of synthetic
assemblages was somewhat erratic, and a small subset of the
assemblages went extinct (Hillesland and Stahl 2010; Hillesland
et al. 2014). Over evolutionary time, however, the remaining syn-
thetic assemblages began to improve in productivity. Further, ex-
periments demonstrated that the improved performance was a
consequence of genetic changes in both D. vulgaris and M. mari-
paludis, suggesting potential evolutionary responses to the pas-
sive bidirectional positive interaction.

Another example of this type of interaction is nitrite cross-
feeding. Nitrifying communities are well known to cross-feed
nitrite, where ammonia-oxidizing microorganisms convert am-
monia to nitrite and nitrite-oxidizing bacteria consume the se-
creted nitrite (Costa, Pérez and Kreft 2006; Maixner et al. 2006).
Under low pH conditions, both microorganisms may benefit
from this interaction because the cross-fed intermediate nitrite
can become growth-inhibiting while also serving as a growth
substrate for the nitrite-oxidizing bacteria. A similar scenario
sometimes occurs within denitrifying communities. Many mi-
croorganisms are capable of using nitrogen oxides as terminal
electron acceptors to support their growth (Zumft 1997). While
some can completely respire nitrate to nitrogen gas, others spe-
cialize at specific steps of the pathway (Heylen et al. 2006) and,
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in some cases, assemble together into nitrite or nitrous oxide
cross-feeding consortia (Martienssen and Schops 1999; Van de
Pas-Schoonen et al. 2005). In one recent study, two isogenic mu-
tant strains of Pseudomonas stutzeri were constructed, where one
strain consumes nitrate to nitrite and another consumes nitrite
to nitrogen gas (Lilja and Johnson 2016). The authors found that
segregating the two parts of the pathway into different geno-
types eliminated competition between the nitrate and nitrite re-
ductases for intracellular resources and consequently reduced
the accumulation of the intermediate nitrite. Moreover, under
low pH conditions, when nitrite has growth-inhibiting effects
(Almeida et al. 1995; Baumann et al. 1997), nitrite cross-feeding
accelerated substrate consumption, presumably because nitrite
accumulated to lower concentrations and had reduced dele-
terious effects on growth (Lilja and Johnson 2016). This study
again emphasizes that if conflicts are known between differ-
ent metabolic processes (e.g. in this case between the nitrate
and nitrite reductases), then one can engineer and assemble
genotypes together that avoid those conflicts and consequently
accelerate community-level metabolic processes (Johnson et al.
2012; Lindemann et al. 2016).

Passive bidirectional positive interactions have also been de-
signed for biosynthetic applications, where metabolic interde-
pendencies were engineered to control system dynamics. In one
study, synthetic cocultures were engineered to produce oxy-
genated taxanes, which are precursors for the anti-cancer drug
taxol (Zhou et al. 2015). The cocultures consisted of an E. coli
strain that produced and secreted a precursor and an S. cere-
visiae strain that oxygenated the precursor to produce the de-
sired oxygenated taxane (Zhou et al. 2015). An important aspect
of the system is that the two genotypes were not initially de-
pendent on each other but instead had competitive and nega-
tive interactions. Both organisms competed for glucose while S.
cerevisiae produced ethanol that inhibited the growth of E. coli.
These competitive and negative interactions resulted in reduced
taxane production. To overcome this, the authors re-engineered
the environment to minimize these competitive and negative
interactions. First, the authors provided xylose rather than glu-
cose as a carbon substrate. Only E. coli could consume the xylose,
thus preventing the main competitive interaction. Moreover, E.
coli produced acetate as a waste product that S. cerevisiae then
consumed as a growth-substrate, thus creating a passive posi-
tive interaction between the two genotypes. Finally, acetate has
growth-inhibiting effects on E. coli if it is not consumed by S. cere-
visiae, thus creating a second passive positive interaction in the
opposite direction. Together, the minimization of competition
and the promotion of the passive bidirectional positive inter-
action resulted in improved taxane production, demonstrating
that simple but well informed engineering of the environment
can provide control over system behavior.

Active bidirectional positive interactions
(cooperative mutualisms)

Active bidirectional positive interactions pose interesting evo-
lutionary dilemmas concerning their origin and maintenance,
but are nevertheless found in nature. One such example is the
vitamin B, (cobalamin)-based interaction between many al-
gal species and bacteria. Approximately one-half of cultivated
algal species require vitamin By, for their growth but cannot
biosynthesize vitamin B;, de novo (Croft et al. 2005). Instead, they
depend on bacteria to provide vitamin B;,, which is metabol-
ically costly to biosynthesize and secrete (Raux et al. 1996).
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Kazamia et al. (2012) assembled the vitamin Bi,-dependent
green alga Lobomonas rostrata with the bacterium Mezorhizobium
loti and found that the two species could be cocultivated with
each other in the absence of exogenous vitamin B;,. The alga
supported the growth of the bacterium by providing it with
fixed carbon, while the bacterium supported the growth of the
alga by providing it with vitamin Bq;. The authors further re-
ported evidence that the bacterium actively diverts cellular re-
sources from its own growth into supplying vitamin By, to the
algae, thus meeting the criteria for an active ‘cooperative’ inter-
action. First, the bacterium produced more vitamin B;» when in
the presence than in the absence of the algae (Grant et al. 2014).
Second, mathematical modeling indicated that bacterial lysis
alone could not explain the extent of algal growth, as more bac-
terial cells would have needed to lyse than were present in the
culture to support the observed growth of the algae (Grant et al.
2014). Dissecting the vitamin Bi,-based interaction between al-
gae and bacteria further, Xie et al. demonstrated that the synthe-
sis of the vitamin Bi;-independent methionine synthase is re-
pressed during heat stress in Chlamydomonas reinhardtii and that
survival of heat stress depends on the functional vitamin Bq;-
dependent methionine synthase. By cocultivating C. reinhardtii
with diverse bacteria, they showed that algal stress tolerance is
restored in the presence of vitamin B1,-producing bacteria, thus,
providing an example of an emergent community property (i.e.
stress resistance) that might not be readily expected from ana-
lyzing each genotype in isolation (Xie et al. 2013).

