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abstract: Identifying the selective forces that initiate ecological
speciation is a major challenge in evolutionary biology. Sensory drive
has been implicated in speciation in various taxa, largely based on
phenotype-environment correlations and signatures of selection in
sensory genes. Here, we present a reciprocal transplant experiment
revealing species differences in performance in alternative visual en-
vironments, consistent with speciation by divergent sensory drive.
The closely related cichlids Pundamilia pundamilia and Pundamilia
nyererei inhabit different visual environments in Lake Victoria and
show associated differences in visual system properties. Mimicking
the two light environments in the laboratory, we find a substantial
reduction in survival of both species when reared in the other spe-
cies’ visual environment. This implies that the observed differences
in Pundamilia color vision are indeed adaptive and substantiates
the implicit assumption in sensory drive speciation models that di-
vergent environmental selection is strong enough to drive divergence
in sensory properties.

Keywords: mortality, visual adaptation, experiment, fitness, recipro-
cal transplant, Lake Victoria, Pundamilia.

Introduction

According to ecological speciation theory, divergent adap-
tation to alternative ecological opportunities can initiate
reproductive isolation between diverging populations and,
eventually, speciation (Endler 1977; Schluter 2000; Nosil
2012). Both the initiation and persistence of divergent eco-
types require that each has a fitness advantage over the
other in their own niche. This fitness advantage is reflected
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in the nonrandom distribution of these ecotypes (or trait
values) across (micro)habitats. Perhaps the strongest evi-
dence for divergent adaptation comes from reciprocal trans-
plant experiments, in which ecotypes or incipient species
are shown to suffer reduced fitness in each other’s environ-
ment. Such experiments have shown that adaptive diver-
gence can happen fast and at small spatial scales (e.g., Schlu-
ter 1995; Bongaerts et al. 2011; Westley et al. 2013; Moser
et al. 2016; Soudi et al. 2016).
However, reduced fitness in the nonnative niche, as ob-

served in nature or in reciprocal transplant experiments,
can be caused by various selective forces acting simulta-
neously. Ecological niches are multidimensional: habitats
can differ in spatial location, climatic conditions, food re-
sources, predator and parasite communities, and sensory
conditions (Maan and Seehausen 2011). The importance
of this multidimensionality of selection in the different
stages of speciation, relative to the contribution of strong se-
lection along a single axis of differentiation, remains an
open question in speciation biology (Nosil et al. 2009; See-
hausen et al. 2014).
Experimental manipulation of selective agents can be

instrumental in identifying the ecological cause of diver-
gence. Here, we present a reciprocal transplant experiment
in cichlid fish, in which manipulation of a single environ-
mental variable, the visual environment, causes substantial
fitness effects.
Several recent studies have reported evidence for a role

of sensory drive in speciation: the idea that divergent sen-
sory adaptation to different sensory environments con-
tributes to, or even initiates, the evolution of reproductive
isolation between diverging populations (Endler 1992;
Boughman 2002). As sensory perception is critical to both
survival and reproduction, sensory systems must adapt to
a multitude of sensory challenges associated with naviga-
tion, detecting food, avoiding enemies, and evaluating
potential mates—generating a large diversity in sensory
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Fitness Effects of Sensory Divergence 79
abilities across the animal kingdom. The most convincing
evidence for divergent sensory drive comes from studies in
fish, probably because aquatic environments provide pro-
nounced heterogeneity in visual conditions (e.g., Boughman
2001; Fuller et al. 2005; Seehausen et al. 2008; Kekalainen
et al. 2010; Morrongiello et al. 2010; Chang et al. 2015).

