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Abstract

The overarching aim of this field study was to exaarcausal links between-situ exposure to
complex mixtures of micropollutants from wastewdteatment plants and effects on freshwater
microbial communities in the receiving streams.r&ach this goal, we assessed the toxicity of
serial dilutions of micropollutant mixtures, extrad from deployed passive samplers at the
discharge sites of four Swiss wastewater treatiplamits, ton situ periphyton from upstream

and downstream of the effluents. On the one hasmparison of the sensitivities of upstream
and downstream periphyton to the micropollutanttores indicated that algal and bacterial
communities composing the periphyton displayed érigblerance towards these micropollutants
downstream than upstream. On the other hand, malegoialyses of the algal and bacterial
structure showed a clear separation between upsted downstream periphyton across the
sites. This finding provides an additional lineesidence that micropollutants from the
wastewater discharges were directly responsibléhiachange in the community structure at the
sampling sites by eliminating the micropollutantsiive species and favouring the tolerant
ones. What is more, the fold increase of algallzaxterial tolerance from upstream to
downstream locations was variable among samplieg sind was strongly correlated to the
intensity of contamination by micropollutants ag tiespective sites. Overall, our study highlights
the sensitivity of the proposed approach to disegleaeffects of micropollutant mixtures from
other environmental factors occurring in the fialt, thus, establishing a causal link between

exposure and the observed ecological effects ainfvater microbial communities.

Keywords Pollution-induced community tolerance; passivagiers; wastewater treatment

plants; causality; micropollutant mixture; biofilm
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1. Introduction

Fresh waters are among the most threatened ecosystéerms of species extinctions and
losses in ecosystem services, and micropollutantd) as pharmaceuticals or pesticides, are
considered as one of the major threats (Bernhaalt 2016, Gessner and Tlili 2016, Stehle and
Schulz 2015, Vérosmarty et al. 2010). Because weages treatment plants (WWTPs) were
primarily designed to retain organic matter, nutitseand microbes, micropollutants are not
completely removed by common treatment steps @toals 2008, Rodriguez-Mozaz et al. 2015).
Consequently, effluents represent a point souncedmplex mixtures of micropollutants into
fresh waters, potentially leading to the degradatibthe chemical and ecological status of the
receiving ecosystems. Furthermore, input of michopents from wastewater discharges into
fresh waters is usually associated with other stnesssuch as an increase of temperature or high
loads of nutrients and organic matter (Petrie €2@15). In such a complex situation, one of the
key challenges is to diagnose specific micropotitigffects and their contribution to the general
degradation of the ecosystem status (Bundschuh, Zamm et al. 2016).

Current methods and tools applied in regulatorytexts do not pinpoint the specifit situ
impacts of micropollutant mixtures on ecosystenustéBundschuh 2014). On the one hand,
assessment of chemical status is based on compadagured concentrations of selected
compounds to concentrations considered safe foertlieronment (environmental quality
standards, EQS). This approach allows for quaatio of specific compounds within the
mixture of micropollutants but does not reflect thh@amic composition of pollutants in the
environment or theiin situ effects on the biota. EQS are derived from sirsglecies bioassays
that measure the sensitivity of a single organsmmicropollutants by observing parameters such
as survival, growth or photosynthesis. On the olfagrd, assessment of the ecological status of

ecosystems relies on diverse bioindicators, fogusimspecies taxonomy or abundance, which
3
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are designed to provide an overall picture of tipgadic system status but cannot ascribe a change
to a specific effect of micropollutants or otheressors (Coste et al. 2009, Feio et al. 2007).

Periphyton, a consortium of microorganisms compdsedlgae, bacteria, fungi and
protozoa that grow on submerged substrata surfaaeeen recognised as an important
biological indicator to classify water bodies aating to their pH, salinity, or saprobic state, as
well as increasingly to examine micropollutant efée(Battin et al. 2016, Sabater et al. 2007). In
streams of small to moderate size, periphyton pdagisicial ecological role as a basis of the food
web; and it is sensitive to environmental stressbingrefore, a large set of functional and
structural descriptors using periphyton has beeeldped to evaluate the risks posed by
environmental stressors in fresh waters (Sabatr 2007). Here again, if solely applied to
periphyton in the field, these descriptors do niatafor distinction between the contribution of
micropollutants and other stressors to the effebserved in the environment.

A shift in community composition that results frahe replacement of sensitive species by
tolerant ones upon chronic exposures of commurtii@sicropollutants is a common response in
contaminated ecosystems and is considered asablesindicator ofn situ micropollutant
impacts (Amiard-Triquet 2011). The difference imsi&vity to micropollutants among species
forms the basis of the pollution-induced commutuafgrance (PICT) concept (Blanck et al.
1988). The rationale of the concept is that disapgece of sensitive species and dominance of
tolerant ones is an expected outcome of chroniogxg. Thereby a community that was
previously affected through exposure to micropalhts is anticipated to display a higher
tolerance to those micropollutants than a refereocemunity that has never been exposed.

Increased community tolerance following exposurmicropollutants has been
demonstrated with periphyton (Blanck 2002) but PEXIdies with periphyton in the field

remain rare. One continued difficulty is to disergi@ micropollutant from other stressor effects.

