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Abstract

Quantifying how environmental factors control the growth of phytoplankton communities is essential for

building a mechanistic understanding of global biogeochemical cycles and aquatic food web dynamics. The

strong effects of temperature on population growth rate have inspired two frameworks—the Eppley curve

and the metabolic theory of ecology—that produce different quantitative relationships and employ distinct

statistical approaches. Reconciling these relationships is necessary to ensure the accuracy of ecosystem mod-

els. In this paper, we develop ways to compare these frameworks, overcoming their methodological differ-

ences. Then, analyzing an extensive dataset (> 4200 growth rate measurements), we find that increases in

population growth rate with temperature are consistent with metabolic theory, and weaker than previous

estimates of the Eppley curve. A 108C temperature increase will increase growth rates by a factor of 1.53, rath-

er than 1.88 as in previous studies of the Eppley curve. Size and functional group membership are also criti-

cal. Population growth rates decrease with size, but much less strongly that metabolic theory predicts. The

growth rates of different functional groups scale similarly with temperature, but some groups grow faster

than others, independent of temperature. Our results reconcile the analytical methods of the Eppley curve

and metabolic theory, demonstrate that metabolic theory’s temperature-scaling predictions are more accu-

rate, and provide new insights into the factors controlling phytoplankton growth. To avoid over-estimating

the effects of temperature on primary productivity, the parameterization of ecosystem models should be

revised.

Phytoplankton communities regulate global biogeochemi-

cal cycles and support most aquatic food webs. It is critically

important to understand the factors that control their

growth, influencing current and future primary productivity.

Temperature is one such factor, strongly affecting the growth

of phytoplankton populations, mediated by its effects on the

rate of biochemical reactions. Temperature effects are the

primary focus of this paper; however, population growth

rates (hereafter, simply “growth rate”) also depend on cell

size: phytoplankton species with larger cells typically grow

more slowly than those with smaller cells. Relationships

between size, temperature, and growth rate have been docu-

mented for many years, in both the lab and the field, but

the precise representation of these relationships has been

disputed. The dominant bodies of thought, or frameworks,

addressing the temperature-dependence of population

growth are the highly influential Eppley curve (Eppley 1972)

and the metabolic theory of ecology, which we abbreviate as

“MTE” (Gillooly et al. 2001; Brown et al. 2004). The two

frameworks have historically provided quantitatively differ-

ent estimates of the strength of temperature-dependence

(Table 1). Both approaches also differ in their equations, sta-

tistical methods, and foundations: the Eppley curve is based

on characterizations of an empirical relationship, while MTE

provides theoretical predictions emerging from first princi-

ples. These differences have inhibited rigorous comparisons

of the two frameworks. In this paper, we reconcile the
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contrasting Eppley curve and MTE relationships, making use

of an extensive compilation of growth rate data. This repre-

sents a critical step in developing a mechanistic, quantita-

tively accurate, and predictive understanding of

phytoplankton communities and marine ecosystems at large.

An exponential relationship between maximum growth

rate of phytoplankton and temperature was reported first by

Eppley (1972). Since this seminal paper, the relationship

Eppley estimated has become a fundamental component of

our understanding of how primary productivity is con-

strained by temperature. For example, the “Eppley curve” is

used in algorithms estimating primary productivity from sat-

ellite observations (Morel 1991; Antoine et al. 1996; and

modified in Behrenfeld and Falkowski 1997), and imple-

mented in a wide range of marine ecosystem models (select

examples include Tett et al. 1985; Doney et al. 1996; Palmer

and Totterdell 2001; Taucher and Oschlies 2011; Thomas

et al. 2012; Stock et al. 2014). Together, the data derived

from satellite observations and the predictions made by eco-

system models are essential to studying aquatic ecology,

including detecting and predicting the effects of climate

change on primary productivity. Thus, the Eppley curve’s

accuracy is vital, including both its parameters and the ideas

it embodies. Mathematically, the Eppley curve can be writ-

ten as:

l5 a exp b � Tð Þ (1)

In this equation, l is the maximum growth rate of any phy-

toplankton species, which varies with temperature, T. Param-

eter a controls the height of the exponential function at 08C

while b determines how strongly l rises with temperature, a

value often referred to as the Eppley exponent. Eppley’s ini-

tial estimates of these parameters (a50.59 and b50.0633)

have been updated using more data and rigorous quantile

regression methods (a50.81 and b50.0613), the values we

use throughout the rest of this paper (Table 1; Bissinger et al.

2008; but see also Brush et al. 2002). Ultimately, the Eppley

curve is a phenomenological description of the temperature-

dependence of growth, whose parameters are estimated from

data rather than predicted from first principles.

Metabolic theory (MTE) offers a contrasting, mechanistic

description of the same empirical pattern, derived from

studying the factors constraining individual metabolic rates

(Gillooly et al. 2001; Brown et al. 2004). It focuses specifically

on the biochemical reactions essential for life, which depend

on temperature and the supply of substrate(s). Assuming

substrates are not limiting, reaction rates will depend only

on temperature, and can be described by the Arrhenius-van’t

Hoff equation: k / e2E=RT . This states that the rate constant

of a reaction, k, is proportional to an exponential function

of: temperature, T, the Boltzmann constant (R58.617 3

1025 eV K21), and the activation energy of the reaction, E.