While the example above attempts to mimic a natural sys-
tem, likely the most widely engineered active bidirectional pos-
itive interaction (i.e. cooperative interaction) is the reciprocal ex-
change of amino acids or nucleotides between genotypes with
different auxotrophic requirements (i.e. genotypes that require
exogenous sources of different amino acids or nucleotides to
support their growth). Genotypes that cannot biosynthesize cer-
tain amino acids or nucleotides are readily obtained from ex-
isting mutant libraries (Baba et al. 2006) or can be created by
targeted gene deletions. Interactions are then established by as-
sembling two genotypes together that require different amino
acids or nucleotides, thus forcing each genotype to provide the
essential resource required by the other (Shou, Ram and Vilar
2007; Wintermute and Silver 2010a; Hosoda et al. 2011; Park et al.
2011; Kerner et al. 2012; Waite and Shou 2012; Momeni, Waite
and Shou 2013; Mee et al. 2014; Pande et al. 2014). The questions
addressed with these synthetic assemblages are diverse. They
range from exploring conditions under which such interactions
are likely to arise (Shou, Ram and Vilar 2007; Wintermute and
Silver 2010a; Mee et al. 2014; Pande et al. 2014) to examining the
factors that prevent the emergence and proliferation of mutants
that exploit but do not contribute towards the active interaction
(i.e. cheaters) (Waite and Shou 2012; Momeni, Waite and Shou
2013).

The leitmotif that emerges from many of these studies is
that costly metabolites are often not readily released, and ge-
netically engineered auxotrophs do not typically release suf-
ficient amounts of amino acids or nucleotides to support the
growth of partner auxotrophs (Shou, Ram and Vilar 2007; Har-
combe 2010; Pande et al. 2014, 2015). For example, pairs of Sac-
charomyces cerevisiae mutants that were deficient in either ly-
sine or adenine biosynthesis repeatedly went extinct when they
were grown together in the absence of lysine and adenine un-
less feedback inhibition mechanisms that prevent the overpro-
duction of the shared metabolites were disrupted (Shou, Ram
and Vilar 2007). In a study, discussed in more detail below
(Harcombe 2010), extensive mutagenesis was required to ob-

tain a Salmonella typhimurium mutant that secretes sufficient
methionine to support the growth of an E. coli genotype that
cannot biosynthesize methionine. The necessity for engineered
overproduction (and thus active secretion) of exchanged amino
acids was further elaborated in Pande et al. (2014), where four E.
coli amino acid auxotrophs were assembled in pairwise combi-
nations. They used metabolic modeling to identify genes that,
upon deletion or inactivation, would contribute the most to-
wards the overproduction of complementary amino acids. When
the auxotrophic mutants were then assembled together in pair-
wise combinations, the majority of the synthetic assemblages
had significantly higher growth rates when compared to the
ancestral strain. Thus, while not easily achieved, segregating
different amino acid biosynthetic pathways into different geno-
types and imposing active positive interactions via targeted ge-
netic engineering can sometimes improve the overall productiv-
ity of synthetic assemblages (Pande et al. 2014).

An important point regarding the above-mentioned studies
is that they only investigated the exchange of a limited number
of metabolites, and the outcomes of active bidirectional cross-
feeding might therefore be quite different for alternative aux-
otroph pairs. This knowledge gap was partially addressed by
Wintermute and Silver (2010a) and Mee et al. (2014). Winter-
mute and Silver constructed extensive libraries of E. coli aux-
otroph pairs and observed substantial growth for only 17% of the
auxotrophic pairs (Wintermute and Silver 2010a). They found
that the metabolites most likely to be exchanged were those
where the ratio of costs of secretion to benefits of uptake was
a minimum, a finding that could be predicted via stoichome-
tric modeling. Mee et al. (2014) performed a similar analysis
and found a two-parameter predictor: the metabolites more
likely to be exchanged in cocultures of auxotrophic mutants
were those that were costly to biosynthesize and needed in
small amounts. Together, the relatively low prevalence of cross-
feeding resulting in enhanced (or even possible) growth (Win-
termute and Silver 2010a; Mee et al. 2014) seems to support the
notion that, in general, costly metabolites are not readily shared,
and active positive interactions are therefore difficult to impose
or engineer.

A main question that arises, then, is the following. If segre-
gating different amino acid biosynthetic pathways into different
genotypes sometimes improves productivity relative to the pro-
totrophic genotype (Pande et al. 2014), how prevalent are these
types of active reciprocal (i.e. cooperative) cross-feeding inter-
actions in the natural environment? Mee et al. (2014) addressed
this question by relating reciprocal amino acid cross-feeding in
synthetic E. coli assemblages to the importance of such interac-
tions in natural systems. Genome analyses of more than 6000-
sequenced bacterial genomes identified numerous instances of
apparent auxotrophies (Mee and Wang 2012; Mee et al. 2014
D’Souza et al. 2014). Additionally, genome analyses of 32 E. coli
strains suggested high phenotype variability among closely re-
lated genotypes—more than half of the E. coli strains could not
biosynthesize at least one amino acid and approximately one-
third of the strains could not biosynthesize two or more amino
acids (Pande et al. 2014). Together, these studies suggest that,
while somewhat difficult to impose in the laboratory, active re-
ciprocal cross-feeding interactions might indeed be widespread
in nature and contribute towards the assembly and function-
ing of microbial communities. It should be noted, however, that
the isolation histories of laboratory strains were not consid-
ered in these studies and amino acid auxotrophs are known
to have advantages during growth in rich medium (D’Souza
et al. 2014).
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Negative interactions (passive or active)

While positive interactions have received substantial attention,
it is generally unclear whether positive or negative interac-
tions dominate the dynamics and properties of natural micro-
bial assemblages. Likely, the most common negative interaction
between to coexisting genotypes is resource competition. Com-
petition is an inadvertent consequence of one genotype, us-
ing the same resources as another genotype (i.e. each geno-
type occupies a niche space that, at least in part, overlaps with
the niche space of another genotype). Pure competition is thus
passive in nature. Synthetic assemblages were recently used to
quantify resource competition among different genotypes (Fos-
ter and Bell 2012; Wei et al. 2015).