4
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To overcome this difficulty, an assessment of tolee to passive sampler extracts obtained from
the studied sites has recently been proposed (Kam €t al. 2016, Tlili et al. 2016). Passive
samplers accumulate chemicals by diffusion andt&erpmimicking the bioaccumulation of
these chemicals within biological matrices. They peovide an integrative picture of pollutants
over a period of time, allowing for quantificatiohaverage concentrations to which organisms
have been exposed (Alvarez et al. 2008). Indeedestudies have used this approach with
periphyton grown in indoor microcosms, which weheonically exposed to extracts from
passive samplers that had been deployed in streamiaminated with pesticides (Foulquier et al.
2015, Kim Tiam et al. 2015, Morin et al. 2012). fhermore, Pesce et al. (2011) examined the
tolerance to passive sampler extractsdditu periphyton from a stream with a gradient of
agricultural pollution. Although these studies feed only on the phototrophic but not the
heterotrophic component of periphyton, they shotixd upon chronic exposure to
micropollutant algal communities developed tolemtawthe passive sampler extracts.

Given this background, the overarching goal ofsiudy was to determine the contribution
of complex mixtures of micropollutants from wastéevralischarges to the ecological statugof
situ microbial communities in fresh waters, using pleyijpn as a biological model. The specific
aims were (i) to examine phototrophic and hetepitio periphyton tolerance from upstream and
downstream of WWTPs towards micropollutants exeddtom passive samplers deployed in the
wastewater discharges, (ii) to link the changediwdrsity in the phototrophic and heterotrophic
communities composing the periphyton to the michlopents released from the WWTPs and
(iif) to compare the PICT approach with traditidgalsed approaches such as single species
bioassays and functional and structural bioindisatd periphyton. We hypothesized that even at
low concentrations of individual chemical compourtie continuous input of complex mixtures

of micropollutants will alter the chemical and emgital status of the receiving streams, affecting
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the diversity of downstream periphyton and leadmincreased tolerance towards these

micropollutants.
2. Material and methods

2.1. Experimental design

Periphyton was grown on artificial glass substraj@stream and downstream of four
WWTPs located in north-eastern Switzerland. Duthgcolonisation period, Chemcatcher
passive samplers were deployed at each dischaegie $he receiving streams to accumulate
polar to semi-polar organic micropollutants. Aféeweeks, periphyton and passive samplers
were retrieved from the field and transported ®ldboratory. Micropollutants accumulated in
the passive samplers were extracted and extraceswsed to assess tolerance to micropollutants.
For this, upstream and downstream periphyton fraoheite were exposed to a series of
increasing dilutions of the corresponding extragiry 12 hours. Afterward, inhibition of
various functional endpoints, specifically targgtthe heterotrophic and phototrophic
components of periphyton, was assessed. Toxicitiyeoéxtracts to a single green alga,
Pseudokirchneriella subcapitgtavas also evaluated to specifically inform on dlegvity of
photosynthesis inhibitors. Additionally, variousiional descriptors as well as the structure of
the upstream and downstream periphyton were examitieally, during the colonisation period,
two litres of grab water samples were collectedetwo weeks at each sampling location to
measure 8 water quality parameters.
2.2. Study sites

Four WWTPs, located in Switzerland and named Stéiniderisau, Buttisholz and

Hochdorf, were selected as study sites (Fig. 1jtigholz, Herisau and Hochdorf were selected

based on the surveys conducted by Munz et al. (201813 and 2014 to investigate
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concentration patterns of 57 to 400 micropollutamt®4 wastewater-impacted streams in
Switzerland as well as in the wastewater effluefiteir results showed that concentrations of the
majority of the measured micropollutants were gigantly higher downstream than upstream of
the wastewater discharges (Table S2). Similarky Steinach site was also selected because the
analyses of 57 selected compounds in grab wateplearshowed higher micropollutant
concentrations downstream than upstream at tieg Batble S2). Another criterion for the sites
selection is that the WWTPs contributed by a minimaf 20 % of wastewater to the total stream
flow at the downstream locations. All sites cor@sged to small to moderately sized streams. At
each study site, one upstream and one downstreztido was selected as reference and
impacted site, respectively. Upstream and downstr&ges were chosen to be as similar as
possible with regard to stream morphology, ripatéard use and vegetation. Furthermore,
downstream sites were selected so that water fneneffluent was completely mixed with the
stream water during low flow conditions (Burdora€t2016, Munz et al. 2016, Stamm et al.
2016).
2.3. Periphyton colonisation and sampling

This study was conducted from thé™df March to the 30 of April 2014. Three large
glass slides (380 chper slide) were fixed vertically in perforated gtia boxes (60x40x14.5 cm)
and used as artificial substrata to allow biofilofonisation. At each sampling location, three
boxes were installed at the centre of the streashrcansidered as biological replicates. After six
weeks of colonisation, the glass slides were nstdeplaced individually in plastic bags
containing stream water from the corresponding s$iamgppocation and transported to the
laboratory in cooling boxes within five hours afsampling. Immediately after arrival at the
laboratory, periphyton growing on the three gldgkes from the same box was carefully scraped

using a polypropylene spatula and suspended im256f Evian mineral water. In order to allow

7



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

comparison among sampling sites, Evian mineral wades used as medium to avoid the
influence of different stream water compositionglo® bioavailability of micropollutants, which
can affect the biological responses of periphytonnd) the assays. Evian water is a commonly
used medium in microbiological and ecotoxicologaldies because of its uniform quality.
2.4. Passive samplers