Conceptually, E describes the energy required to initiate a

specific chemical reaction and determines the sensitivity of k

to changes in temperature. MTE further assumes that the

rate of the slowest chemical reaction (lowest E) that is essen-

tial for life will determine just how quickly individuals and

populations can grow, such that l / k (Savage et al. 2004a).

As such, E is analogous to the Eppley exponent b, in that

they both control the sensitivity of maximum growth rate to

temperature. Despite this, it is impossible to directly com-

pare these coefficients because the Eppley curve is a function

Table 1. Comparing the predictions of the Eppley and MTE approaches to understanding the effects of temperature on growth.

Eppley MTE

Temperature dependence l5a � exp b � Tð Þ l5l0 � exp 2E= k � T1273ð Þð Þð Þ
Predicted coefficients *a50.81, b50.0631 †E50.32 eV

Implications Q10 5 1.88 Q10 5 1.62

Data All growth rates measured across

temperatures and species

Maximum growth rates of individual species

and corresponding temperatures

Statistical method ‡Quantile regression Multiple linear regression, mixed models, or SMA regression

Full regression equation ln l99½ �5ln a1b � T1c2 �M1c3 � G ln l½ �5ln l01E 21
k� T1273ð Þ1a � lnM1c3 � G

Covariates T5 temperature (8C), M5mass, G5 functional group identity

Parameters l99599th quantile growth rate

b5 Eppley coefficient or exponent

a5maximum growth rate at 08C

c25mass effect

c35 functional group effect

l5maximum growth rate

E5 activation energy (eV)

l05normalization constant

a5mass scaling coefficient

c35 functional group effect

k5Boltzman factor, 8.6173 3 1025 eV/K

* Bissinger et al. (2008), Eppley (1966).
† Savage et al. (2004a), Allen et al. (2005).
‡ Koenker (2005), Cade and Noon (2003).
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of T, while the Arrhenius-van’t Hoff equation depends on

21/T. Fortunately, as we will see, an approximation enables

us to compare these competing frameworks (Gillooly et al.

2002; Supporting Information: Converting between MTE and

Eppley).

MTE makes explicit predictions for the value of E,

depending on which biochemical process is rate-limiting for

growth. In heterotrophs, this is respiration (ATP synthesis),

which has an activation energy of 0.65 eV (Allen et al. 2005;

L�opez-Urrutia et al. 2006). Photoautotrophs, such as phyto-

plankton, are limited instead by photosynthesis, with the

lower activation energy of 0.32 eV (Allen et al. 2005; L�opez-

Urrutia et al. 2006). This provides an explicit prediction of

the temperature-dependence of the maximum growth rate of

phytoplankton, given saturating light and nutrients. Rela-

tionships between maximum growth rate and temperature

have been widely reported (see meta-analysis of Angilletta

et al. 2010), although many of the studies examined report

variation from the theoretical predictions of Savage et al.

(2004a). There is evidence in plankton that the population

growth rate of herbivorous and bacterivorous protists and

copepods scales more strongly with temperature than photo-

trophic protists (Rose and Caron 2007), supporting the gen-

eral idea that heterotrophs are more sensitive to temperature

than autotrophs.

Unlike the Eppley curve, MTE also accounts for the effects

of the size of organisms on their metabolic rate and ability

to grow. Just as the effect of temperature on individual meta-

bolic rate can be scaled up to provide insights on population

growth rate, the effects of an individual’s size on its metabol-

ic rate can be propagated similarly (Savage et al. 2004a). Spe-

cifically, the maximum growth rate, lmax, of a population at

a fixed temperature is related to the average mass of individ-

uals in the population, M, following the relationship lmax /
Ma (Savage et al. 2004a). In this expression, a governs the

strength of the mass scaling relationship. It has a theoretical-

ly predicted value of 21/4, based on properties related to the

optimization of resource uptake and distribution networks

(West et al. 1997, 1999a,b; Banavar et al. 1999; Brown et al.

2004; Savage et al. 2004). This implies that populations con-

sisting of larger individuals will grow more slowly than those

comprised of smaller individuals (or cells, in the case of phy-

toplankton). Overall, this predicted relationship has been

upheld for organisms ranging from vertebrates to unicellular

eukaryotes (Savage et al. 2004a).

However, investigations of size-scaling relationships in

phytoplankton tend to reveal lower values of a than MTE

predicts. Exact estimates vary depending on details including

the taxonomic composition of communities, the metric of

size examined (volume vs. mass in carbon), and the location

(lab or field) and experimental methods of studies (L�opez-

Urrutia et al. 2006; Mara~n�on 2008; Chen and Liu 2010,

2011; Sal & L�opez-Urrutia 2011; Sal et al. 2015). As phyto-

plankton sizes span more than seven orders of magnitude

(biovolume in lm3, Finkel et al. 2009), even a weak relation-

ship would result in substantial predicted differences in

growth rate between large and small species. Aside from

identifying the value of a, several studies suggest that the

relationship between size and growth rate may actually be

unimodal, rather than linear (Bec et al. 2008; Chen and Liu

2010; Mara~n�on et al. 2013; Mara~n�on 2015). These patterns

may be driven by differences in evolutionary history among

species (Sal et al. 2015), although other evidence suggests

unimodal relationships occur within taxonomic groups

(Raven 1994). While the precise nature of the effects of cell

size on phytoplankton growth rate remains a topic of debate,

the overall existence of a relationship is not in question. As

a result, it is important to jointly consider the effects of size

and temperature when studying the factors limiting popula-

tion growth.

