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Abstract. The performance of urban drainage systems is typ-
ically examined using hydrological and hydrodynamic mod-
els where rainfall input is uniformly distributed, i.e., derived
from a single or very few rain gauges. When models are fed
with a single uniformly distributed rainfall realization, the re-
sponse of the urban drainage system to the rainfall variabil-
ity remains unexplored. The goal of this study was to under-
stand how climate variability and spatial rainfall variability,
jointly or individually considered, affect the response of a
calibrated hydrodynamic urban drainage model. A stochas-
tic spatially distributed rainfall generator (STREAP – Space-
Time Realizations of Areal Precipitation) was used to sim-
ulate many realizations of rainfall for a 30-year period, ac-
counting for both climate variability and spatial rainfall vari-
ability. The generated rainfall ensemble was used as input
into a calibrated hydrodynamic model (EPA SWMM – the
US EPA’s Storm Water Management Model) to simulate sur-
face runoff and channel flow in a small urban catchment
in the city of Lucerne, Switzerland. The variability of peak
flows in response to rainfall of different return periods was
evaluated at three different locations in the urban drainage
network and partitioned among its sources. The main con-
tribution to the total flow variability was found to originate
from the natural climate variability (on average over 74 %).
In addition, the relative contribution of the spatial rainfall
variability to the total flow variability was found to increase
with longer return periods. This suggests that while the use of
spatially distributed rainfall data can supply valuable infor-
mation for sewer network design (typically based on rainfall
with return periods from 5 to 15 years), there is a more pro-
nounced relevance when conducting flood risk assessments

for larger return periods. The results show the importance of
using multiple distributed rainfall realizations in urban hy-
drology studies to capture the total flow variability in the re-
sponse of the urban drainage systems to heavy rainfall events.

1 Introduction

Urban drainage systems are designed to ensure safe wastew-
ater disposal (focus: dry weather) and adequate storm wa-
ter handling (focus: wet weather). Whereas the variability of
dry weather flows is rather low and very predictable, rain-
induced flow dynamics scale over several orders of magni-
tude and require stochastic analysis due to the high rain-
fall variability. The latter is often addressed by summa-
rizing the rainfall input in the form of intensity–duration–
frequency (IDF) curves (e.g., Guo, 2006; Yazdanfar and
Sharma, 2015), which essentially relate maxima of rainfall
intensity for a given duration to their return period (Kout-
soyiannis et al., 1998). For urban drainage system design,
engineers choose return periods for which they expect the
urban drainage system to perform with a certain reliability
(e.g., an acceptable number of failures such as overflows or
flooding in a given return interval).

A common practice in evaluating the performance of ur-
ban drainage systems for different forcing situations is by
using a model with a hydrological component to simulate
the runoff at the urban catchment scale, and a hydrodynamic
component to simulate the flow in the drainage system it-
self. Rainfall is defined as the most important input required
by these models (Vaes et al., 2001). It is recommended to
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use high-resolution rainfall data in space and time as an in-
put because of the short concentration time of urban drainage
systems, and because it reduces flow prediction uncertainty.
The required spatial and temporal resolution depends on the
size of the urban catchment, characteristics of the drainage
system, and local climate. A general recommendation is to
use rainfall data at a resolution similar to (or higher than)
that produced by a typical X-band weather radar system,
i.e., minutes in time and sub-kilometers in space (see the
discussion by Berne et al., 2004; Bruni et al., 2015; Ochoa-
Rodriguez et al., 2015; Wright et al., 2014b).

Rainfall input may be given by observations of rain gauges
and weather radar; however, this constrains the analysis to
storms observed in a limited time period. On the other hand,
stochastic modeling of space–time rainfall fields allows a full
exploration of the potential impacts of space–time variability
in rainfall on the urban drainage system. The spatial rain-
fall variability is defined as the variability derived from hav-
ing multiple (stochastic) spatially distributed rainfall fields
for a given point in time. The temporal component, here re-
ferred to as climate variability, is defined as the variability
derived from having multiple (natural) climate trajectories
generating different distributions of storms and rainfall in-
tensities in time. It is also known as “internal variability” or
“stochastic climate variability” (Deser et al., 2012; Fatichi
et al., 2016; Hawkins and Sutton, 2009). The consideration
is that observed rainfall represents only one trajectory of a
given climate and producing stochastic rainfall based on ob-
served rainfall statistics results in many realizations, each one
equally probable (see for example Peleg et al., 2015).

The use of stochastic rainfall generators that account for
spatial rainfall variability and/or climate variability in ur-
ban hydrology applications is still rather new. Wright et al.
(2014a) used stochastic storm transposition to synthesize
long records of rainfall based on radar rainfall fields over
the metropolitan area of Charlotte, North Carolina (USA),
in order to estimate the discharge return periods for points
inside the urban catchment. McRobie et al. (2013) extended
the earlier Willems method (Willems, 2001) to generate spa-
tially distributed Gaussian rainfall cells based on weather
radar data for the Counters Creek catchment sewage system
in London (UK). Simoes et al. (2015) produced stochastic
urban pluvial flood hazard maps for the Cranbrook urban
catchment (UK) using the McRobie et al. (2013) rainfall gen-
erator. Gires et al. (2012, 2013) used a multifractal model
to generate space–time rainfall fields for the same storm but
with different spatial structures, to study their effect on the
simulated flow in conduits in the Cranbrook catchment. The
most recent stochastic rainfall generators that are able to pro-
duce rainfall fields at a high spatial and temporal resolution
and that may be useful for urban applications are STREAP
(Paschalis et al., 2013, 2014), HiReS-WG (Peleg and Morin,
2014), and STEPS (Foresti et al., 2016; Niemi et al., 2016).