Cichlid fish form one of the most species-rich families
of vertebrates, with more than 2,000 species inhabiting
tropical rivers and lakes (Kocher 2004). The haplochro-
mine lineage, in particular, underwent multiple adaptive
radiations in African lakes, constituting an exceptionally
rewarding model system for speciation research (Salzbur-
ger et al. 2005; Seehausen 2006; Wagner et al. 2012). Spe-
ciation in haplochromines is associated with divergence
in water depth habitat, sensory perception, sexual com-
munication traits, feeding morphology, and behavior (See-
hausen 2015). Currently, evidence is accumulating that vi-
sual adaptation to different underwater light conditions,
mediated by water depth and turbidity, plays a key role
in haplochromine speciation: the lineage shows extensive
variation in color vision properties, which is associated
with variation in visual habitat and sexual signaling (See-
hausen et al. 1997; Carleton et al. 2005; Spady et al. 2005;
Hofmann et al. 2009; Miyagi et al. 2012). In Lake Victoria
Pundamilia cichlids, species divergence in visual pigment
genes precedes the accumulation of differentiation at neu-
tral loci, suggesting that divergent visual adaptation may be
leading the speciation process (Seehausen et al. 2008). Here,
we investigate experimentally the fitness consequences of
divergent visual adaptation in two Pundamilia sister spe-
cies, by measuring survival in two distinct light environ-
ments. We also include interspecific hybrids, predicting in-
termediate responses and possibly lower fitness.
Methods

Fish

Pundamilia pundamilia and Pundamilia nyererei are two
closely related species that co-occur at several locations in
Lake Victoria (Seehausen 2009). At all of these, P. nyererei
breeds in deeper waters than P. pundamilia. Due to the
rapid absorbance of short wavelengths (violet, blue) in Lake
Victoria, the deeper habitat of P. nyererei has a red-shifted,
yellowish light spectrum, while P. pundamilia experiences a
broad daylight spectrum (Lythgoe 1984; Seehausen et al.
1997; Maan et al. 2006). This environmental difference
coincides with species differences in visual pigment gene
sequences and expression (Carleton et al. 2005; Seehausen
et al. 2008), as well as behavioral responses to blue and
red light (Maan et al. 2006). Male nuptial coloration and
female mate preferences have diverged in parallel: P. pun-
damilia females prefer the blue coloration of P. pundamilia
This content downloaded from 152.
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males, while P. nyererei females prefer the yellow and red
coloration of P. nyerereimales (Seehausen and Van Alphen
1998; Selz et al. 2014), indicating that divergent visual ad-
aptation may directly or indirectly affect sexual communi-
cation and reproductive isolation (Maan and Seehausen
2010).
Fish were collected in 2010 at Python Islands in the

Mwanza Gulf (Lake Victoria, 22.6237, 32.8567). In this
population, P. pundamilia and P. nyererei are considered
incipient species that occasionally hybridize (Seehausen
2009). Fish were collected by angling (0.5–1.5 m water
depth) and by gill nets (2–7 m; P. nyererei only).
Housing and Breeding

Wild-caught fish were identified with PIT tags (Passive In-
tegrated Transponder, Biomark, ID, and Dorset Identifi-
cation, Aalten, Netherlands). A total of 31 parental indi-
viduals generated 23 F1 families, with several individuals
spawning more than once (table A1; tables A1, A2 are
available online). The experiment started in the aquarium
facility of the Eawag Center for Ecology, Evolution and
Biogeochemistry in Kastanienbaum (Switzerland), where
the majority of clutches were produced (n p 16; December
2010–September 2011). Due to the relocation of one of the
authors (M. E. Maan), fish were moved to the University of
Groningen (Netherlands) in September 2011, where seven
more clutches were born. Survival rates did not differ be-
tween locations (P 1 :7 for both 6-month and 12-month
survival), but to account for potential effects, we included
proportion of time spent in Switzerland as a fixed effect in
all statistical models.
Parental fish were kept in a recirculation aquarium facil-

ity (24:57517C) illuminated with fluorescent tube lights
(12L∶12D). Fish were fed twice a day. Adult fish were fed
6 days a week, with a mixture of commercial pellets and
flakes, as well as defrosted frozen food (containing krill,
shrimp, peas, spirulina, black mosquito larvae, and Artemia).
Females were housed in single-species groups, together with
a single male of either species. As all haplochromines, Pun-
damilia are female mouthbrooders: after spawning, females
keep the offspring in their mouths for about 3 weeks. Here,
to minimize exposure to fluorescent light, offspring were re-
moved from the mother’s mouth at approximately 6 days af-
ter spawning (mean5 SE: 6:35 0:5 days postfertilization
[dpf]; eggs hatch at about 5–6 dpf). Clutches were then di-
vided over two rearing containers, one of which was placed
in the shallow light condition and the other in the deep light
condition (see below). Fry were released into aquaria (25–
100 L) once they reached free-swimming stage (∼3 weeks).
Fry were fed twice a day (once a day on weekends) with
commercial flake food, ground to fine powder for the first
few weeks.
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Light Conditions