In order to accumulate the polar to semi-polar opotlutants which are released from
the studied WWTPs, Chemcatcfipassive samplers — styrenedivinylbenzene (SDB}sdiqd7
mm diameter, Sigma Aldrich, Switzerland) were cimofee our study (Vermeirssen et al. 2009).
During the six weeks of periphyton colonisatione@ttatchefwere placed at the discharge site
in the receiving stream of each WWTP. In orderdarbthe linear uptake phase, two passive
samplers were deployed during two weeks beforegoiplaced by two new ones, leading to a
total of six passive samplers per sampling site fHtrieved SDB discs were put in 6 mL of
acetone, brought to the lab and stored at -20 tCuse. After extraction of the accumulated
micropollutants in the SDB discs as described im&rssen et al. (2013), the extracts from the
six passive samplers deployed at the same sitepoeied. Afterward, the solvents were
completely evaporated under a gentle nitrogensii@ad the extracts were suspended in 7 ml of
Evian mineral water for the PICT assays, the aljaassay and the micropollutant analyses.
2.5. Physicochemical measurements and micropotlatzalyses

During the study, water temperature, pH, condustiaxygen concentrations (WTW
Meters, Germany) and water velocity (FlowTrackenétzeld ADV, YSI, Inc., USA) were
measured every two weeks at each sampling locadidditionally, two-litres water samples
were collected in glass bottles for measurementissblved organic carbon (DOC), dissolved

nitrogen (DN), orthophosphates, and silica usiagdard methods as described for the Swiss
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National River Monitoring and Survey Programme (NAR
www.bafu.admin.ch/wasser/13462/14737/15108/15109).

In total 56 polar to semi-polar micropollutants weneasured and quantified in grab
water samples from upstream and downstream of &aapling site and in the passive samplers
extracts (Tables S2-3). The compounds were seléetsed on their frequent detection, higher
concentration, toxicity as well representation iffiedent substance classes and exposure
pathways (Munz et al. 2016). Thirty-one of thesmpounds were pesticides including nine
herbicides, twelve insecticides and ten fungicidegenty compounds were pharmaceuticals,
including antibiotics, analgesics, antidiabetiagj-anflammatory, antihypertensive drugs,
blockers, diuretics, histamine analogues and payabidrugs. The five remaining compounds
were household chemicals and included two antisasrocompounds, one tracer for human
excretion contamination in wastewater, one foodtaddand a personal care product. The water
samples and passive sampler extracts were enneitieén online solid phase extraction similar
to Huntscha et al. (2012) and subsequently analystbda liquid chromatography high
resolution tandem mass spectrometry method asidedan Munz et al. (2016).

2.6. Periphyton characterisation
2.6.1. Total, algal and bacterial biomass

The total periphyton biomass was evaluated by tatiog the ash-free dry weight
(AFDW) in three subsamples of each periphyton susipa (2 mL) as described in Tlili et al.
(2008). Results are expressed asg m

Chlorophyll-a content in 5 mL from each periphysurspension was used as a proxy for
algal biomass and quantified by high-performangeitl chromatography using an external
calibration with purified chlorophyll-a (C55H72Mgl8, Carl Roth GmBH & Co) as described

in Tlili et al. (2008). Final concentrations areen as g g AFDW.
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Bacterial biomass was estimated according to Frdstaal. (2012) with few
modifications. Briefly, 5 mL from each periphytonspension were put in 5 mL of phosphate-
buffered formalin (2% final concentration). Aftam altrasonic treatment for 1 min (Branson
Digital Sonifier 250, Germany), periphyton suspensiwere centrifuged at 2000 g for 15 min.
One mL of the supernatant containing bacteriabagls stained with 0.1pL rilof SYBER®
Green | (Promega, Switzerland) in anhydrous dimsthfpxide and incubated during 15 min in
the dark. Fluorescent beads (Flowcount flurosph@&eskman Coulter, Switzerland) with a
known concentration were spiked to the samplessagralard to determine the cell
concentration. Samples were analysed using a Gdltiw cytometer (Beckman Coulter,
Switzerland). Bacterial numbers were convertedattidrial biomass considering a mean
bacterial biomass of 20 fg céll(Norland 1993) and data expressed as HL&RDW.

2.6.2. Functional analyses

Photosynthetic efficiency, which is based on measent of the effective quantum yield
of algae, was assessed using an Imaging-PAM (jpntgditude-modulated) fluorimeter (Heinz
Walz GmbH, Germany). Chlorophyll-a fluorescencerfreach periphyton suspension was
measured at 665 nm after applying a single saturgtillse to calculate the effective quantum
yield (') as:¢’ = (F m— F'o) / F'm; where Fp, is the maximum fluorescence after the saturation
pulse and F'is the steady-state fluorescence.

