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Abstract 25 

Ozonation of secondary wastewater effluents can reduce the discharge of micropollutants by transform-26 

ing their chemical structures. Therefore, a better understanding of the formation of transformation prod-27 

ucts during ozonation is important. In this study, a computer-based prediction platform for kinetics and 28 

mechanisms of the reactions of ozone with organic compounds was developed to enable in silico predic-29 

tions of transformation products. With the developed prediction platform, reaction kinetics expressed as 30 

second-order rate constants for the reactions of ozone with selected organic compounds (kO3, M-1s-1) can 31 

be predicted based on an adapted kO3 prediction model from a previous study  (Lee et al., 20151) (average 32 

model error of about a factor of 6 for 14 compound classes with 284 model compounds). Ozone reaction 33 

mechanisms reported in literature have been reviewed and, using chemoinformatics tools, encoded into 34 

about 340 individual reaction rules that can be generally applied to predict transformation products of 35 

micropollutants. Predictions for kO3 and/or transformation products were overall consistent with experi-36 

mental data for three micropollutants used as validation compounds (e.g., carbamazepine, tramamol, and 37 

triclosan). However, limitations of the current kO3 prediction platform were also identified: ambiguous 38 

assignment of the n-th highest occupied molecular orbital energy (EHOMO-n) to the reactive sites, potential 39 

errors associated with the use of a gas-phase geometry, poor kO3 prediction for certain compounds (ce-40 

tirizine). Therefore, the current prediction tool should not be considered as a substitute for experimental 41 

studies and experimental data are still required in the future to obtain a more robust prediction model. 42 

Nonetheless, the developed prediction platform, made available as a stand-alone graphical user interface 43 

(GUI) application, will to provide useful information about aqueous ozone chemistry to various groups 44 

of end users such as environmental chemists, engineers, or toxicologists. 45 

 46 

47 
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Introduction 48 

Ozonation, which has been used for drinking water disinfection since the early 20th century,2 has recently 49 

been considered as a viable tertiary treatment process for mitigating the release of various micropollu-50 

tants (e.g., pharmaceuticals, personal care products, pesticides, etc.) from secondary wastewater efflu-51 

ents.2–6 However, as ozone mainly transforms the chemical structure of a micropollutant rather than min-52 

eralizing it, the formation of transformation products and their potential biological effects has remained a 53 

concern.2,7–11 Therefore, numerous studies employing various in vitro and in vivo bioassays to assess the 54 

water quality after ozonation have been carried out.11–20 The findings generally support the beneficial 55 

effects of ozonation, which was demonstrated both for individual compounds with exposure-based as-56 

says11–15 and for ozonated wastewaters through effect-based assays.16–20 It is noteworthy, however, that in 57 

certain wastewaters elevated biological effects were observed after ozonation, which were later reduced 58 

in a subsequent biological treatment step.21–23 The identification of ozone transformation products is im-59 

portant for the empirical or theoretical assessment of their toxicity and biodegradability. However, con-60 

sidering the ever increasing number of chemicals detected in natural and technical aquatic systems, an 61 

empirical elucidation of the transformation products for all relevant micropollutants is a formidable task 62 

to be achieved. 63 

Over the last decades, knowledge on aqueous ozone chemistry regarding reaction kinetics and mecha-64 

nisms for organic compounds has greatly advanced.2,24,25 Several hundred second-order rate constants 65 

(kO3) for the reactions of ozone with organic compounds were experimentally determined. Various clas-66 

ses of compounds such as aromatic compounds, olefins, amines, and organosulfur compounds were in-67 

vestigated. The range of kO3 spans over >11 orders of magnitude from <10-2 M-1s-1 – 109 M-1s-1.2 With 68 

these experimental kO3 values as a basis, several kO3 prediction tools such as a quantitative structure-69 

activity relationship (QSAR) model26 and a molecular orbital energy-based quantum chemical model1 70 

have been developed. Moreover, for numerous organic substances, reaction mechanisms were proposed 71 

based on the identified intermediates and final products.2 Common intermediates and transformation 72 

products were often reported for differing organic compounds with similar ozone-reacting moieties: 73 

Criegee products for olefins (e.g., cephalexin,11 progesterone27), hydroxylation and ring cleavage for 74 
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aromatic ring-containing compounds (e.g., phenol,28,29 bisphenol A,30 and methoxylated benzenes31) and 75 