A final consideration is the extreme diversity of the phy-

toplankton, consisting of groups such as cyanobacteria and

diatoms whose evolutionary histories diverged long ago.

Many recent studies have found that the relatedness and

functional group identity of species is an important predictor

of their physiology, ranging from light and nutrient uptake

traits (Litchman et al. 2007; Edwards et al. 2012, 2015), to

thermal tolerance traits (Thomas et al. 2016). Similar taxo-

nomic effects have been found in the metabolic theory liter-

ature across wide swaths of life. For example, groups from

unicellular organisms to fish and amphibians have identical

slopes relating their mass-corrected metabolic rate to temper-

ature, but their normalization constants (intercepts) are

quite different (Gillooly et al. 2001; Brown et al. 2004). At

best, ignoring these effects may obscure relationships across

species, while in some cases the inferred shape of relation-

ships may change entirely (e.g., Bickel et al. 1975; Clark

et al. 2011; Sal et al. 2015). Understanding how and why the

traits of different functional groups differ is also of practical

use, given their unique effects on global biogeochemical

cycles (Litchman et al. 2015). Relevant to our study, func-

tional group identity has already been shown to explain vari-

ation in maximum growth rate of marine and freshwater

phytoplankton, even after accounting for differences in cell

volume (Litchman et al. 2007; Edwards et al. 2012). Conse-

quently, testing the importance of functional group identity

is a critical component of our efforts to reconcile metabolic

theory and the Eppley curve.

In the current paper, we show that the temperature-

dependence of growth rate is consistent with MTE, and

weaker than suggested by earlier estimates of the Eppley

curve, after correcting for the effects of cell size and func-

tional group identity. This conclusion is based on a recently

expanded data set (with>4200 observations), which

includes observations used in earlier analyses (Eppley 1972;

Bissinger et al. 2008) as well as additional values from the

primary literature. It also required developing a way to com-

pare these two competing frameworks, given their divergent
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statistical approaches. Our results suggest that the

temperature-dependence utilized in many areas of aquatic

ecology (including satellite observation algorithms and eco-

system models) need to be adjusted to provide accurate

results. In particular, models of marine primary productivity

that rely on the Eppley curve (e.g., Doney et al. 1996; Palmer

and Totterdell 2001; Taucher and Oschlies 2011; Toseland

et al. 2013; Stock et al. 2014), as previously parameterized

(Eppley 1972; Bissinger et al. 2008) are likely to over-

estimate productivity increases driven by rising ocean

temperatures.

Methods

Data sources

Thermal tolerance curves

We previously compiled data on estimates of population

growth rates at varying temperatures from primary literature

sources (Thomas et al. 2012, 2016). Subjected to rigorous

quality control, these data consist of laboratory measure-

ments that were made under reasonable light, nutrient, and

salinity conditions (for details, see Thomas et al. 2012,

2016). In addition to those criteria, for the current analysis

we also excluded any growth rates reported to be less than

0.1 (d21), removing growth rate values near or below zero,

which are very difficult to estimate reliably. We also exclud-

ed data from phytoplankton belonging to functional groups

for which we had few measurements, leaving only diatoms,

dinoflagellates, green algae, and cyanobacteria. Our data set

includes marine, estuarine, and freshwater strains. Marine

and freshwater species share many similarities in their ther-

mal traits, although freshwater species have higher optimum

temperatures (temperatures at which they achieve their max-

imum growth rate) and potentially wider thermal niches

(Thomas et al. 2016). To focus on a biologically relevant

range of temperatures, we also excluded a small number of

growth rate estimates from temperatures>408C. Finally, we

excluded observations of taxa for which we were unable to

find size estimates (next section). The remaining data serve

as the foundation of subsequent analyses (4208 measure-

ments in total; Supporting Information Table S.1) and are

provided in the Supplementary Information.

Cell size data

Because papers supplying data on temperature-dependent

growth rates rarely include corresponding estimates of cell

size, we gathered estimates from a range of alternative sour-

ces, similar to the approach of Sal et al. (2015). The most

common metric of size in phytoplankton is cell volume, typ-

ically estimated by calculating the mean volume of cells in a

culture based on their three-dimensional shape and linear

dimensions (Hillebrand et al. 1999). Previous papers have

assembled cell volumes for freshwater and marine species

(Litchman et al. 2009; Edwards et al. 2011). With these

resources, and a new compilation of size data for>1200

freshwater species (Kremer et al. 2014), we obtained cell vol-

ume estimates for � 92% of the taxa represented in our

growth rate data set. Within functional groups, coverage of

size estimates in our original growth data set ranged from a

low of 81% (dinoflagellates) to a high of 98% (diatoms). Bio-

volume data and metadata are provided in the Supporting

Information. Cell volume estimates (in lm3) were converted

into estimates of dry weight (in lg) using the relationship

Mass50.47*(Volume)0.99 3 1026, after Reynolds (2006, p.

25). This is a standard relationship, although the exact con-

nection between cell size and dry weight can vary signifi-

cantly between cells and species, depending on the size of

internal vacuoles and storage (Reynolds 2006), and other

conversions have been proposed (e.g., Strathmann 1967;

Menden-Deuer and Lessard 2000). In the analyses we pre-

sent, we have focused on ln(mass) as our measure of phyto-

plankton body size, using the Reynolds relationship.

