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 2 

Abstract	19 

Despite frequent field observations of impaired immune response and increased disease 20 

incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely 21 

considered in ecotoxicological risk assessment. The aim of the present study was to review 22 

the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which 23 

experimental approaches were used to assess immunotoxic effects, (ii) whether immune 24 

markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how 25 

predictive those parameters are for adverse alterations of fish immunocompetence and 26 

disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively 27 

analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly 28 

on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the 29 

experimental conditions are poorly documented, as for instance age or sex of the fish or the 30 

rationale for the selected exposure conditions is often missing. (iii) Although a broad variety 31 

of parameters were used to assess immunotoxicity, the rationale for the choice of measured 32 

parameters was often not given, remaining unclear how they link to the suspected 33 

immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is 34 

impossible to identify a set of immune parameters that could reliably screen for immunotoxic 35 

potentials of chemicals. (v) Similarly, fish immunotoxicologists seem to have insufficient 36 

understanding of how and when chemical-induced modulations of molecular / cellular 37 

immune changes relate to adverse alterations of fish immunocompetence, although this 38 

would be crucial to include immunotoxicity in ecotoxicological risk assessment. 39 

40 
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Abbreviations	41 

AhR  arylhydrocarbon receptor 

BPA  bisphenol A 

COX  cyclooxygenase 

CYP1A1  cytochrome P450 family 1 subfamily A member 1 

DCF  diclofenac 

E2  estradiol 

EDCs  endocrine disrupting chemicals / compounds 

EE2  ethinylestradiol 

ER  estrogen receptor 

HAHs  halogenated aromatic hydrocarbons  

IFN  interferons 

IgM  immunoglobulin M 

IHNV  infectious hematopoietic necrosis virus 

IL  interleukin 

MHC II  major histocompatibility complex class II  

MoA  mode of action 

NBT  nitro blue tetrazolium 

NFκB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NP  nonylphenol 

PAHs  polycyclic aromatic hydrocarbons 

PBDEs  polybrominated biphenyl ethers  

PCBs  polychlorinated biphenyls 

PPAR  peroxisome proliferator-activated receptor 
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qRT-PCR  quantitative reverse transcription - polymerase chain reaction 

ROS  reactive oxygen species  

TCDD  2,3,7,8-tetrachlorodibenzo-p-dioxin 

TDAR assay  T cell dependent antibody response assay  

TNF  tumor necrosis factor 

42 
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1.	Introduction68 

Numerous chemicals have the capacity to perturb immune structures and functions of 69 

exposed organisms and enhance their susceptibility to both infectious and neoplastic diseases. 70 

Historically, the awareness that chemicals can interfere with immune function started with 71 

early observations that exposure to industrial workplace environments was able to cause 72 

immune-mediated lung diseases in humans (Luster 2014). Subsequent research performed 73 

during the late 1960s and early 1970s revealed that the immune system is indeed targeted by 74 

a broad variety of chemicals and that exposure to these compounds can result in immune 75 

dysfunction (Koller 2001). Importantly, the chemically induced immune disruption occurs at 76 

lower concentrations than those required to induce commonly measured toxicological 77 

endpoints such as lethality (Koller 2001, Luster 2014), which means that immunotoxic 78 

effects are not just side effects of general toxicity but a toxic mode of action (MoA) of its 79 

own. While laboratory studies demonstrated the potential of environmental chemicals to 80 

adversely impact the immune system, epidemiological studies revealed the widespread 81 

occurrence of human diseases potentially caused by immunotoxic chemicals (Luster et al. 82 

1993; House & Selgrade 2010). These and other findings led to the recognition of 83 

immunotoxicity as an important endpoint in the assessment of chemical toxicity, which gave 84 

rise to the development of regulatory guidelines for immunotoxicity testing. 85 

The assessment of immunotoxic effects of chemicals, however, faces a number of challenges. 86 

A first challenge is to distinguish between direct chemical effects on the immune system, 87 

which result from the interaction of the chemical moiety with molecules of the immune cells, 88 

and indirect chemical effects, which may result from a toxicant-induced systemic stress 89 

response, and the immunomodulating activity of the stress hormones (Bennett & Wolke 90 

1987; Barton 2002; Levesque et al. 2003; Glaser & Kiecolt-Glaser 2005; Odermatt & Gumy 91 

2008). A second challenge is that chemicals may have no obvious effects in the resting 92 
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immune system, but may compromise the capacity of the immune system to respond to a 93 

pathogen challenge, i.e. the immunotoxic effect becomes visible only in the activated 94 

immune system. A third challenge is the interpretation of the toxicant-induced 95 

immunomodulation. A toxicant-induced alteration of a molecular or cellular immune 96 

parameter does not always lead to an adverse response such as reduced immunocompetence, 97 

but it may also represent an immunostimulation (Kimber & Dearman 2002). A fourth 98 

challenge in assessing immunotoxic effects is the diversity of potential targets, as well as 99 

possible effects. The interactions of toxicants with the immune system can take place at 100 

multiple sites within the immune network. The resulting immunomodulations can encompass 101 

alterations of immune cell proliferation, differentiation and survival, or alterations in the 102 

functioning of the immune organs and cells, which eventually may lead to immunotoxic 103 

effects, i.e. adverse changes of immune structures and functions. Immunotoxic effects can 104 

involve either immune suppression and increased risk for infectious and malignant diseases, 105 

or immune stimulation, which can trigger allergic or autoimmune diseases (Colosio et al. 106 

2005; Selgrade et al. 2008). In addition, immunotoxic effects can manifest themselves in the 107 

mature immune system as well as in the developing immune system, and they can be both 108 

transient and persistent alterations (Dietert 2009; Winans et al. 2011). 109 

The immune system represents a highly sophisticated physiological network with varied 110 

signal transduction pathways, multiple cellular components and a diversity of mediators and 111 

receptors for communication and activation. As a fully dispersed system, present in most 112 

tissues and organs, the immune system is readily accessible to toxicants, irrespective of their 113 

uptake route, be it via respiratory epithelia, skin, or the intestinal system, and during their 114 

distribution via blood and lymph. Immune organs are particularly exposed to immunotoxic 115 

agents due to their intensive vascularization and blood supply. This applies for peripheral 116 

immune cells in the blood as well as for resident immune cells in organs like the liver. 117 
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Given this complexity of the immune system, a single assay or parameter appears to be 118 

hardly sufficient to assess immunomodulating activities and / or immunotoxic effects of 119 

chemicals. Instead, to rule immunotoxicity “in” or “out”, comprehensive testing panels 120 

covering a range of immune assays and endpoints are needed. In fact, for human risk 121 

assessment, tiered testing strategies for immunotoxic actions of chemicals have been 122 

established, which rely on a suite of immune markers and assays (Burns et al. 1996; Hinton 123 