If both genotypes inhabit the same ecological niche and no
trade-offs exist, then competition among them will likely result
in one genotype being displaced by another genotype (Hardin
1960). Typically, organisms then evolve to reduce niche overlap,
and thereby reduce interspecies competition. Thus, negative in-
teractions can impose selection toward evolutionary outcomes
that reduce competition and promote coexistence (Lawrence
etal. 2012). Metabolites produced by one genotype may have neg-
ative effects on the growth ability of another genotype. When
secreted metabolites are an inadvertent result of one genotype’s
metabolism (i.e. metabolic by-products), then the negative inter-
actions are again passive. One prominent example is alcoholic
fermentation under aerobic conditions (De Deken 1966; Dashko
et al. 2014; Pfeiffer and Morley 2014). In one example described
in more detail above, passive bidirectional negative interactions
were observed between E. coli and S. cerevisiae strains growing in
coculture. On one hand, they were competing for glucose as a
growth-limiting substrate. However, while fermenting glucose,
S. cerevisiae released ethanol that had an additional negative ef-
fect on the E. coli strain (Zhou et al. 2015).

Negative interactions may also be active in nature, in that
one genotype actively diverts metabolic resources away from
its own growth to antagonize another genotype (Ratcliff and
Denison 2011). For example, a genotype may produce antibi-
otics or other inhibitory secondary metabolites that are costly
to synthesize and require an active investment of metabolic re-
sources. Several studies explored competitive and antagonis-
tic interactions in binary assemblages among somewhat related
strains (Vetsigian, Jajoo and Kishony 2011; Cordero et al. 2012;
Pérez-Gutiérrez et al. 2012; Wright and Vetsigian 2016). For ex-
ample, inhibition by small molecules was often observed in
pairwise cocultures sampled from a set of 185 Vibrio isolates
(Cordero et al. 2012). Some additional examples of active nega-
tive interactions are described below (Kerr et al. 2002; Kelsic et al.
2015).

Many interactions are more complex than those discussed
above and may contain both positive and negative components.
Predator-prey interactions provide a well-studied example of
such an interaction. Predator-prey interactions are ubiquitous
and occur among all kingdoms of life, including between dif-
ferent bacteria (Sockett 2009; Velicer and Vos 2009; Pasternak
et al. 2014), between bacteria and protozoa (Tsuchiya et al. 1972;
Jost et al. 1973; Fredrickson 1977; Fredrickson and Stephanopou-
los 1981), between rotifers and algae (Yoshida et al. 2003) and
between bacteria and phage (Hall, Scanlan and Buckling 2011;
Friman and Buckling 2014). The typical dynamic that emerges
is oscillations in the abundances of predator and prey. The prey
population collapses as the predator population increases. How-
ever, when the prey reaches sufficiently low abundances, the
predator population collapses and the prey population recov-
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ers (see Fig. 1). Such population oscillations are not unique to
predator-prey-type interactions, but have also been engineered
in other types of mixed interaction systems that include nega-
tive interactions (Weber, Daoud-El Baba and Fussenegger 2007;
Balagaddé et al. 2008; Song et al. 2009; Li, Wang and Wang 2011).

Interactions may not be readily defined

A central assumption of the terminology described above is that
interactions between different genotypes can be precisely de-
fined. This is not always the case. Distinguishing between pas-
sive and active interactions is especially challenging; yet, this
distinction has critical implications for predicting the long-term
evolutionary dynamics of synthetic assemblages. Namely, active
positive interactions are susceptible to cheating, while passive
positive interactions based on unidirectional cross-feeding of an
inhibitory waste product are not. The amino acid exchange stud-
ies described above, are a prominent example of this challenge
(Mee et al. 2014). Amino acid synthesis is costly and is clearly
neither a by-product nor a waste-product. Yet, while the ten-
dency is to view reciprocal amino acid exchange as an active
process, amino acids may be exchanged via purely passive pro-
cesses, such as inadvertent cell leakage. Without understand-
ing whether the interaction is active or passive, however, it is
difficult to make predictions about the long-term evolutionary
maintenance of the interaction, where passive interactions are
more likely to be maintained than active interactions.

One example of the ambiguity of the nature of interactions
occurs within a consortium of an ammonia-oxidizing bacterium
and a nitrite-oxidizing bacterium (Koch et al. 2015; Palatinszky
et al. 2015). The ammonia-oxidizing bacteria convert ammonia
to nitrite, while the nitrite-oxidizing bacteria then consume the
secreted nitrite. When either urea (Koch et al. 2015) or cyanate
(Palatinszky et al. 2015) was supplied to a consortium of the two
bacteria, urea or cyanate were first decomposed to ammonia via
the activity of the nitrite-oxidizing bacteria rather than by the
ammonia-oxidizing bacteria themselves. The nitrite-oxidizing
bacteria therefore depended on the ammonia-oxidizing bacteria
for nitrite, while the ammonia-oxidizing bacteria depended on
the nitrite-oxidizing bacteria for ammonia. Whether the nitrite-
oxidizing bacteria actively diverted cellular resources into the
production of ammonia for the ammonia-oxidizing bacteria,
however, remains unclear. For example, cyanases may be re-
quired by the nitrite-oxidizing bacteria for the detoxification of
their own metabolism (Palatinszky et al. 2015). It is therefore un-
known whether this interaction is active or passive in nature, or
whether it is susceptible to the emergence and proliferation of
‘cheating’ genotypes over evolutionary time-scales.

BEYOND BINARY INTERACTIONS

A number of studies have investigated the dynamics of assem-
blages that consist of more than two genotypes, and thus have
more than a single interaction (Kerr et al. 2002; Harcombe et al.
2014; Mee et al. 2014; Abrudan et al. 2015; Kelsic et al. 2015).
An important aspect of these studies is that they often result
in unexpected dynamics that might not be readily predicted
from interactions between any two-member assemblage. One
example is the synthetic construction of rock-paper-scissors dy-
namics (Kerr et al. 2002; Kelsic et al. 2015). In one case, three
genotypes were investigated in silico, each of which produced a
different antibiotic while being sensitive to the antibiotic pro-
duced by one of the other genotypes (Kelsic et al. 2015). Thus,
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each genotype had a negative effect on only one other genotype.
The authors discovered that all three genotypes could coexist
in a spatially structured environment and undergo predictable
frequency oscillations. However, they could not coexist in a ho-
mogeneous environment, as every genotype succumbed to the
antibiotic produced by another genotype, but due to inherent
fitness differences, one genotype eventually prevailed. This find-
ing was in line with previous experimental and theoretical re-
sults (Kerr et al. 2002). Perhaps, unexpectedly, however, when the
system was extended such that each genotype had a negative ef-
fect on ‘one’ genotype but a positive effect on ‘another’ genotype
(i.e. when antibiotic degradation was ‘shared’), then the strains
could coexist in a homogeneous environment (in this context
see also Coyte, Schluter and Foster 2015).