However, analyses based on ln(cell volume) and estimates of

mass following Strathmann (1967) yielded similar results.

Finally, we also acknowledge that cell size varies significantly

due to intra-specific variation and environmental effects. As

a result, the literature-based size estimates we have obtained

may differ from the true size of cells during the actual

growth assays. This likely introduces additional uncertainty

to our analyses, but is unavoidable.

Eppley re-analysis

Prior analyses

The Eppley curve attempts to capture an upper envelope

bounding maximum growth rates as an exponential function

of temperature. Bissinger et al. (2008) used regression techni-

ques to rigorously estimate this envelope. Whereas standard

linear regression models the relationship between covari-

ate(s) and the mean of a response variable, quantile regres-

sion models variation in specific quantiles of the response

variable. Models of extreme quantiles can be used to gener-

ate envelope functions (Cade and Noon 2003; Koenker

2005). Quantile regression is a useful approach, but it has

some important limitations. In particular, acceptable fitting

of extreme quantiles requires a great deal of data (Cade and

Noon 2003; Koenker 2005). To avoid sample size issues, in

our analyses we did not consider models with interactions

between our covariates (size, temperature, functional group),

for which we also lacked a priori hypotheses.

Current analysis

We used quantile regression to examine linear relation-

ships between the 99th quantile of ln(l) and covariates

including temperature, ln(M), and functional group (Table

1). Linear models relating ln(l) and temperature are equiva-

lent to assuming that growth rate, l, is exponentially related

to temperature (Bissinger et al. 2008). We fit and evaluated

all quantile regression models using the [R] package quantreg

(version 5.19; Koenker 2015). To estimate the parameters of

the Eppley curve, we used the entire growth rate data set
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described in 2.1 above. As with previous data used to address

this question, our data set includes many examples where

there are multiple growth rate observations per strain (rang-

ing from 2 to 97), including sub-optimal growth rates esti-

mated at temperatures above or below a strain’s optimum

temperature. Previous studies ignore this issue, but these

measurements create a lack of independence among observa-

tions. Such situations are typically handled using a mixed

effects model; however, there are no accessible methods

combining mixed effects models and quantile regression. As

a compromise, we used weighted quantile regression to

ensure that each species contributes equally to the analysis

independent of how many times they were measured. We

calculated weights, wi, for the observations associated with a

particular strain i as wi51/(# of observations for strain i). In

strains with many observations, each individual observation

will consequently contributes less to the overall analysis.

Ultimately, this enables us to avoid biasing quantile regres-

sions towards intensively studied species or strains of phyto-

plankton. Code for these, and subsequent analyses, is

provided in the Supporting Information. We also repeated

our analyses after removing a few very high growth rate esti-

mates, to check the sensitivity of the quantile regression fits

to potential outliers (results not shown). The results did not

change significantly, perhaps due to the higher level of

uncertainty already inherent in regressions of extreme

quantiles.

Metabolic theory analysis

Prior analyses

Tests of metabolic theory differ in several significant ways

from the Eppley-style analyses described in 2.2, including

both the data and statistical methods they employ. Under-

standing and resolving these differences is essential to our

work reconciling MTE with the Eppley curve, so we discuss

the three major differences here. First, while Eppley analyses

use all available growth rate data, MTE analyses ideally focus

on just the highest observed growth rate per strain or spe-

cies. While this dramatically reduces the amount of data

used, MTE analyses do not depend on extreme quantile

regressions, so they are inherently less sensitive to small

sample sizes. Second, while the Eppley curve models maxi-

mum growth rate, lmax, as a function of exp(T), MTE uses a

Boltzmann term, which depends on exp(1/T). More specifi-

cally, combining the temperature- and size- (or mass-)

dependence of growth yields (after Savage et al. 2004a):

lmax 5 l0M
ae2E=kT (2)

where l0 is a normalization constant or intercept term, and

other variables are as defined previously. We reconcile these

differences using an approximation discussed later, in

“Connecting Eppley and MTE analyses” section. Third,

although the effects of mass and temperature can be

combined in a single equation as in (Eq. 2), tests of MTE typ-

ically examine each effect separately. For example, a mass-

corrected growth rate will be regressed against temperature

(assuming the theoretical value of a521/4 is true), while a

temperature-corrected growth rate will be regressed against

mass (assuming E50.32 eV; or 0.65 eV for heterotrophs).

These bivariate analyses are necessary in MTE analyses that

rely on “standardized major axis regression” or SMA (Warton

et al. 2006; Edwards et al. 2015), a commonly used MTE

technique that does not easily accommodate multiple covari-

ates. While there are good reasons for conducting MTE tests

this way (Warton et al. 2006), the approach has drawbacks:

(1) estimating size and temperature effects separately, rather

than conducting a multiple regression, can lead to parameter

estimates with incorrect confidence intervals, and (2) SMA is

incompatible with mixed effects models, yet data sets are

often structured hierarchically, with repeated measurements

of one or more species (Edwards et al. 2015).

Current analysis

To test metabolic theory’s predictions, in light of these

methodological issues and our over-arching goal of comparing

MTE and the Eppley curve, we have adopted different

approaches. First, we reduced our data so that it included only

measurements of the highest observed growth rate for each

strain, yielding n5425 values across 194 unique species

(some species were represented by multiple strains). Second,

rather than using SMA, we use linear mixed effects models.