N-oxide formation and N-dealkylation for tertiary amino group-containing compounds (e.g., tramadol32 76 

and clarithromycin33), or hydroxylamine formation for secondary amines (e.g., propranolol,34 77 

piperidine,35 and morpholine35), respectively. Therefore, it seems possible to deduce chemical structures 78 

of ozone transformation products of hitherto uninvestigated compounds if a reference study is available. 79 

In the present study, a computer-based prediction platform for kinetics and pathways for reactions of 80 

organic compounds with ozone in aqueous solution was developed based on available kinetic and mech-81 

anistic information for aqueous ozone reactions. It largely consists of two prediction modes: (i) reactivity 82 

(kO3) prediction and (ii) pathway prediction. In (i), kO3-values for chemical moieties of a query compound 83 

potentially reacting with ozone are provided. Either kO3 is predicted by a prediction protocol that has 84 

been adapted from a previously developed quantum chemical model1 or an experimental kO3 of a refer-85 

ence compound that is structurally similar to the chemical moiety of interest is suggested as an estimate 86 

for the kO3 value. In (ii), ozone reaction pathways proposed in the relevant peer-reviewed literature have 87 

been generalized into transformation rules to predict potential reaction pathways and transformation 88 

products. A detailed description of the development of the prediction platform is given and its application 89 

for some examples is demonstrated. 90 

Materials and methods 91 

Chemoinformatics and quantum chemical computation tools 92 

Various applications of the MarvinBeans/JChem package (Linux version 16.2.29.0, ChemAxon)36 in 93 

Java have been used as follows: Marvin for drawing input molecules, converting them into SMILES 94 

(simplified molecular-input line-entry system)37 strings, and visualizing molecular structures, the pKa 95 

calculator plugin for generating acid-base species, predicting acid dissociation constants, and producing a 96 

species distribution as a function of pH, and Conformer plugin and Reactor for generating the 3D struc-97 

ture of a molecular structure from a SMILES string for further quantum chemical computations and for 98 

enumerating reaction pathways, respectively. For quantum chemical computations, ORCA38 was used for 99 

semi-empirical and ab initio quantum chemical computations. Natural bond orbital (NBO) analysis was 100 
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performed by the NBO program 6.0.39 Molden 5.440 was used for a graphical representation of chemical 101 

structures and molecular orbitals.  102 

Development of a computer-based prediction platform 103 

A computer-based prediction platform for ozone reactions was developed based on the workflow given 104 

in Fig. 1. To initiate a prediction, a query compound has to be submitted. A query compound is limited to 105 

organic compounds comprising of carbon and atoms such as hydrogen, nitrogen, oxygen, fluorine, phos-106 

phorus, sulfur, chlorine, bromine, and iodine. With the submission of a query compound, a user can 107 

choose between two prediction modes: (i) direct prediction and (ii) pH-dependent prediction. In (i) the 108 

prediction is performed exclusively for the species specified as a chemical structure by the user, while in 109 

(ii) a comprehensive pH-dependent prediction for a query compound undergoing acid-base speciation is 110 

performed. 111 

For a direct prediction, a query compound is subject to (a) a reactive site search (Fig. 1), which detects 112 

chemical moieties in the query compound potentially reacting with ozone and presents them to the user. 113 

In a further step, the user can choose between two prediction modes, i.e., either (b) rate constant (kO3) 114 

prediction or (c) pathway enumeration. In (b) kO3 is predicted for the identified reactive sites, while in (c) 115 

the reaction pathways for the reactive site selected by the user is enumerated, respectively. More infor-116 

mation on the reactive site search and the two prediction modes is given below. Both (b) rate constant 117 

(kO3) prediction and (c) pathway enumeration can be operated independently or in combination. In the 118 

latter case, (b) precedes (c) because rate constant (kO3) prediction provides information as to which reac-119 

tive site dominantly reacts with ozone based on the predicted kO3 values for the individual sites, and this 120 

is decisive for (c) pathway enumeration. For a pH-dependent prediction, (a) reactive site search and (d) 121 

pH-dependent rate constant prediction are comprehensively carried out for all the relevant acid-base 122 

species of the query compound for a specific pH or a pH range (see below for details). The pH-dependent 123 

prediction outputs provide information on the extent of the contribution of individual acid-base species to 124 

the overall reactivity at a certain pH. Based on the respective contributions of the individual species, the 125 

user can export the species of interest ((e) species selection) to the direct prediction train for further pre-126 
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dictions (arrow going from (e) to (a) in Fig. 1). Note that (a) and (b) had already been executed for the 127 

exported species from the pH-dependent prediction. Therefore, no additional calculations for (a) and (b) 128 

are necessary. Later generation oxidation products can be predicted by feeding back the predicted trans-129 

formation products as query compounds.  130 

Reactive site search. A reactive site is a chemical moiety potentially reactive with ozone, for which a 131 

prediction can be made. The entire list of reactive sites currently defined (48 sites in total for five com-132 

pound groups) is presented in the first column in Table S1† (see Fig. S1† for their chemical structures). 133 