The main objective of this paper is to investigate the rel-
ative contribution of the spatial versus climatic rainfall vari-

Figure 1. Location map of the case study catchment (bounded with
black line). The black mesh represents the 1.5 km × 1.5 km domain
(grid cell resolution of 100 m × 100 m) for which stochastic rainfall
was generated. The red lines represent the drainage system (thicker
lines per pipe diameter) and the blue circle (inner network node),
rectangle (carry-on flow) and triangle (combined sewer overflow)
symbols represent the location for which the flow analysis was con-
ducted. The combined sewer overflows (CSO structure, blue romb
symbol) are located between locations A and B.

ability for flow peaks at different locations in the drainage
network and for different return periods. We apply a new
and advanced stochastic rainfall generator to simulate rain-
fall inputs for a small urban catchment in Lucerne (Switzer-
land) and to simulate flow dynamics in the sewer system.
This work demonstrates the potential of using stochastic rain-
fall generators for urban applications and the benefits gained
compared to other methods, such as bootstrapping rainfall
events from a long rainfall series.

2 Case study

The case study is an urban catchment located near the city
center of Lucerne, Switzerland (Fig. 1). The catchment in to-
tal covers 77.0 ha, whereas 30.2 ha are connected to the com-
bined sewer network: 11.5 ha of the total area (5.3 ha imper-
vious area) are connected to location A and 30.2 ha (13.6 ha)
are connected to locations B and C. The catchment drains to-
wards Lake Lucerne, with higher gradients in the upper part
and moderate to low gradients in the lower part. The drainage
system consists of separate and combined sewers (storm wa-
ter and foul sewage share one pipe infrastructure) with a total
network length of 11.2 km; hereinafter only combined sew-
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ers are considered. Both storm water and wastewater flows
are solely driven by gravity. An overflow structure is built in
the lower part of the catchment to alleviate network capacity
excess during heavy rainfall (CSO location in Fig. 1). In this
case, the carry-on flow towards the sewage treatment plant
is hydraulically constrained (location B in Fig. 1), and ex-
cess water is spilled via a side-flow weir followed by a small
retention tank (approximate 100 m3) into Lake Lucerne (lo-
cation C in Fig. 1).

The flow rate at the outlet of the combined sewer system
(location B) was monitored for a period of 12 months from
July 2014 to June 2015. In order to reduce measurement un-
certainty, the water level and flow velocity were recorded
using two different combi-sensors with different monitor-
ing techniques (in situ Doppler-ultrasound technique, ex situ
ultrasound-radar technique) in parallel. The recording inter-
val was set to 1 and 15 min for the Doppler-ultrasound sensor
and the ultrasound-radar sensor, respectively.

3 Methods and data

A stochastic space–time rainfall generator was used to simu-
late multiple realizations of 2-D rain fields for a 30-year pe-
riod. The rainfall was generated for four distinct cases which
were defined in order to explicitly account for the climate
variability, spatial rainfall variability, and total variability of
the flow. The generated rainfall was used as an input into a
hydrodynamic model. For each of the four cases, IDF curves
were computed for the annual maxima of the mean areal rain-
fall and flow–duration–frequency (FDF) curves were com-
puted for annual flow maxima simulated at three different
network elements, representing different aspects in the as-
sessing of the performance of urban drainage systems. The
total flow variability was partitioned into the part originating
from climate variability and the additional contribution due
to spatial rainfall variability. The methods are illustrated in
Fig. 2.

3.1 Rainfall data

Rainfall data originate from two sources: a rain gauge located
about 2 km west of the case study catchment (Fig. 1) and a
C-band weather radar composite. Both devices are operated
by MeteoSwiss, the Swiss Federal Office of Meteorology and
Climatology.

The tipping bucket rain gauge records rainfall in 10 min
intervals with a precision of 0.1 mm. A 34-year record was
used in this study, covering the period 1981–2014. High-
resolution 10 min rainfall intensities were benchmarked with
hourly rainfall data (validated record provided by Me-
teoSwiss) and obvious deviations were corrected. The length
of the observed record allows an adequate estimation of the
statistical rainfall characteristics, especially regarding high
rainfall intensities of short durations and with return periods

of up to 30 years. Climatological stationarity has been as-
sumed for the observed record.