These experiments with more than two genotypes then raise
a critical question: If all possible binary interactions are known
for a set of genotypes, can the dynamic properties and behaviors
of mixtures of more than two genotypes be predicted? Recent
theoretical studies suggest that the answer might typically be
no (Gokhale and Traulsen 2010). As the number of genotypes and
strategies increases, then the set of binary interactions may not
be useful for predicting the dynamics of more complex assem-
blages. More specifically, the likelihood of successfully predict-
ing the dynamics from binary interactions rapidly decreases as
the number of genotypes within an assemblage increases. This
could have profound implications for designing and applying
synthetic microbial communities in concrete applications, as
many applications require more than two genotypes to achieve
a desired design objective (e.g. see Kato et al. 2008).

INTERACTIONS ARE THEMSELVES DYNAMIC

Ecological context is an important determinant of interactions
between different genotypes (e.g. Samuel and Gordon 2006).
When the biological activities of the genotypes themselves al-
ter the ecological setting, interactions may change in strength
and nature over time (Fig. 2). For example, while interactions
between two genotypes might be initially positive, they can be-
come negative as nutrients are depleted over time (Bull and Har-
combe 2009). Moreover, one genotype may modify the environ-
ment by producing certain molecules, which in turn may affect
how another genotype interacts with the first. This dynamical
nature of interactions can lead to novel selection pressures, the
emergence of new genotypes with different behaviors, and the
further evolution of interactions (eco-evolutionary feedbacks).
As each new genotype that becomes fixed within a population
can interact with each existing genotype, the behavior of an ini-
tially simple assembly can quickly become exceedingly complex
and challenging to understand.

A canonical example is Red Queen dynamics, which may oc-
cur when one genotype preys on another genotype. Predation
rapidly selects for mutants of the prey that are no longer sus-
ceptible to predation. This, in turn, rapidly selects for mutants of
the predator that can again predate on newly resistant mutants
of the prey (for recent review; see Liow, Van Valen and Stenseth
2011). In a series of studies with cocultures of the predatory ro-
tifer Brachionus calyciflorus and its algal prey Chlorella vulgaris, the
predator reached its maximum abundance when the prey was at
its minimum abundance and vice versa (Turchin 2003; Yoshida
et al. 2003). This is different from typical predator-prey oscil-
lations, where the predator population reaches its maximum
abundance shortly after the prey reaches its maximum abun-
dance and the predator population reaches its minimum abun-

dance shortly after the prey reaches its minimum abundance
(Fig. 1, but see also Turchin 2003). Mathematical modeling sug-
gested that these unexpected oscillations could have resulted
from diversification of the prey into two strains with different
susceptibilities to predation (Shertzer et al. 2002). Yoshida et al.
(2003) then replayed these dynamics in vitro. In parallel synthetic
assemblages, rotifers could either graze on clonal algal popu-
lations (resulting in a typical predator-prey oscillations) or on
mixed algal populations (i.e. an assemblage of more than one
algal clone). The analysis of mixed algal populations showed
that rotifers preferentially graze on the larger and faster grow-
ing algae strain and less on the smaller and slower growing
strain, resulting in the same unexpected oscillations. Thus, pre-
dation pressure resulted in rapid algal diversification and the
evolution of new interactions and atypical dynamics (Yoshida
et al. 2003).

Another example of the dynamic nature of interactions is the
benzoate cross-feeding interaction between strains of P. putida
and Acinetobacter (Christensen et al. 2002; Hansen et al. 2007).
The Acinetobacter strain can completely consume benzyl alco-
hol, while the P. putida strain can only consume the intermediate
benzoate. Above certain benzyl alcohol concentrations, Acineto-
bacter inadvertently leaks benzoate out of the cell, thus allow-
ing P. putida to consume the leaked benzoate and persist within
the assemblage. When grown in mixed biofilms, the Acinetobac-
ter strain typically had a positive effect on the P. putida strain
by providing benzoate as a growth substrate. However, a mutant
strain of P. putida emerged that had a deleterious effect on the
Acinetobacter strain but a positive effect on the productivity of the
assemblage as a whole. Thus, by accumulating particular muta-
tions, an initially unidirectional positive interaction evolved into
an exploitive interaction that was nevertheless more productive
at the community level (Hansen et al. 2007). A similar outcome
was observed between S. cerevisiae and Rhizobium etli, in that an
initially unidirectional and positive interaction rapidly evolved
to become competitive and antagonistic (Andrade-Dominguez
et al. 2014). In both cases, a common feature is that the nature
of the interactions changed rapidly, emphasizing that ecolog-
ical and evolutionary processes may occur at similar and ex-
perimentally observable time scales (Post and Palkovacs 2009;
Schoener 2011).

A final example is the effect of cheating genotypes that ex-
ploit an active bidirectional positive interaction between two
cooperating genotypes. Waite and Shou (2012) extended a syn-
thetic reciprocal cross-feeding assemblage consisting of two
yeast strains, each of which produced an essential metabo-
lite (lysine or adenine) required by the other (Shou, Ram and
Vilar 2007). The authors then added a third strain that con-
sumed lysine but did not reciprocate by overproducing ade-
nine, and could therefore be viewed as a ‘cheater’ (Waite and
Shou 2012). While theoretical considerations predicted that the
ecosystem should collapse in the absence of spatial structure,
cross-feeding unexpectedly persisted. This was a consequence
of rapid evolution of the cooperating genotype that improved its
metabolite uptake, which in turn reduced the relative fitness of
the cheating genotype and thus prevented the cheating geno-
type from reaching sufficient abundance levels to disrupt the
ecosystem.