2000; ICH 2006; Schulte & Ruehl-Fehlert 2006; Luster 2014). First-line assessments 124 

encompass hematology, lymphoid organ weights and histopathology, which are routinely 125 

assessed in standard tests like repeated dose toxicity studies. The next tier involves functional 126 

tests such as the T cell dependent antibody response assay (TDAR assay) which offers the 127 

advantage of integrating many of the cellular components of the basic immune response (T 128 

cells, B cells, macrophages; Luster et al. 1992; Boverhof et al. 2014; Hartung & Corsini 129 

2013). Follow-up immunotoxicity testing usually relies on a case-by-case design to provide 130 

the necessary flexibility in dealing with the diverse effects a chemical may exert on the 131 

immune system. 132 

Immunotoxic effects are of relevance not only in human toxicology but also in 133 

ecotoxicology. There is increasing recognition that many environmental chemicals impact the 134 

immune systems of wildlife animals. Field studies, for instance, have unraveled the frequent 135 

association between contaminant exposure and impaired immune functioning of wildlife 136 

populations (Luebke et al. 1997; Galloway & Depledge 2001; Acevedo-Whitehouse & 137 

Duffus 2009; Morley 2010). Prominent examples include the role of parasite infections in the 138 

global decline of amphibian populations, which appear to be favored by toxicant-induced 139 

immunosuppression (Kiesecker 2002; Rohr et al. 2008). Another intensively investigated 140 

case of wildlife disease with suspected chemical etiology is the distemper virus outbreak in 141 

harbor porpoises, which is considered to be related to the bioaccumulation of 142 
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immunosuppressive polychlorinated biphenyls (PCBs; Beineke et al. 2005; Hall et al. 2006). 143 

In line with such field findings, a steadily increasing number of laboratory studies has 144 

demonstrated that immune parameters and immunocompetence of both invertebrate and 145 

vertebrate wildlife species are responsive to chemical exposure (for reviews see Ross et al. 146 

1996; Rice et al. 1996; Keller et al. 2000; Galloway & Depledge 2001; Burnett 2005; Carlson 147 

& Zelikoff 2010; Desforges et al. 2016). The toxicant-induced alterations of 148 

immunocompetence have consequences for organism fitness and survival as well as for the 149 

prevalence and spread of diseases in populations (Arkoosh et al. 1998; Wilson 1999; 150 

Springman et al. 2005; Loge et al. 2005; Acevedo-Whitehouse & Duffus 2009; Graham et al. 151 

2010). For birds, for instance, it has been shown that changes of non-specific immune 152 

parameters reliably predicted changes in survival (Acevedo-Whitehouse & Duffus 2009). 153 

Importantly, immunotoxic effects of chemicals can combine with immunomodulating effects 154 

of other stressors (Lenihan et al. 1999; Jacobson et al. 2003; Acevedo-Whitehouse & Duffus 155 

2009; Segner et al. 2012), and these cumulative effects of multiple stressors may explain why 156 

infectious diseases in wildlife populations are increasing at an unprecedented rate (Blaustein 157 

et al. 2012) . 158 

The discussion above highlights the relevance of immunotoxicity in ecotoxicology. However, 159 

in contrast to human toxicology, ecotoxicology currently does not command an agreed set of 160 

standard methods or markers informing on immunotoxic actions of chemicals or chemical 161 

exposures as they occur in the environment. Given the steadily growing number of 162 

ecotoxicological studies addressing immunotoxic effects of chemicals in wildlife animals and 163 

/ or laboratory test species, a systematic analysis of the existing ecotoxicological literature to 164 

identify potential immunotoxicity assays and markers appears to be timely. Thus, within this 165 

review, the focus is on studies with teleostean fish, for which a substantial number of 166 

immunotoxicological studies has been published since 1995. There already exist several 167 
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excellent reviews on fish immunotoxicity which consider primarily the mechanisms and 168 

adverse consequences of immunotoxic effects in fish (Zeeman & Brindley 1981; Bols et al. 169 

2001; Rice 2004; Burnett 2005; Reynaud & Deschaux 2006; Carlson & Zelikoff 2010).  170 

 171 

Scope of the present review:  172 

The key question addressed in the present review is, in contrast to these previous reviews, 173 

whether fish immunotoxicology is ready to come up with a set of robust and sensitive assays 174 

and markers to screen for the immunotoxic potential of environmental chemicals, and 175 

whether these screening parameters / assays are predictive of immune dysfunction of the 176 

intact fish. To answer this question, we ask (i) which experimental designs and test 177 

compound concentrations were used to assess fish immunotoxicity, (ii) which immune 178 

markers and assays were employed and how they responded to the toxic exposure, including 179 

the question whether there exist toxicant-specific immunotoxic signatures, and (iii) whether 180 

in vitro and / or in vivo screening assays are predictive of changes in the immunocompetence 181 

of fish. Methodologically, we performed a quantitative analysis of the literature. For instance, 182 

we quantified how often a certain immune marker or immune assay was used; how often it 183 

did or did not respond to the chemical exposure, and how often the assay / marker response 184 

correlated with an alteration of the fish immunocompetence.  185 

Importantly, this review does not discuss the potential use of fish as immunotoxicological 186 

model, comparable to the use of species such as zebrafish as model in basic immunological 187 

research (e.g. Trede et al. 2004), but this review deals with the ecotoxicological impact of 188 

chemicals on the fish immune system. That said it is clear that the discussion will be biased 189 

towards the immune parameters which have been measured in fish immunotoxicity studies, 190 

and neglects (not because of ignorance but because of the existing bias in the published 191 
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literature with fish) aspects which are important in human immunotoxicology, for instance, 192 

immunotoxic effects on the adaptive immune system.  193 

 194 

2.	Material	and	Methods	195 

Terminology 196 

Immunotoxicity: Immunotoxicity refers to immune dysfunction resulting from exposure to 197 

foreign compounds. A chemically induced modulation of an immune parameter is not per se 198 

adverse, but it may lead to immunosuppression, increased susceptibility to infectious and 199 

malignant disease, hypersensitivity / allergy, or autoimmune disease (Kimber & Dearman 200 