High-resolution radar rainfall data (2 km and 5 min) for
an 8-year period (2003–2010) were derived from a third-
generation weather radar system of MeteoSwiss (Gabella
et al., 2005; Germann et al., 2006). Radar grid cells were ex-
amined for substantial ground clutter or beam blockage and
errors were excluded. These data were only used for the study
of the rainfall structure over the catchment and not for the
calculation of IDF curves, as the accuracy of rainfall inten-
sity recorded by the weather radar (binned data) is not suf-
ficient to address extremes. Extreme rainfall intensity for a
1 km spatial resolution can be analyzed in Switzerland (e.g.,
Panziera et al., 2016) using the fourth-generation weather
radar system (Germann et al., 2015) or the gridded Com-
biPrecip products (Sideris et al., 2014). However, a longer
period of high-resolution rainfall from the latter mentioned
products would be required in order to properly account for
the climate variability discussed in this study.

3.2 Stochastic rainfall generator

Rainfall fields at a high spatial and temporal resolution
were generated using the STREAP model (Space-Time
Realizations of Areal Precipitation). STREAP was presented
by Paschalis et al. (2013) and used to generate rainfall over
a large rural catchment for flood investigations (Paschalis
et al., 2014) and to analyze the variability of extreme rain-
fall intensity over radar-pixel scales (Peleg et al., 2016). It
is composed of three hierarchical modules describing (i) the
storm arrival process, (ii) temporal evolution of the mean
areal intensity and fraction of wet areas during a storm, and
(iii) evolution of the space–time structure of rainfall during a
storm.

For this analysis, rainfall was generated with a spa-
tial resolution of 100 m × 100 m for a domain size of
1.5 km × 1.5 km (see the grid in Fig. 1) and a temporal reso-
lution of 10 min. For urban drainage applications 10 min can
be considered a rather coarse temporal discretization; how-
ever, we searched for consistency with the observed rainfall
record, which is only available at 10 min resolution. The spa-
tial resolution was chosen to roughly match the discretiza-
tion required for the urban sub-catchments, i.e., about two
sub-catchments per hectare, resulting in 158 individual sub-
catchments within 77 ha.

3.2.1 STREAP calibration

The calibration process of STREAP using weather radar
products was discussed in detail by Paschalis et al. (2013).
Some modifications were made to tailor STREAP to the spe-
cific case study presented here. Due to the short period of
the weather radar records (8 years), the storm arrival pro-
cess (first module) was calibrated using the rain gauge data
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Figure 2. A schematic illustration of the methods used in this study: (i) the STREAP model was used to simulate multiple realizations of
2-D rain fields based on radar and gauged data (Sect. 3.2); (ii) rainfall was generated for four distinct cases which were defined in order to
explicitly account for the climate variability, spatial rainfall variability, and total variability of the flow (3.3); (iii) the EPA SWMM model
was used to calculate the flow over the catchment (3.4); (iv) IDF and FDF curves were computed for the annual maxima of the mean areal
rainfall and flow, respectively, at three different locations (3.5); and (v) the total flow variability was partitioned (3.6).

(34 years). That allowed a better representation of the statis-
tics of storm probability of occurrence and duration.

Changes were also applied to the second module. Origi-
nally, mean areal intensity and fraction of wet area during a
storm were simulated as bi-variate auto-correlated stochas-
tic processes that also depend on storm duration. Here, due
to the small extent of the spatial domain, the wet area ratio
was assumed to be equal to zero during intra-storm periods
and assumed to be equal to one during storms; i.e., during
storms all grid cells over the catchment experience rainfall.
The mean areal intensity is simulated using an AR(1) model
which simulates a normalized quantile time series that is

later inverted using a mixed-exponential function (Furrer and
Katz, 2008; Smith and Schreiber, 1974) whose parameters
are computed using rain gauge data.

No modifications were needed for the last module. How-
ever, some model parameters (e.g., rainfall coefficient of
variation) could not be directly estimated from the weather
radar data as the spatial resolution of the radar product (2 km)
is too coarse compared to the model resolution (100 m).
Therefore the required parameters were first estimated us-
ing the weather radar data for a coarse spatial resolution and
then downscaled to higher resolution using power-law func-
tions (Fig. S1 in the Supplement) as described in Peleg et al.
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(2016). In addition, no direct measurements are available to
estimate the small-scale rainfall spatial correlation structure
for this region. The spatial structure was estimated using data
from three dense rain gauge networks (Moszkowicz, 2000;
Müller and Haberlandt, 2016; Peleg et al., 2013), recording
rainfall over small spatial distances (i.e., on the scale of 101–
102 m) and temporal scales (i.e., 5–10 min). The data are pre-
sented in Fig. S2.

3.2.2 STREAP evaluation

The evaluation of STREAP, its ability to reproduce the rain-
fall intensity over the domain (with emphasis on the high
rainfall intensity), and its performance with regard to the nat-
ural climate variability of the annual maxima in rainfall in-
tensity, are discussed below.