The naming convention for the reactive sites in Table S1† has been proposed not only as an identification 134 

of the chemical moiety transformed, but also considering their appropriate/convenient assignments to the 135 

subsequent prediction models. As shown in Table S1†, individual reactive sites are coupled with the 136 

corresponding kO3 prediction model group and reaction pathway group in the 3rd column and the 4th col-137 

umn, respectively. Details of definitions for individual reactive sites and their assignments are presented 138 

in Text S1†. A SMARTS (SMiles ARbitrary Target Specification)41 string is used for identifying sub-139 

structural patterns (i.e., reactive sites) in a query compound. Two differing sets of chemical compounds, 140 

~300 compounds used to develop kO3 prediction models in this study and ~ 500 environmentally relevant 141 

micropollutants (374 from Schymanski et al., 201442) used as in-house target analytes in the Department 142 

of Environmental Chemistry, Eawag (Switzerland), have been selected to train the reactive site search 143 

module. It has been manually checked that reactive sites for all the compounds are assigned as intended 144 

(data not shown).  145 

Rate constant prediction. kO3 for a reactive site denoted as ‘prediction’ in the 2nd column in Table S1† is 146 

to be predicted by the corresponding quantum chemical models (3rd column in Table S1†) adapted from 147 

the originally proposed model.1 For a reactive site with no kO3 prediction model assigned, either an em-148 

pirical kO3 estimate (2nd column in Table S1† and Table S2† for a detailed derivation) is used when there 149 

is a reference value available (e.g., 200 M-1s-1 for ethynyl group determined for 1-ethinyl-1-150 

cyclohexanol10), or kO3 is considered unknown (denoted as n.a. in 2nd column in Table S1†) when no 151 

empirical information is available either (e.g., thiophenol). As shown in Table S2†, an experimental kO3 152 

for a reference compound (or an average kO3 when multiple reference compounds were used) was used as 153 
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a kO3 estimate for such reactive sites without kO3 prediction model. Therefore, these kO3 estimates may 154 

bear a large uncertainty because they do not take into account the substituent effects for derivatives of the 155 

reference structure. As mentioned above, ‘prediction’ in the 2nd column in Table S1† indicates that quan-156 

tum chemical computations will be conducted to predict kO3 for the reactive site. This is achieved by 157 

applying the corresponding prediction model with the associated orbital energy (3rd column in Table S1†) 158 

following the workflow shown in Fig. S4†. A kO3 prediction consists of a ‘speciation analysis’ followed 159 

by a ‘quantum chemical computation’. Briefly, a speciation analysis is for a query compound undergoing 160 

acid-base speciation. The user can decide to conduct it for a specific pH or the pH range 0-14. Com-161 

pound-specific speciation parameters such as dissociation constants (pKa) and a tautomeric fraction (f), if 162 

relevant, can be either predicted on the fly or provided by the user. Based on this, a species distribution 163 

between pH 0 and 14 for the query compound is derived. f indicates the fraction of individual tautomers 164 

(i.e., species with the same net charge). A more detailed explanation of the species analysis is given in 165 

Text S2†.  166 

Adopting to a previously developed kO3 prediction model based on molecular orbitals,1 kO3 predictions 167 

for reactive sites were performed by quantum chemical computations deriving orbital energies (e.g., n-th 168 

highest occupied molecular orbital energy (EHOMO-n) or natural bond orbital energy (ENBO)) corresponding 169 

to the reactive site. The obtained orbital energies (EHOMO-n and/or ENBO) are then used in a linear predic-170 

tion model to predict kO3 for a reactive site. The computation protocol denoted as ‘HF/3-21G//MMFF94’, 171 

which was adapted from the original method in a previous study,1 has been proposed to be universally 172 

applicable to all the compound groups in this study. HF/3-21G//MMFF94 implies that an orbital energy 173 

is derived from a single point calculation with the ab initio HF method using the Pople 3-21G basis set43–174 