These have been used occasionally in MTE type analyses (e.g.,

O’Connor et al. 2007; Yvon-Durocher et al. 2012). With this

approach, we can simultaneously investigate the effects of

multiple covariates, while using a species-level random effect

to account for the fact that � 37% of the species in our data

set are represented by multiple, separately measured strains.

We examined models containing main effects of size, temper-

ature, and functional group, as well as models where function-

al group interacted with size and/or temperature.

Specifically, models were fit in [R] using the function lmer

in the lme4 package (version 1.1-10; Bates et al. 2014). Mod-

el comparison was used to select the best model based on

AICc, which corrects for small sample sizes and converges on

AIC for large sample sizes (Burnham and Anderson 2002).

Estimates of p-values were obtained using a parametric boot-

strapping approach, PBmodcomp, in the pbkrtest package

(version 0.4-4; Halekoh and Højsgaard 2014). This method is

resilient to violations of the asymptotic assumptions inher-

ent in likelihood ratio and Wald tests (Halekoh and

Højsgaard 2014), although all three methods yielded similar

results. To assess the overall goodness of fit of models, we

calculated estimates of conditional and marginal R2 using

the function r.squaredGLMM in the R package MuMIn (ver-

sion 1.13.4; Nakagawa and Schielzeth 2013). Finally, Tukey

post-hoc comparisons were conducted using glht, also in the

multcomp package (version 1.4-1; Hothorn et al. 2008), to
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test for differences between functional groups as determined

by our mixed effects model.

Connecting Eppley and MTE analyses

There are two remaining differences between the Eppley

and MTE analyses that make it more difficult to compare their

results. First, as we have mentioned above, these analyses use

different temperature scales (T vs. 1/T), so their temperature

coefficients (b and E) are not directly comparable. This issue

can be resolved using a Taylor series approximation to express

the MTE relationship as a function of temperature, T (see Lai-

dler 1984 and Supporting Information: Converting between

MTE and Eppley). This leads to a simple conversion between

the Eppley exponent b and MTE’s activation energy E:

b � E

kT0
2

or E � b � kT0
2 (3)

where T0 is 273. Mathematically, (Eq. 3) allows us to compare

numerical estimates of the temperature-scaling of growth

obtained from Eppley and MTE analyses. For example, we can

take estimates of b, its standard error, and its 95% confidence

interval (all obtained by quantile regression), and convert them

into activation energies. Similarly, an estimated activation ener-

gy coefficient from an MTE regression can be converted into an

Eppley exponent. To test whether these values differ significant-

ly from their theorized or previously estimated values (Table 1),

we can use a simple two-tailed test of differences in slope (Zar

1999). Second, we note that the conversion in Eq. 3 simply

allows us to quantitatively compare Eppley and MTE coeffi-

cients. Differences in these coefficients may be affected by the

different statistical methods (quantile regression vs. linear

regression) and data (all growth rates vs. maximum growth

rates of individual strains) employed by each approach (Eppley

and MTE, respectively). This is important to recall when inter-

preting results presented in the following sections.

Results

Eppley results

We found significant effects of temperature, cell mass,

and functional group identity on the maximum growth rates

of phytoplankton (Table 2, Supporting Information Table

S.2), using methods from “Current analysis” section. The

model including these three main effects performed better

than a set of simpler models (Supporting Information Table

S.3), based on AICc comparison. As expected, growth rates

increased with temperature (Fig. 1A; b50.047, p<0.0001,

95% CI5 {0.034, 0.060}), but decreased with cell size (Fig.

1B; slope520.084, p<0.0001, 95% CI5 {20.125, 20.043}).

Functional groups displayed significantly different baseline

capacities for growth: across temperatures and cell masses,

the cyanobacteria and dinoflagellates exhibited much lower

maximum growth rates than diatoms and green algae (Fig. 1;

Supporting Information Table S.2). In fact, cyanobacteria

and dinoflagellates never display maximum growth rates as

high as in previous estimates of the Eppley curve (Fig. 2),

while diatoms and green algae do so only at low tempera-

tures. These differences among groups cannot be attributed

to differences in size between groups (Supporting Informa-

tion Fig. S.1), as cell mass was included in the same model.

We were unable to test for an interaction between tempera-

ture and functional group (i.e., distinct Eppley exponents for

each group), due to the data-hungry nature of extreme quan-

tile regressions. However, this question is addressed in the

MTE analyses below.

MTE results

Performing an MTE analysis (see “Prior analyses” section

above), we again found significant main effects of tempera-

ture, cell mass, and functional group identity on maximum

growth rates (Fig. 3; Table 2, Supporting Information Table

S.4). In particular, temperature increased growth rates, with

an activation energy of E50.30 eV (p<0.001, 95%

CI50.233 to 0.368; Supporting Information Table S.4),

which is quite similar to the theoretically predicted value of

0.32 eV (Table 1). While mass had a negative effect on

growth rate (a520.054; p<0.005, 95% CI520.089 to

20.018), the strength of this effect was much weaker than

predicted (a520.25; Savage et al. 2004a,b). As with the Epp-

ley analysis, functional groups differed from each other in

their capacity for growth (i.e., growth rate at 08C; p<0.001),

except for cyanobacteria and dinoflagellates (Supporting

Table 2. Results of the Eppley curve and MTE analyses. Additional details on model fits are presented as Supporting Information
Tables S.2 and S.4. Variables match those defined in Table 1.