The ability of STREAP to reproduce the rainfall inten-
sity over the domain is shown using the inverse cumulative
distribution function for the 10 min mean areal rainfall in-
tensity (Fig. 3). Up to the 0.95 quantile, STREAP consis-
tently underestimates the rainfall intensity, but this underes-
timation is minor (maximum difference 0.052 mm h−1) and
is not expected to bias the flow in the catchment. When
we focus on the 0.95–1 quantile range which reflects the
heavy rainfall intensity, and especially on the upper 0.99–1
quantile range, which represent the extremes, STREAP per-
forms very well, with small differences between simulated
and observed values (maximum difference 1.177 mm h−1).
The maximum difference and the maximum error calculated
for the 0.9995th–1st quantile range, which covers entirely
annual maxima rainfall intensities that were observed, are
as low as 1.072 mm h−1 and 1.54 % (respectively). An ex-
ample of STREAP’s ability to simulate spatially distributed
annual maxima rainfall intensity over the catchment is given
in Fig. 4. The ability of STREAP to reproduce the natural
climate variability in relation to the annual maxima rain-
fall intensity is discussed and presented in the Supplement
(Fig. S3).

3.3 Rainfall cases classification

Four rainfall cases were defined in order to account for cli-
mate variability and spatial rainfall variability and to allow
the investigation of their effect on the urban drainage.

– Case 1: consists of one time series of rainfall derived
from the Lucerne rain gauge (observed data, 34 years
long). For this case, rainfall was not spatially dis-
tributed using STREAP but was uniformly distributed;
i.e., the same rainfall intensity was assigned to all sub-
catchments for a given time step. In this case the rain
gauge time series also represents the mean areal rain-
fall over the catchment. This is a common and critical
assumption in hydrological studies, where point rainfall
is used to represent areal rainfall (Rodriguez-Iturbe and

Figure 3. An inverse cumulative distribution function of the 10 min
mean areal rain intensity over the catchment (the 0.1–1 quantile
range is presented in a and the 0.95–1 quantile range is zoomed
in b). The blue line represents 34 years of observed data (1981–
2014) and the red line represents the median of 30 realizations of
30 years. The simulated mean 5–95 quantile range of the rainfall
intensity of the 30 realizations is also presented (shaded red).

Mejia, 1974; Peleg et al., 2016; Sivapalan and Bloschl,
1998; Svensson and Jones, 2010).

– Case 2: consists of 30 realizations of the same time se-
ries (rain gauge observations) that was used in case 1,
but spatially distributed using STREAP. Cases 1 and 2
differ in the spatial configuration of the rainfall (uni-
formly distributed vs. spatially distributed) which will
later allow one to explicitly analyze how the spatial rain-
fall variability affects the flow.

– Case 3: consists of 30 realizations of 30 years generated
by STREAP. For this case, STREAP was set to gener-
ate only the mean areal rainfall and to uniformly dis-
tribute it over the sub-catchments (similar to case 1).
Comparing the urban drainage response to the rainfall
given from cases 1 and 3 will allow us to account for the
climate variability component directly, as case 3 repre-
sents 30 alternative and equiprobable trajectories of the
rainfall series given in case 1.

– Case 4: consists of 900 realizations accounting for both
the spatial rainfall variability and the climate variability.
Each of the 30 realizations generated for case 3 were
re-generated 30 times using STREAP. The forcing has a
different spatial distribution of the rainfall over the sub-
catchments for each re-generation. This allows comput-
ing of urban drainage dynamics subjected to the total
variability.
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Figure 4. An example of STREAP’s ability to spatially distribute the annual maxima rainfall intensity over the catchment. The annual maxima
recorded by the Lucerne gauge for the year 1981 is 80.4 mm h−1 for a duration of 10 min. Without STREAP, this value is assumed to be
uniformly distributed over the domain (a). STREAP accounts for the spatial distribution of rainfall; thus, while the areal average is preserved
for each time step, some grid cells (100 m × 100 m resolution) will record higher rainfall intensity and some lower values. Examples of
the footprint of the annual maxima rainfall intensity for three random realizations of the year 1981 generated by STREAP are presented
in (b)–(d).

3.4 Hydrodynamic model

Flow simulations were conducted using the US EPA’s Storm
Water Management Model (EPA SWMM), a dynamic 1-D
model coupling rainfall–runoff processes with hydrodynamic
channel flow (Rossman, 2010). EPA SWMM was chosen
as it represents a standard open-source application in urban
drainage modeling (e.g., Hsu et al., 2000; Liong et al., 1995;
Meierdiercks et al., 2010).

EPA SWMM is composed of two modules: the sur-
face runoff (hydrological) and the in-sewer flow (hydraulic)
model. The hydrological model calculates the direct runoff
under consideration of initial precipitation losses (i.e., evapo-
ration and wetting losses) and soil infiltration (here using the
Horton method). The resulting surface runoff is then used as
input for the hydraulic model to simulate the pipe flow using
the 1-D Saint-Venant equations. The diffusive wave approx-
imation and a routing step of 10 s were applied for all simu-
lations. Surface flooding is accounted for by allowing excess
water to leave a manhole in case sewer capacity is exceeded.
Due to the lack of detailed land use and surface topography
data at meter scale it was found inadequate to further de-
fine a manhole-specific “ponding area” allowing the water to
spread at the surface around a manhole. Hence excess water
leaving the manhole is routed into a virtual sink and does not
re-enter the system even though sewer capacity is available
again.