2002). Immunotoxicology is the study of chemical impacts on the immune system. For the 201 

present review of immunotoxicity studies with fish, we analyzed both studies demonstrating 202 

adverse effects of chemical exposure on fish immune functions, and studies showing 203 

immunomodulating effects without confirming their adversity.   204 

Challenge induced mortality test: To demonstrate the adversity of a chemical impact on the 205 

immune system of fish, the most frequently used experimental approach is the “challenge 206 

induced mortality test”. In this test, fish are exposed (i) to the suspected immunotoxicant at 207 

concentrations that do not induce mortality, (ii) to an acute fish pathogen at doses which 208 

induce low to moderate levels of mortality, and (iii) to both the pathogen and the toxicant; the 209 

co-exposure is done either serially or simultaneously. Elevated mortalities in the co-exposure 210 

compared to the pathogen-only treatment are taken as a proof that the chemical has 211 

compromised the immune function of the fish, and thus is an immunotoxicant. We refer to 212 

this type of experiment as “challenge induced mortality test”. 213 

Chemical exposure: This was used as short term for both, field exposures in which the fish 214 

are confronted with complex chemical mixtures and laboratory experiments where the fish 215 

are treated with single substances or defined mixtures of chemicals.  216 
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 217 

Data search  218 

Primary data searches were performed online on “pubmed“, “sciencedirect / Scopus“ and 219 

“Web of Science”. The search terms used were: “fish“, “immunotoxicology”, 220 

“immunotoxicity“, “immune“, “innate“, “toxic”, “disease” and combinations thereof. In 221 

addition, the reference lists of relevant review articles and the contents of specialized journals 222 

such as “Aquatic Toxicology” and “Fish and Shellfish Immunology” were searched. The 223 

publication period considered for the search reached from 1995 to 2015. The search yielded 224 

an array of publications on chemical impacts on the immune system of fish, including 225 

reviews, commentaries and original research articles. 226 

 227 

Quantitative analysis of data from original research articles  228 

The main objective of the present review was to evaluate whether, having a look at 20 years 229 

of immunotoxicological research on fish, we are in a position to identify robust and sensitive 230 

immune parameters and / or assays that are able to screen for immunotoxic potentials of 231 

chemicals or chemical groups, and whether these screening parameters / assays are predictive 232 

of immune dysfunction of the intact fish. To this end, we decided for a quantitative analysis 233 

of the existing literature, meaning that we examined (i) which experimental designs were 234 

used how frequently in fish immunotoxicity studies, (ii) which immune markers and assays 235 

were employed how frequently, and how often they did respond to specific chemical classes 236 

and / or modes of action, and (iii) how often an immune marker / assay response was 237 

associated with an altered immunocompetence of the fish. For this quantitative analysis, only 238 

original research articles (n = 241) were considered. To enable the reader to easily recognize 239 

which publications among all cited articles were included in the quantitative analysis, we 240 

provide the list of these 241 articles in Supplement S 1.  241 
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 242 

For the data analysis, several categorizations were used:  243 

- In a number of publications, one and the same parameter was employed in different 244 

experiments, and often, the reaction of immune parameters differed between the 245 

experiments. In order to be able to utilize this differentiated information, two different 246 

quantitative analyses were performed: (i) the article-based analysis: here, the parameter 247 

(for instance the fish species, applied methods, chemicals, exposure time, etc.) was 248 

counted only once per article, even if it was used in several experiments within the article. 249 

Thus, in this case the n-number indicates the number of articles among the 241 articles 250 

that have employed a specific parameter; (ii) the parameter-based analysis: here, the 251 

immune parameter was counted each time it was used, regardless if it was in the same 252 

article or in different articles. Thus, in this case the n-number indicates how often the 253 

parameter has been used in total. The data of all the 241 reviewed articles (regardless 254 

whether in vitro, in vivo or ex vivo studies) were analyzed all together; otherwise it is 255 

mentioned specifically in the related paragraph. 256 

- On the basis of functional considerations, individual immune parameters were aggregated 257 

into 16 main immune parameter groups. A list of the groups and the included immune 258 

parameters is provided in table 1 and 2. In order to obtain a differentiated picture, we 259 

tried to avoid groups comprising too many individual immune parameters. For instance, 260 

we did not form a group “hematology” but split it up into groups like “leucocyte counts”, 261 

“T cells” and “B cells” count. The considered parameters and groups are listed in table 1 262 

for the parameter-based analysis. For the article-based analysis see Supplement S 2. 263 

- Within each of the 16 main groups, the percentage of reported significant changes of the 264 

parameter(s) was calculated: if, in a given article, the parameter measured showed 265 

significant changes (based on the analysis done by the authors of the publication itself), it 266 
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was considered as “showed significant change” (regardless whether it was an up- or 267 

down-regulation).  268 

As an example: Jin et al. (2010) measured the expression level of the immune-related 269 

gene TNF-alpha (tumor necrosis factor-alpha) after exposure to five different chemicals. 270 

In the article-based analysis, TNF-alpha would be counted as n = 1. For the parameter-271 

based analysis, in contrast, it would be counted as n = 5. Further, TNF-alpha would be 272 

included in the group “cytokines” (Table 1 and 2). Since in the study of Jin et al. (2010), 273 

TNF-alpha responded significantly to four out of the five test chemicals, it would be 274 

counted as four times “showed significant change” and one time as “no significant 275 

change” within the group “cytokines”. 276 

 277 

Reference list(s):  278 

All articles that were identified by the literature search are included in the reference list of the 279 

main text. Hence, the reference list at the end of this text contains reviews, commentaries as 280 

well as original research publications on fish immunotoxicology (even before 1995 and after 281 