Light treatments were based on the natural light environ-
ments experienced by P. pundamilia and P. nyererei at
Python Islands (fig. A1; figs. A1–A4 are available online),
measured with a BLK-C-100 spectrophotometer and an
F-600-UV-VIS-SR optical fiber with CR2 cosine receptor
(Stellar-Net, FL). For details, see the appendix, available
online. Both treatments employed halogen lights (Philips
Masterline ES, 30 W and 35 W) filtered with a green filter
(no. 243 by LEE, Andover, UK). In the shallow light condi-
tion, blue lights (Paulmann 88090 ESL Blue Spiral 15 W)
were added to compensate for the low short-wavelength ra-
diance of the halogen lights. In the deep light condition,
short-wavelength light was reduced by adding a yellow filter
(LEE no. 15). The resulting downwelling irradiance was mea-
sured with the same equipment as in the field. To verify the
resemblance between natural and laboratory light conditions
for the wavelengths that aremost relevant for the Pundamilia
visual system, we estimated the proportion of incident light
captured by the three main photopigments of Pundamilia,
for both lab and field spectra (see appendix). This showed
that in both field and laboratory conditions, the deep light
condition generates lower short-wavelength-sensitive (SWS)
and higher long-wavelength-sensitive (LWS) light capture
than the shallow light condition, with laboratory conditions
slightly exaggerating the differences in nature. We did not at-
tempt to also mimic the light intensity differences between
shallow and deep habitats, because these are much smaller
than the rapid intensity variations produced by changes in
cloud cover (11,000-fold) and unlikely to affect visual devel-
opment or performance.
Data Collection

Fish were counted at irregular intervals. This is because they
were bred for other purposes than documenting survival dif-
ferences between groups—the results reported here emerged
serendipitously from counts that were conducted for ad-
ministrative purposes only; we did not expect any differences
in survival between the groups. On average, numbers of in-
dividuals in each clutch and in each light treatment were de-
termined every 2months. Based on these counts, survival was
estimated at 6 and 12 months of age. As fish started to be-
come sexually mature (from 9 months onward), individuals
of some of the smaller clutches were housed individually be-
cause in small groups (n ! 7), aggressive interactions may
lead to the death of subdominant individuals. We did not
keep record of this, but it affected fewer than 25% of the
groups and only the final weeks of the observation period.
Moreover, this intervention was conservative with respect
to testing the hypothesis that visual system differences are
adaptive. This is because individual housing increases sur-
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vival and was implemented in the smallest groups only, thus
augmenting the survival of fish reared in mismatched light
conditions and reducing the fitness consequences of mal-
adaptation.
Analysis

All analyses were conducted in R (ver. 3.3.1; R Development
Core Team 2016). We used generalized linear mixed effects
models with binomial distribution and logit link function
(library lme4). As a dependent variable, we used the raw
counts of live and dead fish in each family, combined with
the cbind function. As fixed effects, we analyzed light treat-
ment (shallow and deep light conditions) and species (P.
pundamilia, P. nyererei, and F1 hybrids). Hybrids from the
reciprocal crosses (P. pundamiliamother and P. nyererei fa-
ther, or vice versa) were pooled into a single hybrid category
for the analysis, because they did not differ in survival (see
appendix). All models included time spent in Switzerland
as a fixed effect (see above), random effects for mother
and father identity to account for family structure, and a
random effect at the level of observation to correct for
overdispersion. Statistical significance of fixed effects (and
their interactions) was established by log-likelihood tests
on nested models; adjusted P values for the observed dif-
ferences between groups were obtained by post hoc tests
(Tukey’s honest significant difference [HSD]; library mult-
comp). Model structure is given in the appendix.
Results