Algal production was measured B{C-carbonate incorporation rate as described in
Dorigo and Leboulanger (2001). Briefly, a 2-mL aliq from each periphyton suspension was
put into a 20-mL glass scintillation vial contaigi@5 pL of NaH*CO; (2.09 GBg mmot,
Hartmann Analytic GmbH, Germany) and incubated utioke light at 16°C during 2 hours. The
reaction was stopped by adding formaldehyde (fimakentration of 3.7%), followed by 10Q

of glacial acetic acid to remove the inorganic ocarlPeriphyton suspensions were dried
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overnight at 60°C before adding 1 mL of DMSO anclimating for one hour at 60°C to dissolve
the labelled organic matter. Ten mL of scintillaticocktail (Ultima Gold LLT, GmbH,

Germany) were added, and radioactivity was measaradri-Carb 2810 TR liquid scintillation
counter (PerkinElImer GmbH, Germany) with quenchexiron. Results are expressed as ug C g
L AFDW day”.

Bacterial production was measured't@-leucine incorporation into protein according to
Buesing and Gessner (2003) with few modificati@rgefly, 2.9 mL from each periphyton
suspension were put into a 20-mL glass scintilfatiml and incubated at 16°C for 30 min with
4.5uM *C-leucine (12.32 GBg mmidj Hartmann Analytic GmbH, Germany) and 2.5 mM of
non-radioactive leucine. Incubations were stoppeddaing trichloroacetic acid (TCA) to a final
concentration of 5%. After ultrasonic treatmentfanin (Branson Digital Sonifier 250,
Germany), samples were centrifuged at 4000 g fonB0 Afterward, the pellets were
consecutively washed with 5% TCA, 40 mM cold leeciB0% ethanol and sterile ultrapure
water. After the last washing, the pellets wereispended in 1.5 mL of 0.3% SDS, 75 mM
EDTA and 1.5 M NaOH and heated for 1 h at 90 °@issolve proteins. After cooling to
ambient temperature, the tubes were centrifuged@anin at 14.000 g and 500 pL of the
supernatant was transferred to a scintillation eadtaining 5 mL Hionic Fluor scintillation
cocktail (PerkinElImer GmbH, Germany). The radioattiincorporated into the dissolved
proteins was measured in a Tri-Carb 2810 TR liguidtillation counter (PerkinElmer GmbH,
Germany) with quench correction. Results are espasas 1g CHAFDW day’.

Microbial substrate-induced respiration (SIR) & tieterotrophic periphyton component
was measured using the MicroRBpechnique and glucose as carbon source followiag t
procedure described in Tlili et al. (2011c). Theteyn consists of two 96-well microplates placed

face-to-face. One is a 1.2 mL deep-well micropiatehich each well contains 500 pL of the
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periphyton suspension and 30 pL of D-glucose (gt per well, pH = 7). The second
microplate contained the detection gel. The tworoplates were joined with a silicone seal, with
interconnecting holes between the correspondingswBhe assembly was clamped together and
the system was incubated in the dark at 16 °C%dn.JAbsorbance of the detection gel was
measured at 572 nm (Tecan Infinite 200 PRO micteplkeader, Tecan Trading AG, Switzerland)
immediately before sealing to the deep-well plate after incubation. Quantities of the produced
CO, by the microbial communities were calculated usirgalibration curve of absorbance values
versusCO; quantity measured by gas chromatography (MTI 2@dnhal conductivity detector).
Results were then expressed as ug.@@* of AFDW.h ™.

Potential activities of the three extracellular fofgtic enzymesp-glucosidase (BG; EC
3.2.1.21), alkaline phosphatase (AP; EC 3.1.3.4r2))leucine-aminopeptidase (LAP; EC
3.4.11.1), which are involved in the degradatiopalfysaccharide compounds, organic
phosphorus compounds and peptides respectivelg mreasured following the methodology
described by Romani et al. (2004). Because thégatethe ability of organisms to decompose
and assimilate nutrients, enzyme activities hawenhesed to assess changes in ecosystem
functioning due water quality alterations. BG (4thnydumbelliferyl$3-D-glucopyranoside) and
AP (4-methylumbelliferyl-phosphate) activities weneasured using MUF (methylumbelliferyl)
fluorescent-linked substrates while LAP (L- Leuciit@mido-4-methylcoumarin hydro-chloride)
activity was measured using AMC (aminomethyl-coumjdtuorescent-linked substrate. Briefly,
one mL from each periphyton suspension was incdbaitn MUF- or AMC-substrates at
saturating substrate concentrations (i.e. 1 mMhéndark during one hour at 16 °C. After
incubation, 1 ml of glycine buffer (pH 10.4) wagdad to the samples in order to stop microbial
metabolism. Then, fluorescence was measured a#35%um (excitation-emission wavelengths,

respectively) for MUF-substrates and at 364-445omAMC-substrate (Tecan Infinite 200 PRO

12
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microplate reader, Tecan Trading AG, SwitzerlaBohzyme activity was expressed as pumole
MUF or AMC ¢g* AFDW h™.
2.6.3. Diversity analyses

Molecular fingerprints of the periphyton communitgre obtained by using denaturing
gradient gel electrophoresis (DGGE). Subsampl&srot. from each periphyton suspension
were centrifuged at 14,000 xg for 30 min at 4 °Gefd, the supernatants were removed and the
pellets kept at -80 °C. Nucleic acid extraction wasformed on the periphyton pellets using the
PowerBiofilm DNA Isolation Kit (MO BIO LaboratorieCA) following the manufacturer’s
instructions.