A common feature of the examples above is that the in-
teractions evolved to become more competitive or antagonistic
in nature, which is not always the case (Summers et al. 2010;
Lawrence et al. 2012; Fiegna et al. 2015). An opposite dynamic was
recently observed in studies using randomly assembled syn-
thetic assemblages, containing species isolated from a single
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Figure 2. Effect of ecological and evolutionary feedbacks on dynamics. We consider some scenarios that illustrate how ecological and evolutionary feedbacks can affect
ecosystem behaviors. (A) Consider a genotype that consumes a substrate into a waste product. If the waste product accumulates to substantial concentrations (t =
2, blue triangles), then this could promote the emergence of a mutant genotype that then consumes the metabolic waste product (t = 3, blue genotype). Thus, the
metabolic activities of the red genotype created a new niche allowing the emergence of the blue genotype. (B) The Black Queen hypothesis predicts that genotypes
will lose essential functions (gray arrows) whenever another genotype reliably provides those functions. However, as the number of service providers shrinks (t = 2
and t = 3, asterisks denotes those genotypes that have lost a previously shared function), the selective pressure on the remaining service providers increases, and
ultimately any further loss of this function (e.g. via environmental perturbations) will result in collapse of the entire ecosystem (t = 4). (C) Organisms residing in
a similar environmental niche may show considerable overlap in resource use. Thus, immediately after reassembly in a synthetic setting, resource competition is
likely to be a predominant interaction between such organisms (t = 1). However, after some rounds of experimental evolution, competitive interactions may weaken
as resource specialization evolves (t = 2). Subsequent evolution of positive interactions may then emerge (e.g. via Black Queen dynamics) and shift the net negative
interaction (t = 1 and t = 2) into a net-positive interaction (t = 3 and t = 4). (D) Predator-prey interactions are particularly prone to evolutionary fluctuations. Predation
can lead to the emergence of new prey genotypes that are resistant to the predator (t = 2, beige genotype). However, this could create a competitive interaction between
the two prey genotypes (t = 2 and t = 3, beige and purple genotypes), which in turn could affect predator abundance. Moreover, if the new prey genotype proliferates
(t=2and t = 3, beige genotype), then this could promote the evolution of a new predator genotype (t = 4, blue genotype), thus, accelerating diversification.

environment (Lawrence et al. 2012; Fiegna et al. 2015). The au-
thors found that the interactions were initially competitive.
However, after ~60 generations of experimental evolution, the
assemblages tended to improve in productivity. The authors
demonstrated that species interactions within the assemblages
evolved to become less competitive. While the underlying mech-

anisms that reduced competition were unclear, possible expla-
nations include the emergence of mutants that consumed the
waste products of others, thus providing an example of how the
biological activities of some species can create novel ecological
niches for different genotypes to occupy and thus reduce com-
petition (Fiegna et al. 2015).

£10T ‘11 &renue( vo 1son8 £q /810" sjeunolproyxo-arswoy/ :dny wosj papeoumocy


http://femsre.oxfordjournals.org/

972 | FEMS Microbiology Reviews, 2016, Vol. 40, No. 6

SPATIAL STRUCTURE CAN STABILIZE
INTERACTIONS

Spatial structure refers to the presence of solid-liquid, liquid-
liquid or gas-liquid interfaces that prevent complete mixing
within a particular environment. The prevalence of spatial
structure is intuitive in systems that typically lack turbulent
flows and contain abundant surface area such as soils. However,
spatial structure also occurs in environments that are often as-
sumed to be spatially homogenous such as seawater, where in-
complete mixing and particulate matter can create small-scale
spatial structuring (Stocker 2012). When one considers microbes
residing in other spatially structured environments, such as
plant and animal epithelia, sediments, stratified lakes and the
subsurface (Whitman, Coleman and Wiebe 1998), it is clear that
spatial structure is a general environmental factor that affects
the majority of microbes in nature. There is therefore growing
interest in understanding how spatial structure affects interac-
tions and, in turn, community dynamics. In the section below,
we review scenarios where spatial structure can impact inter-
actions, community dynamics and ultimately the evolutionary
trajectories of microbial assemblages (Fig. 3). Synthetic ecology
can be used to investigate the role of spatial structure on interac-
tions and community dynamics because spatial structure can be
experimentally manipulated in defined manners. For example,
spatial structure has been experimentally imposed by growing
synthetic assemblages on agar plates (Harcombe 2010; Momeni,
Waite and Shou 2013; Hol et al. 2015), by varying water channel
connectivity on hydrated porous surfaces (Dechesne et al. 2010),
by using flow chambers with heterogeneous flow velocities (Car-
dinale 2011), or by growing cells isolated in well plates while al-
lowing them to interact via volatile substrate (Weber, Daoud-El
Baba and Fussenegger 2007).

Spatial structure can maintain positive interactions

In stirred or shaken liquid systems with extensive mixing, mass
transfer of secreted or leaked molecules is dominated by con-
vection rather than by diffusion. Typically, each cell within the
system therefore experiences somewhat similar concentrations
of those molecules (however, see Gore, Youk and van Oudenaar-
den 2009, for exception). In contrast, in spatially structured sys-
tems, diffusion may become the main process governing mass
transfer of secreted or leaked molecules. The concentrations
of those molecules are therefore highest immediately adjacent
to the producing cells, and concentration gradients are cre-
ated between producing cells and the bulk liquid or consuming
cells.

The higher local concentrations of secreted or leaked
metabolites in spatially structured environments can have im-
portant effects on interactions between different microbial
genotypes. This is because the concentrations of the secreted or
leaked molecules may have to reach threshold concentrations
before they can have significant effects on the dynamics of a
microbial assemblage. This is particularly important when the
secretion of the molecule occurs in limited amounts. In a com-
pletely mixed system and at low cell densities, the rapid dilu-
tion of a growth-promoting molecule into the bulk medium may
prevent the molecule from accumulating to sufficiently high lo-
cal concentrations to have biologically significant effects (Bull
and Harcombe 2009). In a spatially structured system, however,
diffusion localizes substrate competition; thus, dense localized
populations will be able to produce sufficient growth-promoting
molecules and still coexist with each other (Kim et al. 2008). How-

ever, distribution of such patches is important—when cell clus-
ters are sufficiently close to each other, substrate competition
might inhibit growth. But when they are sufficiently far apart,
interactions based on secreted or leaked molecules might suffer
from diffusion limitations (Kim et al. 2008).