Overall survival was 74:8%5 3:2% at 6 months and
51:7%5 3:3% at 12 months. There were no overall differ-
ences in survival between light treatments (deep vs. shallow;
x2
6,1 p! 1:90, P 1 :17 for both time points) or between spe-

cies (P. pundamilia, P. nyererei, or hybrid; x2
7,2 ≤ 1:43, P ≥

:49).
As illustrated in figure 1, there was a significant species#

treatment interaction effect on both 6- and 12-month sur-
vival (6 months: x2

10,2 p 6:24, P p :044; 12 months: x2
1,2 p

20:75, P ! :0001): both P. pundamilia and P. nyererei sur-
vived better in the light condition that mimicked their nat-
ural light environment. At 6 months, post hoc comparisons
between light conditions for each species separately were
not significant (Tukey’s HSD: all P 1 :1), but at 12 months,
P. pundamilia survived significantly better in the shallow
light condition (z p 3:24, P p :013), while P. nyererei sur-
vived better in the deep light condition (z p23:97, P !

:001). Hybrid survival did not differ between light condi-
tions at either time point (z 1 22:30, P 1 :18).
Hybrid survival was not different from that of either pa-

rental species in its native habitat: in deep light conditions,
hybrids and P. nyererei survived at similar rates (Tukey’s
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HSD: P 1 :5), and the same was true for hybrids and P.
pundamilia in the shallow habitat (P 1 :3). Expandedmodel
output is given in the appendix; data are deposited in the
Dryad Digital Repository: http://dx.doi.org/10.5061/dryad
.6nh3j (Maan et al. 2017).
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Discussion

Sensory adaptation has been implicated in speciation in a
variety of taxa, particularly in aquatic organisms (Bough-
man 2002). This is largely based on correlations between
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Figure 1: Survival of F1 offspring of Pundamilia pundamilia, Pundamilia nyererei, and hybrids under light conditions mimicking those in
shallow and deep water in Lake Victoria. Top six panels, proportion of surviving offspring at 6 and 12 months in the shallow condition (upper
panels) and deep condition (lower panels). Each symbol/line combination represents a family. Bottommost panels, averages across families.
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variation in visual environments and variation in fish visual
properties (e.g., Carleton et al. 2005; Fuller et al. 2005; Da-
vies et al. 2009; Hofmann et al. 2009) and signatures of se-
lection on visual pigment genes (e.g., Terai et al. 2006;
Hofmann et al. 2009, 2012; Larmuseau et al. 2010; Weadick
et al. 2012; Tezuka et al. 2014; Gaither et al. 2015; Torres-
Dowdall et al. 2015). Some of the strongest evidence comes
from populations of the Lake Victoria cichlids Pundamilia
pundamilia and Pundamilia nyererei, in which the extent of
depth segregation between these two species, causing expo-
sure to different visual environments, correlates with the
extent of divergence in visual properties, visual communi-
cation traits, and reproductive isolation (Seehausen et al.
2008). Here, we present the first experimental evidence that
these species differences in visual perception affect fitness
in alternative visual environments, a prerequisite for the
operation of divergent sensory drive.

Mimicking the two light environments in the laboratory,
and rearing both species in both of these, we found that the
survival of both P. pundamilia and P. nyererei was sub-
stantially reduced when reared in the other species’ visual en-
vironment (taking both species together: 37% at 12 months).
This finding validates the implicit assumption in sensory
drive speciation models that divergent environmental selec-
tion is strong enough to drive divergence in sensory proper-
ties and suggests that the observed differences in Pundamilia
color vision are indeed adaptive. It also implies a trade-off
between visual performance in alternative environments. In-
deed, P. pundamilia and P. nyererei carry different alleles for
the LWS visual pigment, which corresponds to a red-shifted
peak sensitivity in P. nyererei (Carleton et al. 2005; Seehausen
et al. 2008). Pundamilia nyererei also has a higher abundance
of red-sensitive cones in the retina (Carleton et al. 2005) and a
stronger behavioral sensitivity to red light (Maan et al. 2006).
Comparison of Pundamilia populations at different stages of
divergence suggests that the evolution of these differences
preceded the accumulation of neutral differentiation (See-
hausen et al. 2008), indicating that divergent visual adapta-
tion has been important during the initial stages of Pun-
damilia speciation.