2015). In addition, the reference list contains articles dealing with the approaches and 282 

concepts used in human immunotoxicology and risk assessment. Although it is not the 283 

intention of this review to present a sound comparative of mammals / humans and fish 284 

immunotoxicological studies, we refer to the mammalian immunotoxicological studies as an 285 

example to illustrate possible approaches for immunotoxicity screening and risk assessment. 286 

In contrast, for the quantitative literature analysis (see above) only original research articles 287 

on fish immunotoxicology were used. To avoid duplications, reviews were not included in 288 

the quantitative data analysis. A total of 241 original research articles dealing with fish 289 

immunotoxicity were found for the period from 1995 to 2015. To enable the reader to 290 
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immediately see which papers form the basis of the quantitative analysis, they are shown in a 291 

separate reference list in the Supplement S 1.  292 

 293 

3.	Results	and	Discussion	294 

Between 1995 and 2015, there is a clear upward trend in the yearly number of original 295 

research papers dealing with fish immunotoxicity (Figure 1, based on reference list S 1). This 296 

increase may reflect the rising interest of both industry and academia in chemicals with 297 

specific MoA, including immunomodulating MoAs. Moreover, there appears to be growing 298 

awareness of the ecotoxicological relevance of immunotoxic actions of chemicals. 299 

 300 

3.1 Which experimental designs were used to assess the immunotoxic actions of 301 

chemicals in fish? 302 

The studies used a wide range of experimental designs for the assessment of immunotoxicity 303 

in fish (article-based analysis):  304 

Fish species: Four families dominated, Cyprinidae, mainly common carp (Cyprinus carpio, 305 

11 % of all used fish species; Figure 2) and zebrafish (Danio rerio, 9 %), Salmonidae, mainly 306 

rainbow trout (Oncorhynchus mykiss, 20 %), Sparidae, mainly gilthead seabream (Sparus 307 

aurata, 11 %), and Cichlidae, mainly Tilapia (Tilapia sp., 6 %). 308 

The use of small laboratory species such as zebrafish (Danio rerio) or Japanese medaka 309 

(Oryzias latipes) for immunotoxicological studies was still limited regarding the reviewed 310 

articles, although during the last years the number of articles on small laboratory fish species, 311 

especially zebrafish, for immunotoxicity studies has been increasing.  312 

Age of fish: Most publications used “juvenile” fish (61 % of the fish were rated as juvenile), 313 

while only 12 % were classified as adults, and 9 % as embryos. In 18 % of the studies no 314 

information on age of the used fish was given. Given the fact that fish immunocompetence 315 



 16 

(innate and adaptive) varies with age (Tort et al. 2003; Duffy et al. 2003), precise age / stage 316 

information would be important for the interpretation of the experimental findings. Many 317 

authors provided information on weight and / or length of fish (59 % on weight, 1 % on 318 

length, 17 % on both). However, this information is difficult to link to specific life stages as 319 

the length / weight-age relationship varies according to species, feeding regime, fish density, 320 

temperature and other factors.  321 

Although the use of fish embryos in ecotoxicological research is becoming more and more 322 

common (Braunbeck et al. 2014), only 9 % of the use fish in immunotoxicological studies 323 

were embryos. This is surprising since, on the one hand, the period of immune system 324 

differentiation in early life may represent a window of vulnerability, and, on the other hand, 325 

early life stages of fish offer a number of technical advantages. For instance, they allow to 326 

examine toxic effects in multiple tissues in parallel (e.g. Zhang et al. 2008), or to visualize - 327 

by means of transgenic fish - immunotoxic processes in the live animal (e.g. Fehr et al. 328 

2015). Furthermore, since early life stages of fish, in particularly the embryonic stage, 329 

possess only innate but no adaptive immunity (e.g. Lam et al. 2004) the role of innate versus 330 

adaptive mechanisms in the immunotoxic response can be studied. Finally, the short life 331 

cycle of small laboratory fish species such as zebrafish provides the option to study 332 

persistent, long-term effects of early life exposure. In human toxicology, developmental 333 

immunotoxicity is an increasing concern since it predisposes children for diseases, that have 334 

been on the rise in recent decades (e.g. allergic diseases, asthma, autoimmune conditions; 335 

Dietert 2009; Collinge et al. 2012). In fish, only few studies addressed persistent 336 

immunotoxic effects arising from early life exposure, and those were mainly done with long-337 

lived salmonids (Ottinger & Kaattari 2000; Milston et al. 2003). With the increasing use of 338 

fish embryos in toxicological testing the question of developmental immunotoxicology in fish 339 

is likely to attract more attention (Liu et al. 2014; Seemann et al. 2015). Depending on the 340 
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immune structure or function under consideration, the “sensitive window” is not necessarily 341 

restricted to the embryonic stage but may extend into the juvenile stage, as shown for thymus 342 

development of the sea bass (Dicentrarchus labrax; Seemann et al. 2015).  343 

Sex of fish: Another factor which can influence the outcome of immunotoxicity studies are 344 

immunological differences between males and females. Sexual dimorphism is well-known 345 

for the mammalian immune system (Nava-Castro et al. 2012), but it seems to be present in 346 

fish as well (Segner et al. 2006; Demas et al. 2011). For instance, Hoeger et al. (2005) 347 

observed that exposure of rainbow trout to municipal sewage treatment effluents resulted in 348 

decreased antibody production and reduced lymphocyte number in sexually mature females 349 

but not in males. Similarly, Ye et al. (2012) found sex-specific differences in the response of 350 

the complement system of the marine medaka (Oryzias melastigma) exposed to a 351 

polybrominated flame retardant. These examples show that the fact, that 79 % of the 352 

published immunotoxicity studies do not provide information on the sex of the experimental 353 

fish, represents a serious information gap. 354 

Exposure duration: Three scenarios were most common (i) exposure over hours (1-24 hours; 355 

representing 19 %), (ii) exposure over days (1-7 days; 28 %), or (iii) exposure over weeks (1-356 