PCR amplification of algal 18S rRNA gene fragmearid bacterial 16S rRNA gene
fragments and their DGGE analysis were performedralng to Tlili et al. (2008). Briefly, 60
ng of template DNA and the Euk1Af and Euk516r-G@ngrs were used to amplify the algal
18S rRNA gene fragment. PCR amplification of thetbaal 16S rRNA gene fragment was done
with 30 ng of template DNA, and the primers 34a&fwhich a GC-rich fragment was attached,
and 907rM. DGGE analyses were performed as describBorigo et al. (2007). Images were
processed with the software ImageJ in which nu@eid bands, corresponding to taxonomic
operational units (OTUs), were identified and thegsence or absence at a given height in each
lane was scored as 1 or 0, respectively.
2.6.4. PICT measurements

In order to measure induced tolerance to micropenlis from WWTPs effluents,
upstream and downstream periphyton from each sagpiie were subjected to short-term
exposure assays with serial dilutions of the passampler extracts from the corresponding
effluent. Semi-logarithmic series of concentratiohghe micropollutant extracts (six increasing

concentrations) were freshly prepared, with a mlidiation factor of 18°, by serial dilutions of
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the stock solutions in Evian mineral water. Pertphysuspension aliquots (9 mL) from upstream
and downstream locations were exposed in glasafadger to 1 mL of the six dilutions of the
corresponding micropollutant extract, in additiorohe control in which 1 mL of mineral water
was added and one abiotic control with 1 mL of faltehyde (three biological replicates per
sampling location). Based on previous tests tordete the optimal bioassays duration (data not
shown), samples were incubated during 12 hours aClunder artificial light and gentle
shaking. Afterward, subsamples from the periphwespensions were taken from each
Erlenmeyer for photosynthetic efficiency, primarnpguction and secondary production
measurements as described previously in sectiol.2.6
2.7. Algal bioassay

In order to compare between the toxicity of photakgsis inhibitors contained in the
passive sampler extracts at the single-specieshencbmmunity levels a combined algae assay
with the green algBseudokirchneriella subcapitataas performed according to Escher et al.
(2008).P. subcapitatas among the most widely used and recommendedespfer freshwater
toxicity testing (Katsumata et al. 2006, Pawt al. 2005), for which standard guidelines have
already been established ( OECD 1984, USEPA 1994yief, a culture oP. subcapitatavas
added to a 96-well plate containing increasingtiihs (1:2 dilution series) of the passive
samplers extracts and of diuron as reference sutestahe effective quantum yield of
photosynthesis (see section 2.6.2) was measum@d2aéind 24 h of exposure using an Imaging-
PAM.
2.8. Data analyses

Student'st-tests were performed to compare physicochemical4pand functional (n =
3) data between upstream and downstream locatoesch sampling site. The significance level

was set at 5%. In order to assess induced tolerarperiphyton as well as the sensitivity of the
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green alg#. subcapitatao micropollutants, concentration-effect curvesevglotted as a
function of decreasing passive sampler dilutiorsfétted to a four-parameter logistic equation
based on the Hill model, which allowed calculati@;, values. The x-axis of the concentration-
effect curves was expressed in unitless relatikgidn factor (RDF) of the passive sampler
extract and therefore also the g@alues are expressed in RDF. Bootstrap-Monte-Carlo
simulations were used to calculate 95% confidentavals (n = 21). All tests were performed
with GraphPad Prism5 software (GraphPad SoftwaaéfdZnia USA).

Presence and absence matrices of OTUs obtainedfijm@GGE analysis were used to
determine algal and bacterial diversity differenicethe sampling sites. Data were submitted to
detrended correspondence analysis (DCA). Maximuadignt length was < 3 SDs for all
measured parameters, indicating that linear metthveds appropriate. Consequently, principal
component analysis (PCA) was carried @A allows the ordination of the samples, making it
possible to visually assess similarities and défifiees between samples and determine whether
they can be grouped. The closer are the sampksctoother along a given axis the more similar
they are, and vice versa. DCA and PCA were perdrosing the CANOCO version 4.5

software.

3. Results and discussion

3.1. Physicochemical measurements and micropotlatzalyses

General chemical parameters showed a clear impaoe evastewater discharges on the
receiving waters. Indeed, when compared to theesponding upstream, all downstream
locations were characterised by higher conductisitgl nutrient loads represented by DOC,
dissolved nitrogen, P-P@nd SiQ (Table S1). The highest differences between ugstrand
downstream locations were measured at Herisau &mobSh for DOC and dissolved nitrogen,
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respectively. Additionally, P-P{xoncentrations markedly increased downstreamesn&th,
Herisau and Buttisholz and to a lesser extent ahdHorf. Micropollutants increased as well from
upstream to downstream at all sampling sites, éshetor pharmaceuticals and the household
chemicals (Table S2, Fig. 2). Similarly to nutrrthe composition and relative concentrations
of micropollutants differed among the samplingsiteownstream of Steinach and Herisau had
the highest concentrations of micropollutants focategories (up to 1 pg1) and Buttisholz

had the lowest ones except for pesticides that dengnated by the herbicide terbuthilazine (3
ng L) (Table S2). Altogether, the chemical data indidhgt there were significant differences
among sampling sites in how WWTP effluents inflleshchemical status of the receiving
streams. This is due to differences in the landpagtern in the catchments as well as to the
treatment technologies that removed differentlyrtbients and micropollutants (Burdon et al.
2016, Munz et al. 2016).