47 for a geometry obtained using the molecular mechanics MMFF94 method.48–52 The HF method was 175 

chosen over the DFT-B3LYP method because it has previously been shown to perform comparable to the 176 

B3LYP method. Furthermore, the HOMO (n=0) rather than the lower HOMO-n was consistently found 177 

to be most appropriate for the kO3 predictions with the HF method, rendering it a more straightforward 178 

application.1 This protocol provides a similar prediction performance as the original model1 while being 179 

much less computationally expensive. To this end, more information is provided in the ESI for the meth-180 
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odology for development of the kO3 prediction model (Text S3†), the evaluation of the kO3 prediction 181 

models with different computational methods (Text S4†), the detailed description and the computation 182 

costs of the computational methods chosen in this study for kO3 predictions (Text S5†), the hierarchy for 183 

the assignment of ambivalent aromatic compounds (Text S6†), and the assignment of EHOMO-n-values (n 184 

= 1,2,3, ∙∙∙ indicating the occupied molecular orbital, n levels lower than EHOMO where n=0) to the corre-185 

sponding reactive sites (Text S7†). Combining both the predicted kO3 and the speciation information for a 186 

query compound, kO3-values corresponding to a reactive site at a specific pH (or as a function of pH) can 187 

be predicted. A derivation of different types of predicted kO3 values such as (apparent) site-specific or 188 

species-specific kO3 values and their correspondence to experimentally measured kO3-values is described 189 

in detail in Text S8†. 190 

Pathway enumeration. Ozone reaction pathways proposed in peer-reviewed research articles have been 191 

comprehensively reviewed and compiled. The selected reaction pathways are discussed in detail in Text 192 

S9†. Using Reactor of the JChem package (Chemaxon), all the selected reaction pathways (Schemes S1-193 

S17†) were segmented into individual unit reactions encoded as reaction rule files. Series of unit reaction 194 

rules have then been organized into pre-defined tree-like patterns to reproduce the structure of the refer-195 

ence pathways from literature. For instance, the reaction rule tree for phenols (Schemes S1-S3†) is 196 

shown in Fig. 2. It consists of three major branches, namely, “ortho”, “para”, and “radical”. In Fig. 2, the 197 

sequence of reactions for the ortho position of phenols is shown, based on which the reaction rules were 198 

defined. The ortho branch is initiated with a reaction rule ‘otapho01’. When a query compound contains 199 

a phenol group, the rule ‘otapho01’ is triggered to produce an ozone adduct zwitterion at the ortho posi-200 

tion. Although only the neutral form of phenol is shown in Fig. 2 for simplicity, the reaction rules were 201 

encoded to be triggered for all phenol- and phenolate-containing compounds, respectively. The system 202 

continues to trigger subsequent reaction rules with the previous product until there is no match found. 203 

The ‘post-Criegee mechanism’ mentioned in Fig. 2 is the pathways defined for the olefin group in 204 

Scheme S11† and is also applied to the resulting products formed from phenolic compounds via reac-205 

tions (7)-(10) or (12)-(14) (Fig. 2). Criegee mechanism is discussed in more detail in Text S9†. To date, 206 

about 340 unit reaction rules have been defined, based on the reaction pathways in Schemes S1-S17†. 207 
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Note that due to the lack of information, regioselectivity and stereoselectivity were generally not consid-208 

ered in this study except for a few prominent cases (e.g., para- and ortho-positions of phenol or aniline 209 

are only considered for the reaction with ozone in Schemes S1, S2, S4, and S5†). 210 

 211 

Results and discussion 212 

A standalone graphical user interface (GUI) has been developed for the prediction platform. Demonstra-213 

tions for different prediction modes, namely, direct kO3 prediction, pH-dependent kO3 prediction, and 214 

pathway enumeration, are presented below for selected micropollutants. 215 

Rate constant (kO3) prediction 216 

Direct kO3 prediction. The main window of the developed prediction platform is shown in Fig. 3. In the 217 

left panel named ‘Input’, the chemical structure for a query compound can be manually drawn on a can-218 

vas or be imported as a 1D SMILES string. Carbamazepine is displayed as an example. The user can then 219 

choose between direct prediction (A) and pH-dependent prediction (B) (Fig. 3). Direct prediction per-220 

forms a reactive site search and displays the results on the right panel. For carbamazepine, two benzene 221 

rings and one olefin group were detected as reactive sites. Note that none of the two nitrogens in carbam-222 

azepine has been detected since amide nitrogens have a very low ozone reactivity2 (see Text S1† for de-223 