4 weeks; 31 %). Long-term studies, with exposure over several months were rare (11 %), as 357 

were studies using single pulse exposures, e.g. by injection (5 %). Exposures for less than 1 h 358 

were applied in 1 % of the studies, and in 5 % no information on exposure duration was 359 

provided. A rationale for the choice of exposure duration was usually not given. 360 

Exposure concentration: A critical parameter in immunotoxicity studies is the selected 361 

concentration(s) of the test agent. Structural and functional changes of the immune system 362 

occurring at concentrations high enough to induce apical toxic responses such as lethality or 363 

cytotoxicity do not necessarily indicate an immunotoxic activity of the test agent, but are 364 

likely to represent general toxicity. In order to classify an effect to be immunotoxic, the effect 365 
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has to occur at concentrations clearly below those required to cause apical toxicity (Koller 366 

2001; Luster 2014). Unfortunately, and this is a major drawback in the existing literature on 367 

fish immunotoxicity, the vast majority of studies (74 %) does not provide information on how 368 

the selected test concentrations relate to general toxicity of the test compound. Some studies 369 

(13 %) claim that the immunotoxic effects were tested at “sub-lethal” concentrations 370 

however, without providing information on the distance to the lethal concentrations. Only in 371 

13 % of the analyzed studies, the test concentrations were defined as a percentage of the 372 

concentrations required to induce mortality. Furthermore, we check not only whether the 373 

experimental concentrations were reported in relation to general toxicity, but also how many 374 

studies controlled for (cyto-) toxic / lethal effect(s): in 62 % (Figure 3), the studies either 375 

provided no information at all or, if in vitro experiments were conducted, only measured the 376 

cell viability after isolation but not after chemical exposure.  377 

 378 

3.2 Which chemical groups were studied in immunotoxicity studies with fish? 379 

3.2.1 Hormones / endocrine disrupting compounds (EDCs; 27 %) 380 

Almost one third of the compounds studied in the reviewed articles were hormonally active 381 

substances (article-based analysis; for details regarding the chemical grouping see 382 

Supplement S 3). These compounds are of high environmental relevance, as the aquatic 383 

environment represents a sink for so-called endocrine disrupting compounds (EDCs; Sumpter 384 

& Johnson 2005). To date, fish toxicological research on EDCs has mainly focused on their 385 

effects on reproduction, whereas little attention was given to possible endocrine-immune 386 

interactions (Segner et al. 2012). There exist a few reviews on the influence of endogenous 387 

hormones on the fish immune system (Harris & Bird 2000), with a focus on the role of 388 

corticosteroids. Concerning environmental EDCs, up to now, mainly compounds with 389 

estrogenic, androgenic and thyroidal activities have been investigated (Rice & Xiang 2000; 390 
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Segner et al. 2006; Milla et al. 2011; Quesada-García et al. 2014). Many immune disorders 391 

are rooted in the endocrine system due to the fact that the endocrine and the immune systems 392 

are intricately connected, with some of the immune and hormone factors having evolved 393 

within the same family of structurally related molecules (Verburg Van Kemenade et al. 394 

2009). This intimate relationship ensures the optimal allocation of limited resources among 395 

the fitness-associated traits, reproduction and immunity, as it is postulated by the life history 396 

theory (Bergman et al. 2013). Thus, inappropriate (in-) activation of selected endocrine 397 

pathways by environmental EDCs may also disturb normal immune functioning and may 398 

alter disease susceptibility of the organism. In fact, the results reported in the studies 399 

analyzed for the present review provide strong evidence that estrogen-active EDCs, such as 400 

natural estrogens like estradiol (E2) and xeno-estrogens like nonylphenol (NP) and bisphenol 401 

A (BPA) can modulate the immune system and the immunocompetence of fish. Studies 402 

analyzing global transcriptomic responses indicate that a significant fraction of immune 403 

genes is responsive to treatment by estrogen-active compounds (Wenger et al. 2011; Liarte et 404 

al. 2011; Wenger et al. 2012; Burki et al. 2013; Krasnov et al. 2015). While the available data 405 

suggests that estrogenic EDCs are able to modulate the innate immune system of fish, the 406 

currently available information on the adaptive immune system is still inconclusive (Milla et 407 

al. 2011). Likewise, the findings on the consequences of immunomodulation caused by 408 

exposure to EDCs on disease resistance of fish are equivocal: e.g. Burki et al. (2013) found 409 

that E2-induced changes of immune gene expression were not associated with increased or 410 

decreased tolerance of rainbow trout towards the parasite Tetracapsuloides bryosalmonae. In 411 

contrast, Wenger et al. (2011; 2012) and Shelley et al. (2012) reported enhanced 412 

susceptibility of E2- or NP-treated trout towards bacterial pathogens. Finally, Krasnov et al. 413 

(2015) observed an increased resistance of estrogen- or androgen-treated salmon against the 414 

ectoparasitic salmon louse. Also androgenic EDCs are immunologically active, as reviewed 415 
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by Milla et al. (2011), with the main effects being alterations in immune cell proliferation and 416 

function, especially of macrophage activity and of genes coding for soluble mediators, 417 

complement factors or acute phase proteins. For instance, trenbolone induced alterations 418 

mainly of the humoral system and it decreased transcript levels of rag-1 and rag-2, which are 419 

involved in the development and differentiation of lymphoid cells (Massart et al. 2015).  420 

The immunomodulating effects of EDCs on the fish immune system are likely to be mediated 421 

by estrogen and androgen receptors, which are expressed in piscine immune cells (Slater et 422 

al. 1995; Iwanowicz et al. 2009; Casanova-Nakayama et al. 2011; Cabas et al. 2011; Shelley 423 

et al. 2013). In a recent in vitro study by Yang et al. (2015), the authors provided strong 424 

evidence that the estrogen BPA modulates the antibacterial activity of carp macrophages 425 

through the estrogen receptor (ER) signaling pathway. This response was concentration-426 

dependent, with concentrations up to 10 µg/L enhancing macrophage activity, whereas higher 427 

concentrations induced apoptosis. The fact that the immunomodulatory effects of estrogens 428 

are concentration-dependent and that they can cause both immunostimulating and 429 

immunosuppressive effects is well documented for mammals, too (Straub 2007). Yang et al. 430 