The measured concentrations of micropollutanthénpassive sampler extracts from the
effluents sites indicated also a dominance of phaeuticals and household chemicals within the
analysed mixtures followed by herbicides (Fig. 8ble S3). Interestingly, the herbicidal
compounds found in the effluents of Steinach anddde are not of agricultural origin but are
dominated by two biocides (i.e. diuron and terbmitrgmongst others used to protect facades
against algae. Since enrichment in the samplefarisng for different compounds and samplers
were exposed to the WWTP effluents, measured ctoradEms in the extracts cannot directly be
compared with the water concentrations downstre&emnfeirssen et al. 2010). However, the
detection frequency of the compounds in both sasnpldicates that passive sampling provides a
practical tool for strong enrichment of the reatrapollutant mixture of roughly thousand,
justifying its use in biological assays as apphésb in other studies (Creusot et al. 2014,

Vermeirssen et al. 2010).
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3.2. Effects of wastewater discharges on periphyton
3.2.1. Algal and bacterial tolerance as a spedifidicator for micropollutant mixture effects

Increased community tolerance following exposurmicropollutants, as a basis of the PICT
concept, is an expected outcome in contaminateslystams. As a consequence, it is considered
as a reliable indicator to disentangle impactsrghnic micropollutants from potential effects of
other stressors (Blanck and Wangberg 1988, Guetsah 2007, Millward and Klerks 2002, Tlili
et al. 2010, Tlili et al. 2016). In the presentdstuthe results show clearly that all downstream
periphyton displayed higher tolerance towards ttieaeted micropollutants from the passive
samplers than the communities upstream (Tablegl; ). Based on photosynthetic yield and
algal primary production measurements, calculai€g Zalues were higher downstream than
upstream, reflecting an increased tolerance ophwtotrophic communities to the micropollutant
mixtures. These results were in agreement witlthi@enical analyses of the micropollutants.
Indeed, compounds targeting phototrophs such dmsdras, were present in the effluents of all
assessed WWTPs and their concentrations were hiiglhvarstream than upstream. What is more,
when tolerance measurements were based on phdiesismefficiency, fold increase of the &C
values was variable among sites, ranging fromI5& with the highest increase being observed
at Buttisholz, followed by Herisau, Steinach ancchitorf (Table 1). Most striking, differences
in herbicide concentrations between upstream amehsiiojeam locations followed the exact same
order (Table S2, Fig. 2), which clearly reflects #trong correlation between community
tolerance and the intensity of contamination byropollutants.

Besides phototrophs, heterotrophs such as baeterian important component of periphyton
and direct targets for a high number of micropalhis released by WWTPs. Based on bacterial
production measurements, the results showed thegpeat Herisau for which Egwas higher

downstream than upstream location but statisticailysignificant, EG values for periphyton
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from downstream of Steinach, Buttisholz and Hochd@re significantly higher than Egfor
upstream periphyton (Table 1, Fig. S1), reflectig@in a significant increased tolerance to the
passive sampler extracts, this time for bacteria.

As for algae, the fold increase of the calculat€gyiralues for bacteria differed among sites.
Compared to upstream locations, bacterial toleramdewnstream periphyton increased by 86
times at Hochdorf, 22 times at Buttisholz and twat&teinach. These findings concur with the
chemical analyses that indicated the presencegaehconcentrations downstream of compounds
effective on bacteria, such as the antibioticsttleomycin and sulfamethoxazole, the anti-
inflammatory drug diclofenac and tReblockers atenolol and metoprolol (Table S2). One
possible explanation of the low fold increase aftbeal tolerance at Steinach is the lower
difference between upstream and downstream cortiems of bactericides at this site compared
to Buttisholz and Hochdorf (Table S2). Furthermdie, concentrations of these compounds and
especially antibiotics where higher downstream otttiorf than downstream of Buttisholz
which might explain the 86-fold increase of fg@alue at Hochdorf while at Buttisholz it
increased by 22 times. The differences among fatate concentrations of these compounds
was confirmed by further measurements presentdtlimz et al. 2016. These findings suggest
that different fold increase in tolerance refladiféerent composition and relative concentrations
of compounds driving the effects within the micrbpant mixtures.

3.2.2. Shifts in algal and bacterial community sttue

A greater community tolerance can result from g@acement of sensitive species by
tolerant ones under toxic exposure (termed “toxizatiuced succession” (Blanck 2002)), which
can be observed as a change in community strudtutiee present study, the principal
component analysis applied to the DGGE data (Figshbwed that for bacteria and algae axes

PC1 and PC2 together explained more than 63% af€ &#the total variability, respectively.
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PCL1 in both cases was clearly related to the sagpbcation and separated Steinach and
Herisau from Hochdorf and Buttisholz (Fig. 1). Suebults underline the fact that a combination
of local, regional and biogeographic factors migifiluence the natural variation of stream
community composition, as conceptualized by theedrdependency concept (Clements et al.
2016).