The sewer model application is based on infrastructure
data from the municipality’s cadaster database. The model
has carefully been calibrated and validated (split-sample ap-
proach) using the above-mentioned 1-year flow data record.
Flow dynamics can be adequately reproduced throughout the
year despite the rather coarse 10 min rainfall input data res-
olution. More details on the catchment, particularly on the
urban land use characteristics, the monitoring setup, and the
model calibration procedure, are given in Tokarczyk et al.
(2015).

The runoff-generating surfaces are distributed over the en-
tire catchment. This is represented by 158 individual sub-
catchment entities with an area ranging between 0.02 and
0.84 ha. The rainfall fields generated by STREAP were in-
tersected with the sub-catchment areas and rainfall intensity
was assigned for each sub-catchment based on the weighted
sum of the intersect area (cf. Gires et al., 2012). EPA SWMM
was set up for a continuous long-term simulation of 30 and
34 years, respectively, depending on the examined rainfall
case. Unlike for the design-storm approach or the isolated
analysis of single storm events as researched in many previ-
ous studies, antecedent hydrological conditions in the catch-
ment and the drainage network are implicitly taken into ac-
count to fully address potential climatological changes, also
regarding dry spells.

3.5 Computation of IDF and FDF curves

The Generalized Extreme Value (GEV) distribution (Jenk-
inson, 1955) is commonly used in hydrological studies to
model extreme rainfall intensity (e.g., Koutsoyiannis and
Baloutsos, 2000; Marra and Morin, 2015; Marra et al., 2016)
and flows (e.g., Zaidman et al., 2003) since it covers the
Gumbel, Fréchet, and Weibull distributions (Katz et al.,
2005). IDF and FDF curves were calculated by fitting a GEV
distribution to the series of annual maxima of the mean areal
rainfall intensity and the conduit flow time series (respec-
tively). The fitting of the parametric distribution is a required
step for the partition analysis to be conducted (see next sec-
tion) as it results in a continuous estimate of the curve quan-
tiles (i.e., the return period).

IDF curves were calculated for two datasets: observed data
derived from the Lucerne rain gauge and simulated data that
were generated using STREAP. For the observed dataset, one
IDF curve was computed for the 34 years of records. For
the simulated dataset, 30 IDF curves were calculated for the
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30 stochastic realizations (of 30 years each). The curves were
calculated for a 10 min duration.

FDF curves were calculated for the simulated flow at
three locations which were chosen according to their func-
tion within the drainage network (see Fig. 1): (i) about 200 m
upstream of the combined sewer overflow (CSO) structure in
a sewer section that was previously identified as prone to pipe
surcharge (location A – inner network node); (ii) about 200 m
downstream of the CSO structure (location B – carry-on flow
to sewage treatment works); and (iii) at the CSO outlet to the
lake (location C – overflow). The number of derived FDF
curves follows the rainfall cases as described in Sect. 3.3,
i.e., 1 for the first case (34 years), 30 for the second and third
cases (30 years each), and 900 for the fourth case (30 years
each). FDF curves were calculated for a 5 min duration.

Note that no condition was imposed on the time concur-
rency of annual maxima of mean areal rainfall intensity and
conduit flow; i.e., annual peak flow can precede, overlap, or
follow the annual maxima of mean areal rainfall intensity.

3.6 Variability partitioning

The partition method used in this study follows the guidelines
suggested by Fatichi et al. (2016). We assume that there are
interactions between the two sources of variability; i.e., they
cannot be treated independently, as the spatial pattern of the
rainfall annual maxima is dependent on the extreme rainfall
intensity that is driven by a given climate trajectory. An il-
lustrative example of the partition method described in the
following is given in Fig. 5.

The climate variability, CLM, is defined as the 5–95 quan-
tile range of the flow that is calculated using the 30 spatial
uniform climate realizations simulated for case 3 (i.e., the
outcome is one flow range for a given return period). For
each of the 30 climate realizations, the spatial flow variabil-
ity, SPT, is defined as the 5–95 quantile difference of the
flow calculated using the spatially variable rainfall simulated
for case 4. The outcome is 30 different flow ranges, SPT1

RP,
SPT2

RP, . . . , SPT30
RP, one for each climate trajectory and for

a given return period, RP. The 5–95 quantile range was used
because of the different sample sizes between case 3 (30 re-
alizations) and case 4 (900 realizations). The ratio between
the climate variability, CLM, and the total variability, TOT,
for each return period can then be estimated as

ϕCLM,RP =
CLMRP

TOTRP
, (1)

where the total variability for a given return period is the
difference between the maximum and minimum spatial vari-
ability simulated per return period from all climate trajecto-
ries:

TOTRP = maxSPTRP − minSPTRP. (2)

The total variability for a given return period, TOTRP, will
always be smaller than the sum of the flow variability from

Figure 5. An example of the partition method (illustrative) for the
2-year return period (zoomed panel). Three climate trajectories are
plotted (red lines) for which the 5–95 quantile range is calculated
(ϕCLM,2, red area). For each climate trajectory, 30 spatial realiza-
tions are plotted (gray lines). The 5–95 quantile range is then cal-
culated for each of the 30 spatial realizations (SPT1

2, SPT2
2, SPT3

2,
plotted as blue arrows) and the total variability, TOT2 (blue area), is
defined by bounding the maximum and minimum flows defined by
the spatial variability (max SPT2 and min SPT2, respectively). The
partition of the climate variability, ϕCLM,2, out of the total variabil-
ity is then calculated as a simple ratio between the two.

case 4, because there is a dependency between the two
sources of uncertainty. Note that 1 − ϕCLM,RP represents the
unique contribution of spatial variability to the total variabil-
ity for a given return period; however, the total spatial vari-

ability,

N∑
i=1

SPTi
RP

N
, is larger than or equal to 1 − ϕCLM,RP (see

Fatichi et al., 2016).