(2015) also showed that the effect of BPA on carp macrophages was mediated not 431 

exclusively through the ER pathway but through an interaction with the NFκB pathway 432 

(nuclear factor kappa-light-chain-enhancer). More recent findings in mammalian systems 433 

corroborate the finding that immunomodulating effects of EDCs are mediated through several 434 

signaling pathways. For instance, Rogers et al. (2013) found that BPA exerts its 435 

immunological effects via the ERs, the arylhydrocarbon receptors (AhRs) and the 436 

peroxisome proliferator-activated receptor (PPAR) family. PPARs are also involved in the 437 

immunotoxic effects of phthalate esters such as di(2-ethylhexyl)phthalate which are widely 438 

used as plasticizer. In mammals, di(2-ethylhexyl)phthalate is known as an important 439 

immunotoxicant, which causes inhibition of cell proliferation, inflammation inhibition, 440 
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reduced antibody response, and increased immune cell apoptosis – effects which involve 441 

PPARγ signaling. In fish, di(2-ethylhexyl)phthalate is immunoactive, promoting B cell 442 

differentiation while suppressing plasmablast expansion, with these effects possibly being 443 

mediated through PPAR (Martins et al. 2015). Another receptor pathway which appears to 444 

play a role in mediating effects of EDCs on the fish immune system is thyroid signaling via 445 

thyroid receptors α and β. In fact, the TRs are expressed in fish leukocytes, and, 446 

consequently, exposure of fish to thyroid disruptors can modulate transcript levels of diverse 447 

immune genes (Quesada-García et al. 2014; 2016). 448 

Cortisol and synthetic corticosteroids are well characterized for their immunosuppressive 449 

action in fish (Mommsen et al. 1999), and are frequently used as positive controls in 450 

immunotoxicity studies. Natural and synthetic corticosteroids reach the aquatic environment 451 

via effluents of wastewater treatment plants (Kugathas & Sumpter 2011), however, currently 452 

it is not well understood whether environmental corticosteroids indeed impact the immune 453 

system of exposed fish (Schriks et al. 2010; Kugathas et al. 2013; Macikova et al. 2014; 454 

Zhang et al. 2016). In contrast, non-steroidal EDCs were much less intensively investigated 455 

and represent only 7 publications among the 241 analyzed articles. 456 

 457 

3.2.2. Pesticides (18 %) 458 

Pesticides were among the first environmental chemicals to be investigated for their 459 

immunomodulatory effects on mammals (Wassermann & Wassermann 1969), and their 460 

possible immunological effects on teleost fish attracted early attention (see reviews by 461 

Zeeman & Brindley 1981; Dunier & Siwicki 1993). Among the reviewed studies, 18 % of the 462 

tested chemicals were pesticides, in particular insecticides and herbicides (article-based 463 

analysis). Exposure to pesticides occurs primarily via agricultural runoff, and is therefore 464 

often periodic due to rainfall occurrence and seasonal changes. This can result in high peak 465 
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concentrations, especially in smaller creeks flowing through agricultural areas (Moschet et al. 466 

2014). The different pesticides that were investigated in the studies reviewed belong 467 

primarily to the insecticide groups of organophosphates, organochlorines, and pyrethroids. 468 

They have diverse MoAs, but the vast majority of them showed immunomodulating 469 

properties when administered to fish. Typically, pesticides affected nonspecific, innate 470 

immune parameters such as respiratory burst activity of phagocytes, or leukocyte counts 471 

(Harford et al. 2007; Misumi et al. 2008; Kreutz et al. 2011; 2012). The pyrethroids 472 

bifenthrin and permethrin, as well as the organophosphate chlorpyrifos, induced changes in 473 

the expression of genes that are involved in the immune response of fish, such as IL, TNF or 474 

CXC (Eder et al. 2009; Jin et al. 2010; Beggel et al. 2011). In a study with early life stages of 475 

zebrafish, Jin et al. (2015) showed that the immunotoxic effects of chlorpryifos occur at 476 

sublethal concentrations, in the same concentration range that induces developmental 477 

toxicity, neurotoxicity and oxidative stress. Interestingly, sublethal pesticide exposure 478 

enhanced susceptibility of fish to pathogens (Clifford et al. 2005; Fatima et al. 2007; Eder et 479 

al. 2008). When Clifford et al. (2005) exposed Chinook salmon to either the pyrethroid 480 

esfenvalerate, or to infectious hematopoietic necrosis virus (IHNV), they recorded no 481 

mortalities. However, the combination of the two agents resulted in 24.1 % mortality. 482 

Unfortunately, there is almost no information available on the mechanisms of pesticide action 483 

on the fish immune system. Clifford et al. (2015) addressed this question for esfenvalerate 484 

and its interaction with IHNV. They found that esfenvalerate, although acting primarily as a 485 

neurotoxicant, also decreases the transcription of two early, non-specific anti-viral immune 486 

genes (Mx-1 and Vig-8).  487 

 488 
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3.2.3 PCBs / PAHs / other lipophilic organic toxicants (14 %) 489 

Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and other 490 

organic chemicals correspond to 14 % of the compounds studied in the analyzed articles 491 

(article-based analysis). These pollutants are known to have diverse toxicological properties. 492 

Evidence for the negative impact on fish immune function is relatively abundant: halogenated 493 

aromatic hydrocarbons (HAHs) like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 494 

coplanar PCBs are known to induce a wide range of immunological effects in mammals, 495 

including thymic atrophy, alterations of cytotoxic T lymphocyte activity or T cell-dependent 496 

antibody responses (Selgrade et al. 2008). In fish, a number of studies show that these 497 

compounds have immunomodulating activities and increase pathogen susceptibility 498 

(Hutchinson et al. 2003; Maule et al. 2005; Iwanowicz et al. 2009).  499 

The polybrominated biphenyl ethers (PBDEs) are another class of immunosuppressive 500 

halogenated aromatic xenobiotics. Arkoosh et al. (2010; 2015) observed a dichotomic effect 501 

of PBDEs on disease resistance of Chinook salmon: when fish were treated with a 502 

concentration reflecting contaminant levels found in stomach contents of wild Chinook 503 

salmon, fish were more susceptible to the bacterial pathogen Vibrio anguillarum than 504 

controls. In contrast, when fish were treated with a 10 times higher PBDE concentration, 505 

infectious disease susceptibility was not increased. The reason for this is not yet understood.  506 