tails). In the right panel, the user can choose to predict kO3 (C), reaction pathways (D), or transformation 224 

products (E). For kO3 prediction, no selection of the reactive site is necessary because relevant orbital 225 

energies are obtained all together from a single quantum chemical computation for the entire structure. In 226 

contrast, one needs to select a reactive site for pathway or product prediction as the reaction rules are 227 

applied to a specific reactive site (see below for more details). 228 

Upon choosing ‘Predict kO3’, the quantum chemical computations are carried out following the work-229 

flow shown in Fig. S4† without speciation analysis and the predicted kO3-values are displayed in the third 230 

column ([kO3 /M/s]) after the computation has been finished. Together with the predicted kO3, kO3 esti-231 

mates are also presented for the assigned reactive sites. While a kO3 of 4.5×104 M-1s-1 was predicted for 232 
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the olefin, a kO3 of 3.1×102 M-1s-1 was reported for both benzene rings (see below for further discussion 233 

about the EHOMO-n assignment for predicting kO3 for the benzene rings). The predicted kO3-values indicate 234 

that the olefin moiety is the main site for ozone attack. Indeed, it was reported that the main oxidation 235 

products of carbamazepine resulted from an ozone attack at the olefin.8 Based on Eq. S1† in Text S8†, 236 

the species-specific kO3 is calculated as 4.6×104 M-1s-1 (i.e., 4.5×104+3.1×102+3.1×102), which is lower 237 

than the experimental kO3 (~ 3×105 M-1s-1,53) by a factor of 6.5. Compared to a mean unsigned error 238 

(MUE) of 0.57 for log kO3 (corresponding to a factor of 100.57=3.7) for the general kO3 prediction model 239 

for olefins (Table S3†), the prediction for carbamazepine is rather at the bad end of the model predictions.  240 

pH-dependent kO3 prediction. Carbamazepine has no functional group undergoing acid-base speciation in 241 

the environmentally relevant pH-range. Thus, its reactivity with ozone is barely influenced by pH. How-242 

ever, there are numerous organic compounds with changing acid-base speciations in the environmentally 243 

relevant pH range. This may significantly modify their reactivity, eventually yielding differing transfor-244 

mation products. Therefore, a pH-dependent kO3 prediction has been implemented in the prediction plat-245 

form. Upon selecting pH-dependent prediction (B) for a query compound (e.g., tramadol) in the main 246 

window, a new window pops up (Fig. 4). This window contains four panels, and to the right of them 247 

control tables are shown. The upper-left pKa panel (F) shows the moieties undergoing acid-base specia-248 

tion for which the predicted pKa-values are presented in the pKa table (J). The bottom-left panel (G) 249 

shows the acid-base microspecies for the query compound and relevant information is shown in the mi-250 

crospecies table (K) with the tautomeric fraction (f) in the last column. Both pKa and f can be manually 251 

replaced if empirical or theoretical values with a better accuracy are available. By selecting ‘Plot species 252 

distribution’, a species distribution (H) for the query compound is generated based on the given pKa- and 253 

f-values. The middle-bottom panel (I) created by selecting ‘Calculate and Plot’ is a plot for apparent site-254 

specific kO3 (kO3,site(j)-app(pH) in Eq. S2†) for individual reactive sites for a user-defined pH range in Table 255 

(L). Apparent species-specific kO3 (kO3,species(i)-app(pH) in Eq. S3†) for all microspecies can be calculated at a 256 

user-defined pH in panel (M) by selecting ‘Calculate’. In the last column, the % contribution of 257 

kO3,species(i)-app(pH) for individual microspecies (i) to the overall apparent kO3 at the chosen pH is given. Up-258 

on selecting a microspecies and clicking ‘Selection to Main Window’, the selected microspecies is ex-259 
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ported to the main window where further kO3 predictions and pathway predictions for the forwarded mi-260 

crospecies can be implemented.  261 

As shown in Figs. 5a and b, good agreements were obtained between the predicted overall apparent kO3 262 

(kO3,app) and the experimental kO3,app for tramadol within a factor of 1.2 – 5.8 and for triclosan within a 263 

factor of 1.3– 4.0, respectively. For tramadol, the predicted dominant sites for the reactions with ozone 264 

are the tertiary amine above and the benzene ring below pH 4.4, respectively. This is consistent with the 265 

experimental data, which shows the appearance of a plateau at pH < 5 (Fig. 5a). For triclosan, it was 266 

predicted that the ozone-phenol reaction would dominate over the whole pH range (Fig 5b). 267 