Most importantly, either for algae or bacteria, R@#e clearly correlated to the influence of
the wastewater discharge and separated all upsfreamdownstream locations. In a similar
vein, earlier studies have shown changes of theofni&l structure in periphyton upon chronic
exposures to organic micropollutants (Corcoll eéll4, Dorigo et al. 2007). For instance, a
shift in bacterial (Dorigo et al. 2010) and algaeéce et al. 2011) structure has been observed in
periphyton along a contamination gradient by adjucal runoff. Similarly, Corcoll et al. (2014)
showed that WWTP effluents altered the phototropinrersity in periphyton with an increase of
the relative abundance of cyanobacteria and a deeraf the relative abundance of diatoms.
Clearly, the restructuring of the microbial commnies composing periphyton, as observed in our
study, cannot be strictly related to the releaseuiapollutants from the effluents. However, the
measured increase of algal and bacterial tolerprmgdes an additional line of evidence that
micropollutants were directly responsible for ti@mcge in the community structure in the
sampling sites by eliminating the micropollutaniisiéive species and favouring the tolerant
ones.

3.2.3. Traditional descriptors of periphyton as araquality indicators

Unlike for tolerance measurements, most of thatioahl periphyton descriptors such as
biomass, photosynthesis or algal and bacterialymtoah did not respond consistently between
upstream and downstream locations across the sagptes (Table 2). Indeed, no significant

correlation has been found between the periphyésergptors and physicochemical
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characteristics of the stream water from all Sifgsearman’s correlation; data not shown). For
instance, algal and bacterial productions incre&sed upstream to downstream of Steinach
while it remained unchanged at the other sitesrdlial respiration (SIR) responded also
differently among sites and was lower downstreaan tippstream of Herisau and similar between
upstream and downstream of the three other sissause of a consistent increase of
pharmaceutical and herbicide concentrations dowastrof all sites, negative effects on algal
and bacterial communities, as target organismsjldhme expected across the four sites. At low
levels, however, environmental factors such asentss, organic matter and increased
temperature are beneficial for autotrophic androétephic organisms (Aristi et al. 2015). As a
consequence, they could mitigate negative micropait effects as it has been conceptualized in
the subsidy-stress concept (Wagenhoff et al. 2@2IEarly, such results underscore that
traditional descriptors for periphyton are relevianteflect general alterations of the water qyalit
in streams, but not to disentangle specific impattsicropollutants from the other
environmental factors on freshwater biota and estesys.
3.3. Sensitivity to photosynthesis inhibitors ofipRytonversusthe green algR. subcapitata
Another interesting finding in our study is thasbd on photosynthesis efficiency
measurements, all upstream periphyton were sigmifig more sensitive to the passive sampler
extracts than the single alg§asubcapitatgTable 3; Fig. S2). The higher sensitivity of
periphyton was even observed at shorter exposuegidu than for the alga; i.e. 12 hours and 24
hours for periphyton anB. subcapitatarespectively. Assessment of the environmentksris
posed by micropollutants typically relies on effeoh single-species, with a few model
organisms, which are extrapolated to ecosystenng) gsifety margins. Although sensitivity of
only one algal species has been measured in teermirstudy, results indicate that micropollutant

effects could be exacerbated when assays are pedaait the community level. Along this line,
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McClellan et al. (2008) measured the sensitivitditawon of freshwater periphyton, using

photosynthesis efficiency as descriptor, and shawatleffects were not predictable from single-

species tests in which species interactions areargtidered. Clearly, considering species

interactions at the community level is an importaspect to strengthen the assessment of

micropollutant impacts in fresh waters.

4. Conclusions

PICT measurements combined with the use of extfemts passive samplers appear to be
very sensitive and efficient to assess the effectsicropollutant mixtures from WWTPs
effluents onn situ periphyton. This approach greatly increases thv@@mmental relevance
of the assessment and allows the establishmentadisality between exposure to complex
mixtures of micropollutants and community-leveleeffs.

PICT field studies can provide a diagnostic toolrtrospective risk assessment of
micropollutants from wastewater effluents. Thetegration within regulatory frameworks
to link between the ecological and chemical stafueguatic ecosystems can lead to more
ecological relevance and ecotoxicological spedifii the currently used battery of
bioindicators.

Given the robust link between the proportional &ase in tolerance and the intensity of
exposure to micropollutants, PICT can be used affant-based tool, in combination with
passive samplers, to monitor the recovery of ingzhstreams following for instance the

upgrading or the removal of the WWTPs.
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Table 1. EGp and tolerance ratios (R) for photosynthetic edingy, primary production and

secondary production for upstream (Up) and dowasiréDn) periphyton from the four sampling

sites. Higher E€ downstream than upstream means increased tolet@tive micropollutant

mixture. The x-axis of the concentration-effectvas was expressed in unitless relative dilution

factor (RDF) and therefore also thedg@alues are expressed in RDF. Values in parentleses

95% confidence intervals (n = 21). Ratiogg@as calculated for each site by dividing thes&C

Dn by the corresponding E€Up (R = 1 = no induced tolerance; R > 1 = indut@erance).