Finally, the immunomodulating activities of PAHs in fish are well documented, both from 507 

field (Arkoosh et al. 1998) and laboratory studies (Carlson et al. 2004; Reynaud & Deschaux 508 

2005; Bado-Nilles et al. 2009; Hogan et al. 2010; Phalen et al. 2014). PAH effects on 509 

lymphocyte proliferation have been described in fish as well (Smith et al. 1999; Carlson et al. 510 

2002). In contrast, Palm et al. (2003) did not find an immunomodulatory effect after exposing 511 

Chinook salmon via the diet to an environmentally relevant PAH mixture. 512 
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A common feature of the immunoactive HAHs and PAHs is that they act as ligands of the 513 

AhR. This ligand-activated transcription factor appears to play a central role in their 514 

immunomodulating activity. Prominent examples of an AhR-regulated gene include the 515 

cytochrome P450-dependent biotransformation enzymes such as CYP1A1. Nevertheless, 516 

these enzymes – at least in mammals – appear to be not involved in the immunotoxicity of 517 

AhR ligands, since the immunotoxic effects are still present in CYP1A1 knockout models 518 

(Selgrade 2007). While for many years, the AhR has been perceived mainly as a regulator of 519 

xenobiotic metabolism, there is now increasing attention to its role in regulating immune 520 

functions. Recent research has unraveled that the AhR is expressed in a variety of immune 521 

cells, and that it has multiple regulatory roles in the immune system of mammals (Marshall & 522 

Kerkvliet 2010; Stockinger et al. 2014; Tian et al. 2015). The AhR is strongly involved in the 523 

coordination of inflammatory processes, in the differentiation of B cells, of T helper (Th) 1 524 

cells, Th2 cells, Treg cells and Th17 effector cells, as it interacts with the NFκB pathway. It 525 

appears that immunotoxic effects of TCDD and related HAHs are mediated via these 526 

pathways rather than via the AhR-dependent activation of biotransformation.  527 

For fish, there is currently little information on the role of the AhR in immune system 528 

regulation. Indirect evidence for the presence of an AhR in fish immune cells was provided 529 

by Nakayama et al. 2007, who showed that CYP1A can be induced in specific immune cell 530 

subpopulations of rainbow trout. However, whether these findings implicate that the 531 

immunotoxic effects of HAHs in fish are, comparable to mammals, mediated via the immune 532 

regulatory function of the AhR, remains to be clarified. 533 

AhR-activating PAHs like benzo(a)pyrene may induce their immunomodulatory effects 534 

principally through the same mechanisms as the HAHs, i.e. through the immunoregulatory 535 

function of the AhR. However, additional mechanisms appear to play a role in PAH 536 

immunotoxicity. PAHs have been shown to disrupt intracellular calcium levels in mammalian 537 
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and piscine immune cells (Reynaud et al. 2003), and can thereby modify immune cell 538 

functioning. Mammalian studies indicated that PAH immunotoxicity can also be caused by 539 

PAH metabolites rather than the parent compounds, and this mechanism may also be relevant 540 

in fish (Carlson et al. 2002; 2004). The metabolites may reach the immune cells via blood 541 

circulation from the liver, or they may be generated locally in the immune cells. Immune 542 

cells have a limited capacity for metabolizing PAHs and generating reactive metabolites 543 

(Carlson et al. 2004; Möller et al. 2014), although the metabolic rates of immune cells are 544 

orders of magnitude lower than those of liver cells. 545 

 546 

3.2.4 Metals (9 %) 547 

The extensive use of metals in industry, agriculture and private households is responsible for 548 

the input of different metallic ions and metal organic compounds into the environment. 549 

Nevertheless, only 9 % of the compounds investigated by the studies reviewed were metals 550 

(article-based analysis). For example, Sanchez Dardon et al. (1999) examined the influence 551 

of cadmium, mercuric and zinc chloride, and their mixtures, on the immune system of 552 

juvenile rainbow trout. They reported decreased levels of immunoglobulin M (IgM) and 553 

changes in lysozyme and phagocytic activity. Changes in oxidative burst activity are 554 

frequently reported in response to metal exposure of fish. Recent studies also focused on the 555 

immunotoxic properties of metal-nanoparticles. These particles are increasingly used, for 556 

instance, in cosmetics and medicine. Due to their small size, nanoparticles may act differently 557 

than the “normal-sized” particles, and thus, they could cause unknown effects. And also 558 

because of their small size, nanoparticles can be ingested by aquatic animals and even pass 559 

through the cell membranes, leading to diverse adverse effects including immunotoxic 560 

effects. Bruneau et al. (2013), for instance, showed that quantum dots of cadmium as well as 561 



 26 

dissolved cadmium (CdCl2) significantly decreased lymphocyte transformation in head 562 

kidney lymphocytes of rainbow trout.  563 

 564 

3.2.5 Pharmaceuticals (4 %) 565 

The input of pharmaceuticals into surface waters can represent a serious hazard for aquatic 566 

animals (Overturf et al. 2015). Among the studies analyzed for this review, 4 % of the used 567 

chemicals were pharmaceuticals (article-based analysis). As those compounds are designed to 568 

be biologically active, and many of the drug targets are phylogenetically conserved, they may 569 

impact fish at very low concentrations (Kidd et al. 2007). A prominent example for this 570 

aspect is the contraceptive pill ingredient, ethinylestradiol (EE2; an estrogenic EDC), for 571 

which a predicted no effect concentration (PNEC) value of 0.35 ng/L has been derived 572 

(Caldwell et al. 2008). 573 

Probably a considerable fraction of pharmaceuticals detected in the environment are 574 

immunoactive, including compounds like the anti-inflammatory steroidal drug, 575 

dexamethasone (Lovy et al. 2008; Salas-Leiton et al. 2012) and the non-steroidal drug DCF 576 