The mechanism underlying the observed species# light
interaction requires further study. Possibly, fish were less
efficient at detecting and capturing food in unfavorable
light regimes. Effects of spectral conditions on foraging per-
formance have been documented in a variety of aquatic or-
ganisms (e.g., newts [Martin et al. 2016], killifish [Fuller
et al. 2010], stickleback [Rick et al. 2012], guppies [White
et al. 2005]). In addition, unfavorable light conditions can
be stressful to fish (Volpato and Barreto 2001; Migaud et al.
2007; Karakatsouli et al. 2015) and exert species-specific
effects on aggression levels (Holtby and Bothwell 2008;
Carvalho et al. 2013). Together, these factors may have
caused increased mortality. Specifically, we observed, but
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did not quantify, depensatory growth: a common phenom-
enon in fish where size differences between individuals in-
crease with time, often resulting in reduced survival of the
smaller fish (Magnuson 1962; Fernandes and Volpato 1993;
Baras and Jobling 2002). We did not document fish growth,
but we suggest that food competition and/or (social) stress
accelerated depensatory growth and mortality in the fish
that were reared in unnatural light conditions.
We did not observe light-specific mortality in hybrids.

Assuming that hybrid visual perception is intermediate
between the two parental species (Carleton et al. 2010), this
finding is consistent with the hypothesis that environment-
dependent survival is due to genetic variation in visual sys-
tem properties. It is also consistent with earlier studies on
hybrid viability (Van der Sluijs et al. 2008) and with the ob-
servation that hybrids indeed occur at Python Islands
(Seehausen et al. 2008). However, it also implies that visual
adaptation does not cause reduced hybrid fitness. This
means that the difference in light conditions between shal-
low and deep waters alone, independent of other ecological
factors not addressed here, may not generate disruptive se-
lection and thus not promote reproductive isolation be-
tween P. pundamilia and P. nyererei.
The contribution of divergent visual adaptation to Pun-

damilia speciation may be mediated by two other, not
mutually exclusive mechanisms. First, reduced foraging
success and/or increased stress in unfavorable visual con-
ditions may stimulate individuals to move toward visual
environments where they do better, resulting in adaptive
habitat matching (Edelaar et al. 2008). Assortative mating
could then emerge as an immediate by-product of depth
segregation. Second, female P. pundamilia and P. nyererei
exert species-assortative mating preferences that are me-
diated by male coloration (Seehausen and Van Alphen
1998; Selz et al. 2014). These preferences may be influenced
directly by visual adaptation: a general preference for
conspicuous males, as documented in these and other haplo-
chromine cichlids (Maan and Sefc 2013), would translate to
different color preferences when visual adaptation affects the
perceived conspicuousness of different colors (Endler 1992;
Boughman 2002; Maan et al. 2006; Seehausen et al. 2008).
Gene # environment interactions in the context of vi-

sual performance may be common in aquatic taxa. Fish vi-
sual systems have been shown to respond plastically to en-
vironmental variation (Fuller et al. 2005; Shand et al. 2008),
influencing visually guided behaviors such as foraging and
mate choice (Fuller and Noa 2010; Fuller et al. 2010). Also
in cichlids, the expression of retinal pigments and different
photoreceptors changes in response to the light conditions
during development (Van der Meer 1993; Smith et al. 2012),
but some species show stronger responses than others
(Hofmann et al. 2010). The data presented here suggest
that Pundamiliamay express limited plasticity and/or that
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the plastic response is not sufficient to compensate for the
genetically determined species differences in visual devel-
opment.

To conclude, our results indicate that selection against
phenotype-environment mismatched individuals could con-
tribute to reproductive isolation between cichlid populations
adapting to different visual conditions, thereby providing ex-
perimental support for speciation by sensory drive in Pun-
damilia. Visual pigment variation in other cichlid species
suggests that this could be a widespread phenomenon, con-
tributing to the rapid speciation in this family (Brawand
et al. 2014). Future work will be aimed at unravelling the
underlying mechanisms, to establish the causal link between
species-specific genetic variation and its environment-specific
effects on individual behavior and physiology as well as the
consequences for reproductive isolation.
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