4 Results and discussion

In the following, we present computed IDF (rain) and FDF
(flow) curves and discuss the contributions of individual rain-
fall variabilities to the modeled sewage flow variability at
three different locations: A – inner network node (Figs. 7
and S4), B – carry-on flow (Figs. 6 and 8), and C – combined
sewer overflow (Figs. 9 and S5). The partitioning of the flow
variability is presented for all three locations (Fig. 10).

The effect of spatial rainfall variability on the flow can
be directly estimated by examining the flow variability from
case 2 (Figs. 6c, S4c, and S5c). The effect of spatial rain-
fall variability is derived from the analysis of flow extremes
occurring in a continuous time series of 30 years. The vari-
ability in annual flow maxima is computed from the spread
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Figure 6. Rainfall and flow results for cases 1 and 2. In (a), the IDF curve computed for the mean areal rainfall over the catchment is presented.
In the right panels, FDF curves for location B are presented for uniformly distributed rainfall (b) and spatially distributed rainfall (c). The
blue line represents the IDF curve and the FDF curves computed from the observed uniformly distributed rainfall. Gray lines represent the
FDF curves computed for the realizations with spatial rainfall variability.

Figure 7. Same as Fig. 6, but for location A and cases 3 and 4.
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Figure 8. Same as Fig. 6, but for location B and cases 3 and 4.

Figure 9. Same as Fig. 6, but for location C and cases 3 and 4. The poorly fitted GEV distribution for one realization presented in (b) was
excluded from the flow variability partitioning analysis.
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Figure 10. The ratio between the climate variability and the total
flow variability for a given return period and for different locations
within the urban drainage system is represented in dark blue. The
remaining contribution is due to the addition of spatial rainfall vari-
ability (light blue).

in simulations for a given return period. This variability is
expressed as the difference between the highest and lowest
flows simulated for the 30 realizations for a given return pe-
riod. The effect of spatial rainfall variability on urban hy-
drology was researched in the past (e.g., Bruni et al., 2015;
Gires et al., 2012; Simoes et al., 2015; Willems and Berla-
mont, 2002), leading to the conclusion that this variability
should be taken into consideration when running urban hy-
drological models. Indeed, for return periods between 2 and
30 years, the peak flow variability was found to vary between
18.3 and 55.1 L s−1 at location A (Fig. S4c) and between
91.2 and 179 L s−1 at location C (Fig. S5c). At location B,
peak flow variability was found to be lower (between 2.9 and
6.2 L s−1, Fig. 6c) due to the fact that flow is hydraulically
constrained by the upstream located throttle pipe.

The effect of the climate variability over the catchment
is calculated from the 30 rainfall realizations stochastically
simulated for cases 3 and 4 (left panels in Figs. 7–9). Simi-
lar to the flow variability, the climate variability is expressed
as the difference between the highest and lowest mean areal
rainfall found for a given return period. In agreement with
Peleg et al. (2016), the climate variability was found to in-
crease with longer return periods, from 11.8 mm h−1 for the
2-year return period to 47.2 mm h−1 for the 30-year return
period.

The individual effect of the climate variability on the flow
is estimated from case 3 (Figs. 7b, 8b, and 9b). For the re-
turn periods of 2 to 30 years, the flow variability at loca-
tion C, resulting only from climate variability, was found to
be in the range 278.9–420.3 L s−1. For most of the return pe-
riods this variability more than doubles the flow variability
resulting from the spatial rainfall variability. The results for
location C suggest that the role of climate variability is con-
siderably more important than the role of spatial rainfall vari-
ability. The flow variability for the return periods 2–30 years
for locations A and B were found to be in the range of 33.3–
48.5 and 7.3–11.6 L s−1 (respectively). As for location C, the
flow variability resulting from climate variability is higher
than the flow variability resulting from the spatial rainfall
variability. However, the relative differences in variability
around the median peak flow, calculated for the 30-year re-
turn period, reveal that the differences between the individual
variabilities are much less pronounced for locations A and B
(1.7 to 3.2 % and 0.8 to 2.1 %, respectively) in comparison
to location C (3.5 to 10.7 %). These differences regarding
the absolute flow variability are expected as location B is
located downstream of a hydraulic constraint (throttle pipe
at the CSO structure); thus, flow is eventually levelled out,
while at location A runoff is drained directly from its con-
tributing sub-catchment without any buffering but still con-
strained due to surface flooding; i.e., excess flows leave the
manhole through the lid and do not contribute to the actual
peak flow.