Interestingly, the predicted kO3 (red dashed lines in Figs 5a and b) for the aromatic ring of tramadol and 268 

the dichlorobenzene ring of triclosan decreased with decreasing pH between pH 8 – 10. This effect is 269 

more significant in the case of tramadol. This is attributed to the fact that EHOMO for the respective aro-270 

matic rings is lowered upon the protonation of the amino group and the hydroxyl group, respectively. For 271 

tramadol, one more factor seems to be involved in lowering kO3: a hydrogen bond between the alcohol 272 

oxygen and the protonated amine hydrogen is predicted. The potential role of hydrogen bonds is dis-273 

cussed in detail for cetirizine in Text S10†. In brief, as the current prediction platform uses a gas-phase 274 

geometry for quantum chemical computations, a hydrogen bond present in the gas-phase geometry, 275 

which may be irrelevant in the aqueous medium under consideration here, may lead to an error in pre-276 

dicted kO3 values for certain micropollutants. However, a geometry relevant for aqueous phase has not 277 

been implemented in the current prediction system because it involves comprehensive evaluations of 278 

different approaches (e.g., the use of an aqueous-relevant conformer generator using molecular mechan-279 

ics theory, ab initio geometry optimization in aqueous phase, etc), which will be implemented in the 280 

future. 281 

In contrast to the reasonable predictions above, a poor prediction with more than two orders of magni-282 

tude difference compared to the measurements was observed for cetirizine (see Text S10† for more de-283 

tails). Despite various attempts such as the use of aqueous-phase relevant geometries and a consideration 284 

of enantiomers were made to improve the prediction, only minor improvements could be achieved. Over-285 
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all, it seems that the current prediction model performs poorly for the piperazinyl moiety of cetirizine, 286 

supported by unsubstituted piperazine (experimental kO3 = 2.6×104 M-1s-1 and predicted kO3 = 1.2×106 M-287 

1s-1). However, it is not known whether it generally fails for (un)substituted piperazinyl groups because 288 

empirical kO3 data for this class of compounds is limited.  289 

In addition, it is worthwhile mentioning two limitations of the current kO3 prediction model identified 290 

during development and testing with micropollutants, which need to be carefully taken into account if 291 

relevant cases appear. Firstly, the assignment of EHOMO-n to the corresponding reactive site can be ambig-292 

uous for certain micropollutants (e.g., carbamazepine, see Text S7† for more details). This is due to the 293 

fact that HOMO-n delocalizes not only over the site known to react with ozone but also other sites that 294 

are unreactive with ozone (Text S7†). In contrast, ENBO is straightforward to assign to the corresponding 295 

reactive sites (i.e, olefins or amines) because the NBO is predominantly localized on the reactive site of 296 

interest. To avoid undesired assignement of EHOMO-n, careful examinations of the calculated SSMOcoef (sum 297 

of squares of molecular orbital coefficients) as well as visual inspection of HOMO-n assisted by a visual-298 

ization software such as Molden54 are proposed (for details refer to Text S7†). The examination needs to 299 

be conducted manually in the current platform. Secondly, the increase of kO3 with increasing pH, which 300 

is predicted for micropollutants with reactive sites being in the vicinity of functional groups such as 301 

amines, amides, or alcohols deprotonating to an anionic form, may be inaccurate. It is because the effect 302 

of their deprotonation on the predicted kO3 has not been calibrated in the developed kO3 prediction models 303 

due to a lack of empirical kO3 values for the deprotonated species. 4-Formylaminoantipyrine is given as 304 

an example in Fig. S11b† with more details in the caption. 305 

Pathway enumeration 306 

By selecting a reactive site for the pathway prediction and choosing ‘Predict reaction pathways’ (D) in 307 

Fig. 3, a pathway enumeration is carried out. Based on the kO3 prediction described above, it was found 308 

that the olefin and the amine moieties are the dominant reactive sites with ozone at pH 7 for carbamaze-309 

pine or tramadol, respectively. The corresponding predicted pathways for carbamazepine and tramadol 310 

are presented in Figs. 6 or 7, respectively. Note that raw pathway outputs were re-arranged for an appro-311 
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priate representation in Figs. 6 and 7 with no changes in the contents. As shown in Fig. 6, carbamazepine 312 

underwent a typical Criegee mechanism (otoc001-otoc005) (Scheme S11†), giving rise to a Criegee 313 

product (P-2) following H2O2 elimination. Additionally, a partial oxidation (otop004 and otop005) giving 314 

rise to the product (P-1) has also been proposed (see Text S9†). Pathways with dashed arrows are consid-315 

ered less likely, based on the reference information and authors’ judgment. Prior to H2O2 elimination, a 316 