Photosynthetic Primary Secondary
efficiency production production
Steinach ECso Up 19(1.6-2.2) 31 (24 -37) 28 (14 - 42)
ECso Dn 6.5 (3.5-11.7) 101 (70 - 132) 73 (34 - 112)
R 3.5 3 2
Herisau ECso Up 1.5(0.8-2.4) 29 (23 - 36) 118 (11 - 224)
ECso Dn 6.5 (2.8 -14.5) 98 (37 - 159) 147 (115 - 178)
R 4.5 3 1
Buttisholz  EGso Up 0.5(0.3-0.8) 89 (75 - 103) 0.4 (0.2 -0.6)
ECso Dn 76 (65.5 - 88) 187 (131-242) 9(2-16)
R 152 2 22
Hochdor f ECso Up 26 (1.3-5) 8(0.4-17) 0.3 (0.01-0.6)
ECso Dn 5.7 (3-11) 47 (31 - 63) 26 (2 - 50)
R 2 6 86
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695 Table 2. Measured descriptors of upstream (Up)dawehstream (Dn) periphyton from the four sampliitgss Data are means +
696  standard deviation (n = 3). Asterisks indicate gigant differences between Up and Dn samples e sampling site according to the

697  Student's-test (* p <0.05; **p <0.01, **p < 0.001).

Steinach Herisau Buttisholz Hochdorf

Up Dn Up Dn Up Dn Up Dn
AFDW 1.56 1.32 1.20 1.46 1.78 2.05 2.55 2.39
(g cmi?) +0.55 +0.03 +0.14 +0.53 +0.61 +0.48 +0.20 +0.40
Chlorophyll-a 9.44 19.25° 453 13.93° 8.76 17.53" 6.96 10.76"
(mg g* AFDW) +230 +1.19 +1.22 +1.82 +1.37 +1.85 +0.26 +1.05
Bacterial biomass 1.04 2.03 1.95 1.62 0.96 0.73 0.85 0.64
(g g* AFDW) +0.44 +0.90 +0.79 +0.16 +0.57 +0.43 +0.38 +0.06
Quantum vyield 0.21 0.21 0.23 0.21 0.15 0.16 0.22 0.24
$) +0.01 +0.08 +0.04 +0.01 +0.07 +0.04 +0.03 +0.06
Algal Production 10.90 21.237 12.18 14.13 11.32  12.58 11.66  12.61
(ug C g AFDW day’) +091 +1.41 +243 +2098 +6.10 +7.30 +421 +7.46
Bacterial Production 2.63 6.77 8.29 17.78 2.92 3.79 12.88 3.67
(Lg C g AFDW day") +1.42 +£1.18 +1.49 +856 +0.42 +1.42 +4.20 +0.71

*

Substrate induced respiratior265.15 323.71 324.73 193.61 317.00 323.99 259.94 267.90
(Lg CQ g AFDW day’) +71.35 +2.62 +17.87 +£20.48 +68.64 *66.30 +48.85 +30.29

B-glucosidase 20.72  88.172 0.59 16.70 34.67 16.37 15.00 18.68
(umole MUF ¢ AFDW h')  +11.79 #17.06 +0.23 +9.26 +15.12 +8.35 +290 +3.38
Alkaline phosphatase 38.96 92.94 81.02  75.57 101.90 40.25 47.17  55.88
(umole MUF g AFDW h') +15.00 +27.09  +18.92 +1257 +46.01 +11.21 +7.53 +11.20
Leucine amino-peptidase  85.39  122.60 121.23 57.11 67.97 38.14 46.00 34.27

(umole AMC g* AFDW hY) +23.41 +20.94  +20.06 +9.49 +17.24 +11.48 +6.35 +12.08
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Table 3. EGp values based on photosynthetic efficiency for igash periphyton exposed to a
dilution series of the passive samplers extrachftbe corresponding site during 12 hours and for
the green alg®seudokirchneriella subcapitatxposed to the same dilution series of the extract
during 2 and 24 hours. The x-axis of the conceionagffect curves was expressed in unitless
relative dilution factor (RDF) of the passive saermxtract and therefore also thesg@lues

are expressed in RDF. Values in parentheses arecBbfitience intervals (n = 21 and 24 for

periphyton andP. subcapitatarespectively)

ECso (RDF)
Passive sampler extract Periphyton 12h P. subcapitata 2h P. subcapitata 24h
Steinach 1.9(1.6-2.2) 55.8 (52.1 - 59.8) 46.2 (43.2 53
Herisau 1.5 (0.8 - 2.4) 12.8 (12.2 - 13.4) 11.6 (11.11)2
Buttisholz 0.5(0.3-0.8) 137.8 (131.2 - 144.8)  102.2 (94170.4)
Hochdorf 26(1.3-5) 11.5(11.2-11.8) 5.6 (5.4-5.9)
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Figure captions
Fig. 1 Upstream (Up) and downstream (Dn) locatimngach of the four studied sites in
Switzerland. Values in parentheses are distanckmitetween the upstream or downstream

location and the corresponding wastewater effluent

Fig. 2. Concentrations in ng*Lof the 56 analysed organic micropollutants grotipéa four
categories (herbicides, pesticides other than bields, household chemicals and
pharmaceuticals) in the grab water samples fronregs (Up) and downstream (Dn) of the

sampling sites.

Fig. 3. Concentrations in pg'lof the 56 analysed organic micropollutants grouipésl four
categories (herbicides, pesticides other than bields, household chemicals and

pharmaceuticals) in the passive samplers extracts

Fig. 4. Principal component analysis ordinationthaf bacterial and algal structure in periphyton

(n = 3) sampled from upstream (Up) and downstreamn) [ocations of the four sampling site
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* Insitu periphyton developed tolerance to micropollutants
* Increased tolerance to micropollutants correlates to the in situ contamination

» Microbial restructuring reflects selection of tolerant species to micropollutants