The total flow variability is calculated using the data of
case 4 (Figs. 7c, 8c, and 9c). As expected, the total flow vari-
ability (e.g., location B: case 4, Fig. 8c) is larger than the flow
variability resulting from either the spatial rainfall variability
(case 2, Fig. 6c) or from the climate variability alone (case 3,
Fig. 8b). The partitioning of the total flow variability into its
components is presented for all three locations in Fig. 10.
Results indicate that climate variability is the dominant con-
tributor to the total variability of flow in the catchment. This
applies to peak flows analyzed at all three locations in the ur-
ban drainage system. The highest ratio between climate vari-
ability and total variability is for location B, 83 % for the
2.2-year return period, and decreases for longer return peri-
ods to 57 % for the 30-year return period. This decreasing
trend was found to be less prominent for locations A and C
but statistically significant for all three locations as supported
by a trend analysis using the Mann–Kendall test (Kendall,
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1975; Mann, 1945). For location A, the relative mean ratio
between the climate and the total variability was found to
be around 81 %. For location C, climate variability accounts
for 75 % for the 2- to 10-year return periods, decreasing to
62 % for the 30-year return period. Averaged over all three
locations and all return periods, the mean ratio between the
climate variability and the total variability is 74 %, leaving
a 26 % contribution due to the addition of spatial variability.
The results of the partitioning suggest that using traditional
methods to quantify variability in urban drainage, such as
bootstrapping, will likely result in an underestimation of the
variability (and uncertainty) as only the climate variability
will be represented. This is especially important for return
periods that are longer than 10 years. While the use of spa-
tially distributed rainfall data can supply valuable informa-
tion for sewer network design (based on rainfall with return
periods from 5 to 15 years), it will become even more im-
portant when performing flood risk assessments of extreme
events (larger return periods). A 30-year record was used in
this study, which can be regarded as the minimum period
for IDF/FDF analysis. Since uncertainties in climate statis-
tics decrease with a longer observational record (e.g., Marra
et al., 2016), the contribution of the additional spatial vari-
ability for larger return periods might be even greater than
presented here. However, a longer period of observation is
required to confirm this assertion.

The rainfall generator was used to simulate rainfall for the
weather radar subpixel scale, i.e., at a finer spatial resolution
than can be estimated using the MeteoSwiss radar. The rain-
fall data required for a complete validation of the rainfall gen-
erator for this resolution can be obtained from a dense rain
gauge network (for network examples see Muthusamy et al.,
2017; Peleg et al., 2013), but such a network is not avail-
able in the analyzed region. Four aspects are discussed in the
light of missing information for the subpixel scale (i.e., rain-
fall downscaling process): (i) the rain fields are simulated
following a lognormal distribution. We assume that the non-
zero part of the subpixel spatial rainfall distribution follows
the observed lognormal distribution that is recorded by the
weather radar for this region (as in Paschalis et al., 2014; Pe-
leg et al., 2016). A different spatial rainfall distribution will
significantly affect the results of the extreme rainfall; (ii) we
assume that occurrence and intensity statistics are equal for
each of the grid cells; i.e., no spatial correlation is applied for
the rainfall occurrence or intensity. This means that orogra-
phy, distance from the lake, and urban micro-climate effects
are not considered; (iii) we assume that the rainfall spatial
correlation structure for this region follows the average struc-
ture obtained from estimates made in dense rain gauge net-
works in Poland, Germany, and Israel (Moszkowicz, 2000;
Müller and Haberlandt, 2016; Peleg et al., 2013). The exact
impact of the spatial correlation structure at the radar sub-
pixel scale in urban drainage studies is yet to be determined;
and (iv) we assume that the power law used for the scaling
of the rainfall coefficient of variation is continuous from the

weather radar to its subpixel scale, and that it is not affected
by a scale break. Overestimation of the rainfall coefficient of
variation will affect the rainfall spatial variability and there-
fore impact the partitioning results.

No automatic calibration process exists for STREAP. The
model requires not only high-resolution rainfall data, but also
an expert user for the calibration process, as modifications
to the calibration procedure (e.g., scaling at higher spatial
resolution) are needed in order to tailor STREAP to a given
application.

The three locations analyzed in this study were deliber-
ately chosen according to their functional hierarchy within
the combined drainage system (i.e., inner network node,
carry-on flow, and overflow). By doing so, we can clearly
differentiate the effect of spatial and climatological rainfall
variability on elements depending on their function within
the network. On the other hand, previous studies showed
a tendency that conduits located upstream, not affected by
hydraulically constraining structures, are more sensitive to
rainfall spatial variability in comparison to conduits located
downstream (e.g., Gires et al., 2012). While it would be inter-
esting to further investigate flow variability due to different
spatial rainfall characteristics (e.g., the rainfall spatial corre-
lation) at various upstream locations (similar to location A),
this type of analysis would require larger drainage networks
in comparison to the one presented here. Future studies will
benefit from examining several different urban drainage sys-
tems with rainfall input from different high-resolution prod-
ucts to test the robustness of the findings.