Spatial structure and its localizing effects have been identi-
fied as one mechanism that could prevent ‘cheating’ genotypes
from disrupting active secretion-based interactions (Fig. 3). Such
genotypes consume the secreted molecule but do not contribute
towards the secretion of the molecule itself. In other words, they
exploit the active interaction without paying any of the costs
(for a review of a broader topic of cooperation see e.g. Sachs
et al. 2004 or West et al. 2006). In the absence of spatial struc-
ture, conceptual and experimental considerations suggest that
such exploitation can cause the active interaction to completely
collapse and disappear (Harcombe 2010; Mitri, Xavier and Foster
2011; Momeni, Waite and Shou 2013). The effects of spatial struc-
ture on preventing the emergence and proliferation of cheat-
ing genotypes were explored in detail using the yeast adenine-
lysine cross-feeding system described above (Waite and Shou
2012; Momeni, Waite and Shou 2013). When the environment
was sufficiently structured (such as when the assemblages were
grown on agar plates), the active ‘cooperative’ interaction per-
sisted and was resilient toward the addition of cheating geno-
types. Further, experiments and mathematical simulations indi-
cated thatin environments where mixingis incomplete, patches
of genotypes that actively secrete molecules were not displaced
by cheating genotypes, and this was due to the preferential
access of the actively secreting genotypes to the benefits of
secretion (i.e. spatial segregation prevented the cheating geno-
type from having equal access to the benefits of active secre-
tion, while local positive interactions between the cooperating
genotypes ensured their faster growth). Therefore, spatial struc-
ture alone is sufficient to promote and maintain positive active-
secretion-based interactions (Momeni et al. 2013; Momeni, Waite
and Shou 2013), and this result has been observed repeatedly in
other systems (Harcombe 2010; Datta et al. 2013; Harcombe et al.
2014).

Spatial structure itself can readily emerge

Spatial structure may also be created by interactions between
the genotypes themselves via cell-cell contact, and thus main-
tain higher local concentrations of secreted or leaked metabo-
lites (Pande et al. 2015). In one example, synthetic assemblages
of amino acid auxotroph pairs rapidly improved in productiv-
ity when grown within completely mixed environments. Upon
microscopic analysis, the authors discovered that the different
genotypes were connected via nanotube-like structures. Further
experiments suggested that the nanotubes promoted transfer
of cytosolic components from one genotype to the other (Pande
et al. 2015, but see also Benomar et al. 2015), and that nanotube
formation is regulated (i.e. nanotubes did not form when amino
acids were supplemented to the medium). Thus, if insufficient
spatial structure is present in the abiotic environment, assem-
blages can sometimes create the necessary spatial structure to
maintain positive bidirectional interactions based on the ex-
change of essential metabolites (in this case by producing nan-
otube connections).

Spatial structure can mitigate competitive interactions

The diffusional gradients of molecules in spatially structured
environments can create a diversity of quantitatively or even

£10T ‘11 &renue( vo 1son8 £q /8r0°sjeuInolproyxo-arswoy/ :dny wosj papeoumoy


http://femsre.oxfordjournals.org/

Dolinsek etal. | 973

t=1 t=2 t=n
A A B A
Alm A a ] A u
[N D
A - | = Lo | = o =
A R - ] A L ]
(A)
- o _ m 2 T yp— ™ ‘- . A.‘\
o o - " | o -
- b s w adb s a a b

t=1 t=2
° o © ol At
(o] |.| [e] | 1
— — ‘*—i—b ,,,,,,,
o o ! 1 D o o ! RN ]
o T -+ o T A
(B)
o A o o
° o o o o ° e
[ “o A
....... A
o G o aml A o A
o A
o o o
(>L) <>|<> o o (>|<>

t=1 1<t<n t=n
a a
4-@‘ N s 2 Y A . - > > e
| a» | y
(C) 2
A 0y o i
o, & = = > e > e
e WS oo
Culture age
t=1 1<t<n
o - e_|\ | |\ /S /| .. A_D> el > o
(D) 2
=
[ g
o - S Sl > e > e

Culture age

Figure 3. Effect of spatial structure on dynamics. We consider some scenarios, where spatial structure can affect community-level dynamics. Upper scenarios in
each panel show spatially organized environments (dashed lines separate different spatial patches, and solid lines separate different compartments), whereas lower
scenarios depict well-mixed systems. (A) For a bidirectional positive interaction between two genotypes, spatial structure can slow the loss of exchanged metabolites
into the bulk medium (red triangles and purple squares), and thus, increase their local concentrations and promote growth (center compartment). However, spatial
structure can also physically prevent different genotypes from interacting, thus, reducing or preventing growth (left and right compartments). (B) Spatial structure
can physically separate incompatible processes. In this hypothetical case, the red genotype consumes oxygen (empty circles), while the purple genotype is sensitive
to oxygen. However, the purple genotype depends on a molecule secreted by the red genotype. In a spatially structured environment, the red genotype consumes
the oxygen before it encounters the purple genotype, thus, promoting growth. Analogous to sediments in nature, in this scenario oxygen penetrates only from one
direction (i.e. from left to right). However, in a completely mixed environment, oxygen inhibits the purple genotype, and the red genotype suffers from product
inhibition caused by the accumulation of the secreted metabolite. (C) Physical barriers can effectively protect cooperating genotypes (purple and red cells) from
invasive ‘cheating’ genotypes (light blue cells). In a completely mixed system, the cheating genotype may achieve higher abundance than the cooperating genotypes.
However, in a spatially fragmented system, cooperators may achieve higher abundances than the cheating genotype because of the localization of positive interactions.
Note that the starting frequency of strains is equal for both scenarios, and that possible evolution is not considered in our models. (D) Spatial structure can modify
the relative frequencies of different genotypes. Consider a mixture of three genotypes, competing for the same substrate, but whose rates and yields are negatively
related to each other (i.e. a rate-yield trade-off). At the completion of substrate consumption, the spatially structured environment could have greater biomass than
the completely mixed environment. This is because the spatially structured environment may prevent competition between faster and slower growing genotypes,
thus, allowing the slower growing genotypes to proliferate and achieve higher cell densities. Again, our models assume that all genotypes remain the same over the
course of simulation.
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qualitatively different habitats for genotypes to proliferate
within, and these niches may occur over very small distances.
A canonical example occurs in sediments, where the chemi-
cal and physical environment may change rapidly over small
distances as a consequence of the metabolic activities of the
resident microorganisms and mass transfer phenomena. Such
spatial structure allows for the apparent coexistence of species
with different environmental adaptations. As an example, syn-
thetic assemblages of different algal isolates were constructed,
where the isolates competed in artificial flumes operated un-
der homogenous or heterogeneous flow regimes (Cardinale
2011). System productivity was measured by the uptake rate
of NO3;~ and primary production (algal biomass). When the
assemblages were inoculated into a homogeneous environ-
ment, one genotype rapidly displaced the others. In contrast,
when the assemblages were inoculated into a spatially struc-
tured environment, more genotypes persisted within the sys-
tem, presumably, because they occupied different ecological
niches created by mass transfer gradients. Interestingly, the
mixed assemblages always performed worse than monocultures
in the homogeneous environment, pointing toward competi-
tive and antagonistic interactions becoming dominant between
species. On the other hand, the mixed assemblages generally
performed better than monocultures in the heterogeneous en-
vironment, suggesting the maintenance of specialists via niche
complementarity.