Bayer-Villiger type reaction (otpost001-otpost002) may occur to form an ester (P-4) (Text S9† and 317 

Scheme S17† for details), which is of minor importance (dashed arrows). Upon an intramolecular reac-318 

tion (otpost004-otpost006), the Criegee product (P-2) transforms into P-3, 1-(2-benzaldehyde)-4-hydro-319 

(1H,3H)-quinazoline-2-one (BQM), which was experimentally found to be the major oxidation product 320 

of carbamazepine during ozonation.8 Note that the predicted BQM from ozonation of carbamazepine is 321 

not an external validation but only a confirmation for the correct definition of the reaction rules because 322 

the intramolecular reactions (otpost004-otpost006) were defined based on the reference study for car-323 

bamazepine.8 To our knowledge, there is no other empirical data available to demonstrate these intramo-324 

lecular pathways. Therefore, their general applicability remains to be shown. For ozonation of tramadol 325 

(Fig. 7), tramadol N-oxide (P-5), N-desmethyl-tramadol (P-6), and the N-deaminated-tramadol (P-10) 326 

were predicted to be the major products. This is consistent with the experimental observation with the 327 

exception that deamination was of minor importance in the experiments.32 Minor products (P-8, P-9, P-328 

12, and P-13) formed via the decay of tetroxide intermediates were also considered (dashed arrows). In 329 

contrast to carbamazepine, the reaction rules applied to tramadol were defined based on data for other 330 

reference compounds (Text S9†) and found to be successfully applicable to tramadol. In that sense, the 331 

predicted tramadol pathway can be considered as a validation by external data. Overall, predicted trans-332 

formation products undetected in experimental studies can be false positives or result from analytical 333 

limitation. The mass balance is often incomplete in experimental studies because of the limited analytical 334 

capability, indicating an only partial elucidation of transformation products. Transformation products that 335 

are considered to be stable, and thus potentially relevant for empirical detection, can be highlighted by 336 

selecting ‘Predict transformation products’ (E) (Fig. 3). If doing so, only the products in blue boxes in 337 

Figs. 6 and 7 will be presented for carbamazepine or tramadol, respectively. 338 
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Conclusions and perspectives 339 

A computer-based system for predicting kinetics and pathways for the reaction of ozone with micropollu-340 

tants was developed in this study. Kinetic information (kO3) for a micropollutant in question can be pre-341 

dicted with molecular orbital energy-based kO3 prediction models using quantum chemical computations. 342 

Reaction pathways and the concomitant transformation products can be predicted by applying general-343 

ized reaction pathway rules defined based on empirical reaction mechanisms reported in the scientific 344 

literature. The developed prediction platform can serve various purposes. As demonstrated above, the 345 

predicted kO3 values can be used to identify the predominant site for ozone attack, which enables targeted 346 

pathway predictions. Moreover, kO3 values derived based on Eqs. S1† or S4† can be used for estimating 347 

the elimination efficiency of micropollutants during ozonation with the theoretical/methodological details 348 

given elsewhere.1,2,4,25 Environmental engineers or treatment plant operators can utilize the predicted kO3 349 

for the optimization/design of ozone treatment processes for abating micropollutants. Pathway prediction 350 

can further be used as a tool to support screening for suspect ozone transformation products using high-351 

resolution mass spectrometry. Moreover, the predicted transformation products can be screened for their 352 

toxicity using available in silico toxicity prediction tools. Thus, environmental chemists and toxicologists 353 

are considered another group of end-users who would benefit from the predictions of the system present-354 

ed. However, it should be highlighted that the current prediction system has been established based on 355 

the knowledge and information available to date. Therefore, the prediction should be considered as a 356 

complimentary tool rather than a substitute for experimental studies, which are still required to verify 357 

prediction outputs and improve the performance of the in-silico tool. Some further improvements to be 358 

pursued with priority in the future are highlighted below. Firstly, the scope of the current prediction plat-359 

form is exclusive for ozone. Pathway predictions are possible for any micropollutant regardless of their 360 

kO3 provided that the corresponding reaction pathway rules are available. However, as kO3 for a micropol-361 

lutant decreases, the contribution of hydroxyl radicals to its abatement increases in the absence of a radi-362 