Eppley curve results MTE results

Coefficient Variable Estimate Coefficient Variable Estimate

Temperature b 0.04738 1/(kT) E 20.300

ln(Mass) c2 20.08408 ln(Mass) a 20.054

Intercept (Cyanobacteria) a 21.52173 Intercept (Cyanobacteria) l0 10.50

Diatoms c3 0.69629 Diatoms c3 0.992

Dinoflagellates 0.05037 Dinoflagellates 0.135

Greens 0.81941 Greens 0.530
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Information Table S.5). We also fit two additional models

testing for an interaction effect between functional group

identity and temperature, or size and temperature, respec-

tively. However, AICc model comparison showed that nei-

ther of these more complex models were improvements

(Supporting Information Table S.6). This implies that phyto-

plankton share a common activation energy across function-

al groups and cell sizes. This is consistent with the MTE

literature, which has repeatedly identified similar scaling

exponents across major branches of life, and does not pre-

dict interactive effects between size and temperature (e.g.,

Brown et al. 2004; Savage et al. 2014a).

Eppley vs. MTE comparison

Finally, we turn to comparing our newly estimated effects

of temperature on maximum growth rate (after accounting

for both mass and functional group effects) with the values

provided by MTE and previous estimates of the Eppley curve.

We find that the temperature-dependence of population

growth rate is significantly weaker than implied by previous

estimates of the Eppley curve, but not statistically different

than MTE predicts (Fig. 4; Supporting Information Table

S.7). This result applies whether we use the parameters

estimated from the quantile regression approach, or MTE

methods (Supporting Information Table S.7). Interestingly,

when we fit a simple, un-weighted quantile regression of

maximum growth rate against temperature alone (reproduc-

ing Bissinger et al. 2008’s re-analysis of the Eppley curve), we

obtain a higher estimate of b (0.055; p<0.00001, 95%

CI5 {0.049, 0.061}; Supporting Information Table S.8). This

corresponds to a temperature-scaling effect that is weaker

than prior estimates of the Eppley curve, stronger than MTE

predictions, and significantly distinct from both (Supporting

Information Table S.7).

Discussion and conclusion

Characterizing the effects of temperature on organisms is

central to understanding fundamental patterns in aquatic

communities and ecosystems. This task is impeded by the

existence of two popular frameworks (the Eppley curve and

the metabolic theory of ecology) that describe the

temperature-dependence of growth rate differently. Figuring

out how to directly compare these paradigms is essential for

advancing the study of phytoplankton communities and for

refining contemporary models of primary productivity and
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Fig. 1. (A) The Eppley curves of phytoplankton functional groups vary substantially (solid lines). Plotted regressions are from a weighted, 99th quan-

tile regression including main effects of temperature, functional group, and mass. For visualization purposes, each curve was drawn using the mean
mass of the corresponding functional group. Individual observations contributing to the analysis are indicated by partially transparent points. Notably,
temperature-scaling in our new estimate of the Eppley curve is weaker than previously estimated by Bissinger et al. (2008) (dotted line). For reference,

we also plot the results of applying Bissinger et al.’s approach, ignoring size and functional group, to our data set (dashed line). (B) Growth rates
simultaneously decline with increasing cell mass; these plots show the size effect produced by the same 99th quantile regression as displayed in panel

A. For visualization, each curve was drawn using the mean temperature of the corresponding functional group within our data set.
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global ecosystems. We have demonstrated how these two

frameworks, with divergent histories and separate literatures,

can be related (“Connecting Eppley and MTE analyses” sec-

tion and “Eppley vs. MTE comparison section” above). From

this foundation, our analyses show that the increase of pop-

ulation growth rate with temperature is weaker than previ-

ous characterizations of the Eppley curve, yet consistent

with MTE predictions (Supporting Information Table S.7),

suggesting that maximum growth rate is indeed limited by

the temperature sensitivity of photosynthesis. For a 108C

increase in temperature, previous estimates of the Eppley

curve suggested that growth rates would increase by a factor

of 1.88; in contrast, our new results suggest that this increase

is smaller, around a factor of 1.53 (given Supporting Infor-

mation Table S.3). We also found evidence that differences

in size explain less variation in growth rate than MTE predic-

tions suggest. Under the assumed MTE value of 20.25 for

the size-scaling relationship, a decrease in cell mass of � 3

orders in magnitude would increase growth rates by a factor

of � 3.5; in contrast, if the weaker relationship we obtained

is true, growth rates would only increase by a factor of � 1.5

(given Supporting Information Table S.3).

Critically, our results also show that the slope of the

temperature-scaling relationship is consistent across func-

tional groups (Supporting Information Table S.6), although

groups differ in their intercepts (maximum growth rate at

T508C). The invariant nature of this relationship across

groups supports a central tenet of metabolic theory—that

the temperature dependence of growth rate under replete

conditions emerges from the shared biochemistry and ther-

modynamic constraints of all photoautotrophs. It also

implies that increases in ocean temperatures will not change

the growth rate hierarchy of functional groups, as their

growth rate vs. temperature relationships will never cross.

Despite the our new estimate of a weaker effect of tempera-

ture on growth rate, we found that diatoms and green algae

have intercepts that are higher than the previously estimated

intercept of the Eppley curve (Table 1 vs. Supporting Infor-

mation Table S.2). This implies that models using older

parameterizations of the Eppley curve to describe the growth

of these functional groups will underestimate their growth

rates at low temperatures, while over estimating their growth
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Fig. 2. Difference in predicted maximum population growth rate (d21)

relative to the Eppley curve as estimated by Bissinger et al. (2008).
Although our results indicate that growth rate increases more slowly with

temperature than in previous versions of the Eppley curve, functional
groups have different intercepts. Consequently, at low temperatures, fast
growing green algae and diatoms grow faster than previously predicted.