Lack of environmental connectivity can also create dif-
ferent habitats that enable competing genotypes to appar-
ently coexist. A set of theoretical studies recently investi-
gated how water availability affects environmental connectiv-
ity and, in turn, influences the coexistence of different geno-
types (Wang and Or 2012a,b). In a wet and highly connected
environment, a rapidly growing phenotype displaced a slower
growing phenotype within the assemblage. In dry conditions,
however, where patches were less connected, the slower
growing phenotype could coexist with the rapidly growing
phenotype over the time-course of the mathematical simula-
tions. One reason for coexistence in dry environments is re-
duced cell motility (for experimental observations, see also
Dechesne et al. 2010) and reduced numbers of interconnect-
ing channels for substrates to diffuse through. As a conse-
quence, both cell types were spatially separated, effectively pre-
venting competition. When a similar in silico community was
designed to cross-feed a metabolic waste product on hydrated
surfaces (Wang and Or 2014), the assemblages organized into
persistent patterns. Importantly, the spatial organization de-
pended on both the interaction network topology and on the
connectedness of the environment.

Space itself can also be a resource for which microbes com-
pete (Saxer, Doebeli and Travisano 2009; Estrela and Brown 2013;
Miiller et al. 2014; Lloyd and Allen 2015). As mixed colonies ex-
pand over surfaces, only a proportion of cells at the growing
front may contribute to colonization of unoccupied space. Thus,
genetic drift can have a major effect on the local community
composition. In the absence of additional interactions, geno-
types will typically demix, and one population will go locally ex-
tinct (Hallatschek et al. 2007). When two auxotroph yeast strains
grew in a synthetic assemblage, reciprocal exchange of amino
acids was necessary for them to proliferate on a solid minimal
medium. However, efficient nutrient exchange dictated contin-
uous mixing of both populations and opposed genetic drift as
the colonies expanded (Miiller et al. 2014). On the other hand,
gradual addition of leucine or tryptophan (i.e. effectively shifting
the active interaction from bidirectional toward unidirectional),

resulted in an increasing segregation of populations. In other
words, with decreasing strength of the positive interaction com-
ponent, competition for space and resources may become the
dominant factor, and can even lead to competitive exclusion of
one genotype over time.

TEMPORAL HETEROGENEITY CAN MAINTAIN
INTERACTIONS

The activities of microorganisms themselves can rapidly change
the local environment over time, which can have consequences
on microbial interactions. Such dynamic changes and their ef-
fects on ecosystem processes are readily observed within syn-
thetic assemblages and over time-spans of only a few micro-
bial generations where evolutionary adaptations are unlikely
to have significant effects. These dynamic changes can create
new habitats that allow otherwise competing genotypes to co-
exist. For example, while all cells experience the same environ-
ment at any given point in time in a completely mixed sys-
tem, one genotype may have higher fitness at one time point
while the other genotype may have fitness advantage at an-
other time point. If conditions oscillate over time, then neither
of the genotype may be able to completely displace the other.
Examples of such dynamics include temporal oscillations in re-
source availability (Rosenzweig et al. 1994; Rozen and Lenski
2000; Zhou et al. 2015), chemical/physical parameters (Kato et al.
2005, 2008), and when growth alters density and/or frequency-
dependent interactions (Weber, Daoud-El Baba and Fussenegger
2007; Chuang, Rivoire and Leibler 2009; Celiker and Gore 2012;
Yurtsev et al. 2013). Below we highlight some examples of such
dynamics.

A canonical example of the importance of temporal oscil-
lations occurs when E. coli was evolved in completely mixed
batch culture. During batch growth, resources were initially in
excess but rapidly changed to become scarce. After serial trans-
fers, at least two genotypes emerged. One genotype had higher
fitness when resources were abundant while the other geno-
type had higher viability during starvation (i.e. during station-
ary phase) (Rozen et al. 2009). Synthetic assemblages of the two
genotypes together combined with modeling demonstrated that
both genotypes could be maintained by temporally segregated
fitness benefits (Rozen and Lenski 2000; Rozen et al. 2009; Saxer,
Doebeli and Travisano 2009; Ribeck and Lenski 2015). The tem-
poral fitness segregation is context dependent. The genotype
that had greater viability during starvation (i.e. during stationary
phase) only benefits from this phenotype when the other geno-
type is present (Rozen et al. 2009).

Another example occurs between organisms that exhibit dif-
ferent rate-yield properties. In one study, assemblages were con-
structed of a yeast strain that could both ferment and respire
glucose with another strain that could only respire glucose
(MacLean and Gudelj 2006). The former strain grew faster but
achieved lower yields, while the latter strain grew slower but
achieved higher yields (Otterstedt et al. 2004). When inoculated
into a chemostat, the faster growing strain displaced the slower
growing strain. However, in batch culture, both strains could co-
exist. The explanation for coexistence was that the ferment-
ing activity of the faster growing strain was more suscepti-
ble to product inhibition. They experimentally confirmed that
when glucose was abundant, the intermediates accumulated
and slowed the growth of the faster growing strain, thus provid-
ing a fitness benefit to the slower growing strain. Also, after the
glucose was completely consumed, the slower growing but more
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efficient strain had already extracted energy from the metabo-
lites, thus depleting the secondary resource pool available to the
faster growing strain (MacLean and Gudelj 2006).