cal scavenger, leading to transformation products formed from reactions with hydroxyl radicals rather 363 

than with ozone. Therefore, further efforts will be made to include reactions with hydroxyl radicals in the 364 

prediction system. Secondly, for a few aforementioned limitations in predicting kO3 (e.g., ambiguous 365 
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EHOMO-n assignment, the use of a gas phase geometry, and a poor kO3 prediction for a certain chemical 366 

class (e.g., piperazinyl group)), appropriate improvements are necessary which may require different 367 

approaches (e.g., exploring other quantum molecular descriptors). Moreover, further experimental inves-368 

tigations with more micropollutants to generate a database for external validation and with micropollu-369 

tants containing yet unexplored chemical structures (e.g., the ones with kO3 estimates in Table S1†) are 370 

recommended. The prediction platform is currently available as a standalone GUI application that can be 371 

installed on a personal computer. The development of a web-based prediction platform adapted from the 372 

developed GUI application, to which anyone has free access without the need for installing any soft-373 

ware/application, will be pursued in future. 374 
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 382 

 383 

 384 
Fig. 1 Workflow of the developed prediction platform to predict kinetics and transformation products for 385 
the reactions of ozone with organic compounds. 386 

387 
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 388 

 389 

Fig. 2 Reaction pathway enumeration (top) for a phenolic moiety and the reaction pathways (bottom 390 
from Scheme S1†) defined for the ortho position of phenol reacting with ozone. The corresponding 391 
pathways for “para” and “radical” are given in Schemes S2† and S3†. Logical operators such as ‘==’ (is 392 
equal to), ‘!=’ (is not equal to), and ‘||’ (or) are used in ‘if ()’ statements to present selectivity of reaction 393 
rules based on a substituent (R). Implicit atoms can be hydrogen, any atom, or any organic moiety. The 394 
pathways for the post-Criegee mechanism, which deals with various ensuing reactions such as hydrolysis 395 
and fragmentations, are presented in Scheme S11†. Note that further pathway predictions for muconic-396 
type products is to be implemented by feeding such products back as an input structure.  397 

398 
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 399 

Fig. 3. The main window for the developed kinetics and pathway prediction system. In the left panel of the main 400 
window, the user can choose between (A) direct prediction and (B) pH-dependent prediction. By selecting A, the 401 
right panel of the main window is activated and further predictions, (C), (D), or (E), can be conducted.  402 

403 
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 404 

Fig. 4. Window for the pH-dependent prediction of the kinetics of tramadol oxidation by ozone. Panel (F) shows 405 
the identified ionizable groups of the query compound for which pKa-values are given in the Table (J). Panel (G) 406 
shows individual species of the query compound and the identified reactive sites. Panel (H) is a species distribution 407 
plot created by choosing ‘Plot species distribution’ in the control Table (K). The species distribution is drawn based 408 
on the presented pKa (J) and tautomeric fraction(f) (K). The pH-dependent site-specific kO3 prediction can be im-409 
plemented for a user-defined pH-range (L), and is presented in panel (I). In Table (M), apparent species-specific kO3 410 
are predicted at a specific user-defined pH and the user can export (by ‘Selection to Main Window’) the species of 411 
interest to the main window in Fig. 3 for further predictions. While the pKa-value of -4.9 for the methoxy group was 412 
used as predicted by Marvin (Chemaxon. Ltd), the predicted pKa-values of 9.2 and 13.8 for the amino and the alco-413 
hol group, respectively, were replaced by 9.455 (experimental) and 16 (typical pKa range for an alcohol group), 414 
respectively.  415 

416 
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 417 

Fig. 5. Comparison between predicted and experimental kO3 as a function of pH for (a) tramadol and (b) triclosan. 418 
The experimental data for tramadol and triclosan are from Zimmermann et al., 201232 and Suarez et al., 2007,56 419 
respectively. 420 

421 
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 422 

 Fig. 6. Predicted pathways for the reactions of carbamazepine with ozone. The dashed arrows indicate that the 423 
pathways are less likely. Predicted potential final products are presented in blue boxes. Product (P-3) was re-424 
portedas the major transformation product in experiments.8 425 

 426 

 427 

428 
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 429 

Fig. 7. Predicted pathways for the reactions of tramadol with ozone. The dashed arrows indicate that the pathways 430 
are less likely. Predicted potential final transformation products are presented in blue boxes. The products P-5 and 431 
P-6 were reported to be the major experimental transformation products. 432 

 433 

434 
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