In contrast, at high temperatures, all groups show substantially lower
growth rates. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 3. Partial regression plots from the metabolic theory analysis showing the effects of: (A) temperature and (B) cell mass on growth rate, separated
by a significant effect of functional group.
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rates at high temperatures (Fig. 2). Collectively, our results

highlight the importance of developing a conceptually and

quantitatively accurate framework describing interactions

between cellular physiology, environmental factors (like

temperature), and key ecological parameters (such as species’

population growth rate).

Our efforts to resolve the differences between the Eppley

and MTE frameworks depended critically on accounting for

the effects of cell size and functional group. Although the

possibility of these effects was discussed in previous work, it

was not directly addressed (Eppley 1972; Bissinger et al.

2008). When we performed a 99th quantile regression relat-

ing population growth rate to temperature, but ignoring

both of these factors, we obtained an estimate of the temper-

ature effect that was significantly larger than the MTE pre-

diction (“Eppley vs. MTE comparison” section; Supporting

Information Table S.7). We believe that this discrepancy like-

ly arises from what is essentially a model specification error.

Basically, there is heterogeneity in the observed growth rates

that a temperature-only model cannot capture, as it is attrib-

utable to functional group identity and cell size. Otherwise

unexplained, this heterogeneity ends up biasing estimates of

the temperature-scaling coefficient in quantile regressions,

especially at extreme quantiles (e.g., the 99th quantile), yield-

ing higher estimates of the temperature-scaling coefficient.

We present additional results and discussion of this statisti-

cal issue (see Supporting Information: Evaluation of quantile

regression stability). This effect may explain why previous

analyses of the Eppley curve (e.g., Bissinger et al. 2008)

found temperature coefficients that are larger than predicted

by MTE analyses.

Functional group identity and cell size are also interesting

in their own right, not just because they are important for

obtaining rigorous estimates of temperature effects. We turn

now to discussing cell size and mass. Although Eppley noted

that cell size could have significant effects on growth rate

(1972), his analysis and the resulting Eppley curve do not

account for size. In contrast, metabolic theory makes explic-

it, quantitative predictions for the effect of mass on individ-

ual metabolism and, subsequently, population growth rate.

While we found that growth rate decreases with cell size,

consistent with general knowledge, the rate of decline was

much weaker than MTE predicts (20.054 rather than 20.25).

This result is consistent with previous publications on phyto-

plankton (review of Chisholm 1992; more recently, Mara~n�on

2008; Chen and Liu 2011; Sal et al. 2015). Note that in these

and other studies, it is important to distinguish between

examples of the temperature sensitivity of production, respi-

ration, and growth rate.

There are several reasons why we might observe size scal-

ing relationships in phytoplankton that deviate from MTE

predictions: (1) Cell size varies significantly within and

among strains and species, often in response to environmen-

tal conditions such as temperature (e.g., Finkel et al. 2009).

We used mean cell size estimates taken from the literature,

rather than values taken during growth rate assays, as do

other studies (e.g., Edwards et al. 2011, 2012; Sal et al. 2015).

This introduces noise to our analysis, which would reduce

the strength of observed relationships. (2) The strength of

size-scaling relationships can be sensitive to the metric of

size used. For example, based on in situ data, L�opez-Urrutia

et al. (2006) found that rates of both net production and res-

piration scaled nearly isometrically (i.e., with slope51) with

the total mass of carbon in cells, deviating from MTE predic-

tions. However, using cell biovolume instead of mass yielded

a relationship more consistent with the 3=4 prediction, which
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Fig. 4. We can illustrate the temperature-scaling coefficients obtained through Eppley or MTE analyses as either (A) an Eppley exponent or (B) an

activation energy, due to the conversion derived in the Supporting Information. This allows us to compare our newly estimate coefficients (black dots,
with 95% confidence interval error bars) with predictions based on previous Eppley analyses (red dotted line; Bissinger et al. 2008) and theoretical

MTE predictions (blue dashed line). Our Eppley analysis (accounting for functional group and mass) and the MTE analysis yield coefficients that are
significantly lower than previous Eppley estimates, but not significantly different from the MTE prediction (Supporting Information Table S.7). Howev-
er, an Eppley analysis ignoring functional group and mass (“Epply classic”) yields a larger temperature-scaling coefficient that differs significantly from

the MTE and Eppley predictions (Supporting Information Table S.7). [Color figure can be viewed at wileyonlinelibrary.com]
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they attributed to the allometric relationship between the

volume and carbon content of cells. These conversions are

problematic: multiple relationships exist for converting

between cell volume and mass in carbon (e.g., Strathmann

1967; Menden-Deuer and Lessard 2000; Reynolds 2006), and

the choice of conversion can affect estimates of scaling rela-

tionships (Mara~n�on 2008). However, in our analysis, we

found very little difference in the size-scaling coefficient

whether we used ln(biovolume) or ln(mass), calculating mass

using two different conversions (Supporting Information

Table S.9; Strathman 1967; Reynolds 2006). In the end, due

to variation in the physiology of different species and func-

tional groups (e.g., vacuoles affect cell size, but hold little

carbon), a universally applicable conversion based on allom-

etry may not exist; (3) Finally, there are important aspects of

the biology of phytoplankton not incorporated into MTE’s

predictions that could lead to a weaker size-scaling relation-

ship (Chisholm 1992; Mara~n�on 2015). Larger cells are gener-

ally assumed to have lower surface area to volume ratios and

to experience increased self-shading. As a result, growth rate is

thought to decrease with size, as larger cells struggle to use

light efficiently and to obtain sufficient nutrients and distrib-

ute them internally through diffusion. However, changes in

cell shape with increasing size can alleviate these constraints

and weaken the size-scaling relationship (Mara~n�on 2008).