Temporal oscillations combined with spatial structure were
also critical for maintaining rock-scissor-paper-type dynamics
with E. coli (Kerr et al. 2002). This interaction was mediated by
colicin, which is a plasmid-encoded bacterial toxin produced by
some E. coli strains. When colicin-sensitive E. coli was exposed
to the toxin, resistant genotypes occasionally emerged. Note
that both colicin production and colicin resistance carry signifi-
cant fitness costs compared to colicin-sensitive genotype. The
colicin-resistant genotype could invade the spatial patch ini-
tially occupied by colicin-sensitive E. coli, but only after this spa-
tial patch had been invaded by colicin-producing variant. The
same was true for the other two genotypes; the invasion into a
spatial patch occupied by an otherwise more competitive strain
could proceed only in a periodic manner, thus, requiring a par-
ticular succession history (i.e. a particular ordering of immigra-
tion events).

CONCLUSION

The reader might have noticed that we avoided using conven-
tional terminology for interactions between different genotypes,
such as commensalism and mutualism. While this terminology
is likely useful for macroecology, we believe that it may be less
useful for microbial ecology and might instead create confusion.
The main problem is that conventional interaction terminology
oversimplifies the true nature of interactions between different
genotypes.

We argue this on four points. First, the terms commensal-
ism and mutualism do not indicate whether the positive inter-
action results from passive or active processes. Yet, whether
the interaction is passive or active can profoundly affect the
selection pressures that act on that interaction, and thus on
its properties and stability over evolutionary time scales. The
lack of such a distinction between passive and active processes
can consequently create confusion, such as equating the terms
mutualism and cooperation with each other, which are not nec-
essarily the same (i.e. a mutualism need not be based on active
processes while cooperation must be based on active processes).
Second, the terms commensalism and mutualism may suggest
that the interaction is purely positive. However, an interaction
is almost never purely positive. Instead, the interaction will al-
most always have competitive elements at the same time. Im-
portantly, it is often unclear whether the positive or competi-
tive elements have the dominant effect on ecosystem dynamics
and community properties. Also, these terms describe interac-
tions as a net effect and generally do not attempt to dissect in-
teractions into individual components. We feel that identifying
the individual components of an interaction lends us power to
predict how synthetic assemblages may develop over evolution-
ary time. Finally, terms such as cooperation or commensalism
leave the appearance that interactions are static. However, in-
teractions can change abruptly over both ecological and evolu-
tionary time-scales. The challenge with this dynamical nature of
interactions is enormous. Consider that the number of interac-
tions within an assemblage scales exponentially with the num-
ber of genotypes, where the addition of an additional genotype
adds n new potential interactions to already existing nx(n-1)/2
interactions within that system. If even one of these interactions
changes in strength or sign (e.g. positive to negative) over time,
then it could have cascading effects on all other interactions.
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Given these limitations, we argue that an alternative frame-
work for describing interactions might be useful, and we sug-
gest a new set of terminology here. We refrained from simple
single-word terminology and instead stated explicitly whether
an interaction is active or passive and whether the interaction
also contains competitive elements. Unfortunately, our termi-
nology presented here is admittedly cumbersome and does not
address the issue with the dynamical nature of interactions;
further advances and discussions are clearly needed. Perhaps
bleakly, we note here that our arguments for developing a more
precise terminology for interactions are not new, and similar
suggestions regarding the nature of interactions and the perva-
siveness and complexity of competition were made nearly 40
years ago (Fredrickson 1977; Fredrickson and Stephanopoulos
1981), yet widespread adoption of more precise terminology gen-
erally remains absent.

Another important outcome of our review is that what we
name today as ‘synthetic microbial ecology’ is not an entirely
new discipline; it is rather an ongoing effort in microbiology. Per-
haps the biggest advance in recent years is the predictive power
of modern mathematical and metabolic modeling and the avail-
ability of elegant genetic systems to control and analyze the dy-
namic behavior of synthetic assemblages. Taken together, these
tools allow us to premeditate and then impose interactions of
our choosing, and here we are not necessarily limited by native
constraints of microbes at hand. It is also stimulating a new gen-
eration of microbiologists to integrate analytical, mathematical
and experimental approaches to improve our basic understand-
ing of microbial communities. These skills have largely been dis-
tributed among different research fields rather than brought to-
gether within a single research effort.

OUTLOOK

Synthetic microbial ecology will have continuing potential to
understand how interactions between different microbial geno-
types can lead to community-level processes and higher order-
level properties. This information is not only important for ba-
sic scientific advances, but also has potential to be applied in
concrete biotechnological applications. For example, we have
emphasized the susceptibility of active interactions to cheating,
which can lead to their eventual collapse. Thus, if one wishes
to engineer a system to achieve a specific design objective, it is
clear that one should avoid active interactions or engineer envi-
ronments that protect active interactions from exploitation. We
have also emphasized how interactions can be engineered or im-
posed to control system dynamics for the production of valuable
bioproducts. Continuing advances at the basic level should help
to establish general engineering design principles that predict
how best to distribute different metabolic processes across dif-
ferent genotypes to optimize a desired biotransformation (John-
son et al. 2012). They will also help to identify how to impose
new or additional interactions to control stability and resiliency,
which should lead to important biotechnological advances.
Another great challenge for future research is to translate
the advances in synthetic microbial ecology to natural micro-
bial assemblages. This poses enormous challenges, as system
complexity scales exponentially with the number of genotypes
present in the system (i.e. each additional genotype present
within a community can, directly or indirectly, interact with
every other genotype). Still, the general principles and rules
derived from synthetic microbial ecology may be useful for
understanding which interactions have a critical role within
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complex assemblages and which do not. This could help es-
tablish truly predictive and comprehensive models of system
dynamics for real-world environmental communities, such as
those residing in the human gut or in wastewater treatment
plants. Thus, the bridging of synthetic ecology with natural sys-
tems will be a grand challenge that also could have profound
effects on a variety of biological disciplines, including microbi-
ology, ecology, evolution and the environmental sciences.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSRE online.
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