Rainfall records were obtained from a rain gauge that is
located about 2 km west of the case study catchment. It was
chosen for three main reasons: (i) its proximity to the catch-
ment; (ii) it has a sufficiently long record (34-year) that is
adequate for statistical climatology analysis; and (iii) records
have been verified by MeteoSwiss, ensuring sufficient con-
sistency. In contrast to these advantages, the 10 min tempo-
ral resolution of the rain data requires critical consideration
when simulating the dynamics of the flow response (e.g.,
Ochoa-Rodriguez et al., 2015), particularly as the average
flow response in the investigated catchment is on the or-
der of minutes. However, we achieve a reasonable hydraulic
model performance when validating the model against flow
observations at the catchment outlet (location B), consider-
ing peak flow, time-to-peak, and flow balance (see Tokarczyk
et al., 2015). Low-flow volume errors (±5 %) and Nash–
Sutcliffe efficiencies of > 0.8 for individual events, i.e., > 0.7
for longer periods, support the fact that the flow dynamics
are reproduced adequately. Remaining peak flow errors of up
to 25 % reflect existing deficiencies stemming from multiple
sources, e.g., inadequate model structure, insufficient model
calibration, measurement errors in flow reference data, and
model input data uncertainty. Considering that the same hy-
drodynamic model has been used for all the simulations, it is
likely that the errors due to model structure and calibration do
not introduce a consistent bias to the variability partitioning.
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A complete investigation of the model hydrodynamic uncer-
tainties will provide additional insights, but it will be difficult
to constrain with the current length of available flow data.

The computational cost of running a rainfall generator
combined with an urban drainage model may constrain the
use of the proposed approach for practical applications. But
given the advances in the availability of computing capacity,
also for non-scientific institutions, such an application will
become feasible in the near future. We have used a power-
ful 20-core desktop machine (Intel Xeon CPU E5-2687W)
to run the 961 stochastic rainfall realizations with STREAP
in approximately 4 days. We estimated that the time needed
to run SWMM using the same stand-alone machine would
have been about 4 months, which is an impractically long
duration. Therefore, we have used a high-performance com-
puting (HPC) cluster with hundreds of computing nodes al-
lowing SWMM simulations in less than 48 h.

5 Conclusions

Output from a stochastic rainfall generator was used as input
into an urban drainage model to investigate the effect of spa-
tial rainfall variability and climate variability on peak flows
in an urban drainage system located in central Switzerland.
We found that the climate variability is the main contributor
(74 % on average) to the total flow variability, but that the
relative contribution of the addition of spatial rainfall vari-
ability increases with return period. This implies that the use
of spatially distributed rainfall data can supply valuable in-
formation for sewer network design (based on return periods
of 5 to 15 years), but it will become even more relevant when
assessing the risk of urban flooding as a consequence of in-
tense rain events of larger return periods.

The analysis presented in this study focused on three dif-
ferent locations in the urban drainage system which reflect
different system functions. Deviations in flow quantities and
dynamics were expected and are, in fact, observed within the
catchment, depending on the corresponding location (i.e., up-
stream or downstream of the overflow structure, or the over-
flow itself). Despite this, in agreement for all three locations,
we found that the climate variability is the dominant contrib-
utor to the flow variability for all return periods.

We present a single case study, a relatively small, but typ-
ical urban catchment located in the foothills of the Swiss
Alps. We argue that the variability partitioning is likely to
be similar for most small- to medium-sized urban catch-
ments. That is to say, the climate variability will constitute
the largest contribution to the overall flow variability also
in other urban catchments, and spatial variability will gain
more importance as longer return periods are being consid-
ered. Further investigations are needed to examine the con-
tributions of the variability components in larger catchments
(potentially more prone to spatial rainfall variability) with a

more complex drainage network (potentially with more flow
attenuation) and for different climates.

Stochastic spatially distributed rainfall generators should
become an integral part of the urban hydrologist toolbox, par-
ticularly when estimating hazards of urban flooding. How-
ever, these models are still not commonly used by planning
engineers for designing and evaluating urban drainage sys-
tems. We identify four main aspects that contribute to the
reluctant acceptance in the field of urban drainage.

– High-resolution rainfall data are required (from a
weather radar system or from a dense rain gauge net-
work) as well as an expert user for the calibration pro-
cess. Setting up an automatic calibration process is an
unrealistic option due to the spatio-temporal differences
between weather radar systems and the need to tailor the
rainfall generator to specific locations.

– The high computational cost of running a rainfall gen-
erator combined with an urban drainage model may
be prohibitive for common applications. Today the re-
sources required for an efficient computation (e.g., HPC
cluster) are often not available.

– The struggle to overcome old engineering paradigms to-
wards accepting variability ranges as useful information
for design and performance assessment.

– The difficulty for rainfall generator modelers in trans-
parently conveying the modeling chain, its results, and
uncertainties.

These aspects should be addressed in future applications of
stochastic rainfall generators in order to make them more ac-
cessible to the urban drainage community.

6 Data availability

Rainfall data (from a rain gauge and a C-band weather radar
composite) was provided by MeteoSwiss, the Swiss Fed-
eral Office of Meteorology and Climatology. Data associated
with the drainage flow (infrastructure and land use data) were
provided by the municipality for exclusive use in this study.
Measured flow data were collected by the authors and are
published in a previous study (Tokarczyk et al., 2015).
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