Additionally, small cells may experience limited growth rates

because unavoidable investments in non-scalable nitrogenous

compounds such as DNA result in reduced biosynthetic capac-

ity. Depending on their strength and shape, the combined

effects of opposing tradeoffs between being small and large

could produce a size-scaling relationship that is weaker than

the MTE proposed 21/4, or even result in a nonlinear relation-

ship (Mara~n�on et al. 2013; Mara~n�on 2015). Additional

research is clearly needed to determine the strength and shape

of size-scaling relationships, efforts that will benefit from con-

trolling for confounding effects of environment and phyloge-

netic relationships among taxa (e.g., Sal et al. 2015).

We turn next to considering functional group effects:

both the Eppley and MTE style analyses indicated that func-

tional group identity explained significant variation in the

intercept (but not the slopes) of the temperature- and size-

scaling relationships (Figs. 1, 3; Supporting Information

Tables S.3, S.6). Variation in intercepts among taxonomic

groups has been frequently documented in MTE studies

(e.g., Brown et al. 2004) and occasionally discussed (Gillooly

et al. 2001). However, to our knowledge, no rigorous mecha-

nisms explaining these differences have been proposed, cre-

ating opportunities for the future development of metabolic

theory. The differences in growth rates we observe among

phytoplankton groups are consistent with previous work

(Edwards 2012), adding to a growing literature on the dis-

tinct traits of functional groups (Litchman and Klausmeier

2008; Finkel et al. 2009; Edwards et al. 2012, 2015; Thomas

et al. 2016). The slow growth rate of dinoflagellates has been

noted previously (Tang 1995), especially relative to diatoms

(Chisholm 1992). The source of these differences may be

linked to fundamental physiological distinctions. For exam-

ple, genome size varies across taxonomic groups: dinoflagel-

lates in particular have enormous genomes, and consistently

lower growth rates (e.g., Litchman et al. 2007; Oliver et al.

2007). Functional groups also differ in their ecological strate-

gies, in ways that may influence their growth rate. Dinofla-

gellates are often mixotrophic, but our data reflect their

ability to grow autotrophically. The ability to both photo-

synthesize and consume other organisms may come at the

expense of rapid growth. In contrast, diatoms can grow very

rapidly, perhaps consistent with selection to take advantage

of pulses of nutrients supplied by seasonal turnover or other

events. In general, because the functional group differences

we document are consistent across dozens of species and a

wide range of temperatures, the underlying mechanisms

seem likely to be tied to evolutionarily conserved features

(Thomas et al. 2016).

Together, developing an accurate knowledge of the

temperature-dependence of phytoplankton growth, as well as the

distinct properties of functional groups, is important for develop-

ing rigorous ecosystem models. These models often attempt to

describe the dynamics of entire ecosystems across broad spatial

and temporal ranges by reducing the complexity of phytoplank-

ton and zooplankton communities into a handful of representa-

tive groups, usually based on size and/or functional group

identity. For these models to accurately forecast ecosystem

dynamics both now and in a future inevitably influenced by cli-

mate change, it is essential that they use a quantitatively accurate

temperature-scaling. Balancing tradeoffs between complexity and

computational cost, they must also employ functional groups

that capture the most important differences among species. Con-

sequently, it is important to know which relationships apply

broadly (ie, growth rates increase with temperature according to

� 0.32 eV) and which differ by group. For example, our results

suggest that, at the same temperature, communities dominated

by different functional groups will have substantially different

maximum growth rates, and hence, productivities (Fig. 1; growth

rate of green algae>diatoms> cyanobacteria>dinoflagellates).

While growth rates will increase across temperatures, this hierar-

chy will not change. Collectively, these results present an oppor-

tunity for further refining the structure and parameterization of

ecosystem models.

This paper is an attempt to resolve the conflict between

distinct but related bodies of research that describe how phy-

toplankton growth rates scale with temperature, by uniting

divergent methodologies and exploring an extensive empiri-

cal data set. We have shown that metabolic theory provides

a more quantitatively accurate, and conceptually rigorous,

description of the temperature-dependence of growth, sub-

ject to additional effects of cell size and functional group

identity. Understanding the physiological and mechanistic

basis for the differences among functional groups, and
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dissecting these patterns using more nuanced phylogenetic

methods, represent important goals. Other important ave-

nues for further research include challenging the mechanis-

tic basis of metabolic theory (e.g., Clarke 2006), and

attempting to relate the inter-specific scaling patterns

explored in the present paper to the effects of temperature

on the growth of individual species. Ultimately, it is our

hope that the current results will strengthen the theoretical

foundation and parameterization of research, including eco-

system modeling, that depends on understanding how

changing environmental conditions affect phytoplankton

community composition and ecosystem function.
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