(Ribas et al. 2015; Mehinto et al. 2010). The presence of immunotoxicity related to 577 

pharmaceutical contamination in river systems was evidenced by Khalaf et al. (2009) who 578 

showed that pharmaceutical-containing water samples from a river in Sweden induced 579 

inflammatory responses in an in vitro bioassay with human cells. As many of the drug targets 580 

are phylogenetically conserved, these substances could affect these targets in fish as well.  581 

Veterinary drugs used for the treatment of fish in fish farms, can also have 582 

immunomodulating activities. For instance, the anesthetics benzocaine, MS222 (tricaine 583 

methanesulfonate) and quinaldine sulphate were found to suppress immune functions in fish 584 

(Ortuño et al. 2002).  585 
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An interesting case of an immunoactive environmental contaminant is the non-steroidal anti-586 

inflammatory drug DCF. This pharmaceutical is designed as inhibitor of cyclooxygenase 587 

(COX) enzymes, which catalyze the synthesis of prostanoids. It is prescribed in human and 588 

veterinary medicine to prevent inflammation and to reduce pain. DCF is poorly removed in 589 

conventional wastewater treatment plants, and as a consequence, it is widely detected in the 590 

aquatic environment and also one of the most import pharmaceutically active compounds 591 

(Letzel et al. 2009) where it may affect the immune system of aquatic vertebrates like fish. 592 

Surprisingly few studies have addressed the possible immunomodulatory mechanisms of 593 

DCF in fish. However, it is known that DCF is taken up by fish, metabolized in the liver, and 594 

excreted via the bile (Schwaiger et al. 2004; Mehinto et al. 2010). Immune-related effects 595 

have been investigated by Mehinto et al. (2010) who showed that environmentally relevant 596 

concentrations were able to significantly reduce the transcript levels of cox1 and cox2 in 597 

rainbow trout. Hoeger et al. (2005) exposed brown trout to DCF (nominal concentrations of 598 

0.5, 5.0 and 50 µg/L) and observed that this resulted in reduced hematocrit as well as 599 

increased granulocyte accumulation and MHC II (major histocompatibility complex class II) 600 

expression indicative of inflammatory processes. In addition, in vitro incubations with head 601 

kidney macrophages of brown trout revealed that DCF inhibited the synthesis of 602 

prostaglandin E2 (Hoeger et al. 2005) . Whether these immune effects are specific to DCF or 603 

represent a general response of the fish immune system to non-steroidal anti-inflammatory 604 

drugs remains to be shown. What is also lacking to date is a study which shows that 605 

environmentally relevant concentrations of DCF are able to increase the susceptibility of fish 606 

to pathogens. 607 

 608 
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3.2.6 Field studies (8 %) 609 

Field studies (8 %, article-based analysis) on the immune status of fish were conducted in 610 

contaminated environments (e.g. Arkoosh et al. 2001; Hutchinson et al. 2003; Hoeger et al. 611 

2004; Salo et al. 2007; Hébert et al. 2008; Leaver et al. 2010; Connon et al. 2012; Gagne et 612 

al. 2013), or some studies exposed fish in the laboratory to complex environmental matrices 613 

such as crude oil or oil sands and studied the effects on their immune parameters (Tahir & 614 

Secombes 1995; Nakayama et al. 2008; Song et al. 2011; 2012; Bado-Nilles et al. 2011; 615 

Leclair et al. 2013). Among the pioneering studies on environmental impacts on the fish 616 

immune system were those of Arkoosh et al. (e.g. 1991, 1998, 2001) on migrating Chinook 617 

salmon in PAH-contaminated habitats which highlighted that immunotoxic effects are of high 618 

relevance in the environment.   619 

 620 

3.3 Immune responses of fish to toxicant exposure 621 

3.3.1 Which immune mechanisms of fish were responsive to chemical exposure? 622 

In mammalian immunotoxicology, four major mechanisms are distinguished through which 623 

chemicals can cause immune-mediated injury (Selgrade et al. 2008; Luster & Gerberick 624 

2009): immunosuppressive reactions, hypersensitivity or allergic reactions, autoimmune 625 

responses, and developmental immunotoxicity. Observations that low molecular weight 626 

chemicals can be antigenic and can induce allergic responses were among the very first 627 

reports indicating that chemicals can have adverse impacts on the immune system of 628 

mammals (Landsteiner & Jacobs 1935). Later it became evident that chemicals can also 629 

cause immunosuppressive effects leading to an increased risk of infectious or neoplastic 630 

diseases (Selgrade 2007). Immunosuppressive toxicants in mammals include PAHs, HAHs, 631 

or heavy metals.  632 
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For fish, the studies published to date (and briefly discussed above) dealt exclusively with 633 

immunosuppressive or –stimulating actions of chemicals. To our knowledge, no report exist 634 

describing allergic or autoimmune responses in fish exposed to chemicals. However, it is 635 

known that fish are able to mount autoimmune responses, for instance, against the germ cells 636 

in the gonads (Secombes et al. 1985; Presslauer et al. 2014), or after vaccination (Koppang et 637 

al. 2008). Hence, the absence of reports on autoimmune responses in fish under chemical 638 

exposure cannot be explained by the principal absence of the biological mechanism, but the 639 

explanation appears to be a technical one: either chemicals with autoimmune / allergic 640 

properties have not yet been tested in studies with fish, or there exists insufficient knowledge 641 

which parameters to measure for identifying an autoimmune / allergic response in toxicant-642 

exposed fish. This is an important gap in knowledge on fish immunotoxicology which should 643 

be addressed in future research.  644 

 645 

3.3.2 Which parameters were used to assess immunomodulatory effects of chemicals in 646 

fish? 647 

A broad variety of immune parameters have been used to assess the effects of chemicals on 648 

the immune system of fish (Figure 4; full list as Supplement S 2). In total, 1160 individual 649 

immune parameters (article-based analysis) were quantified which were used in the 241 650 

analyzed publications. While some parameters were only used in a single or in few articles, 651 

others parameters were used more frequently: phagocytic activity (representing 17 %), 652 

transcript levels of immune-related genes (13 %), respiratory burst activity (10 %), and 653 

lysozyme activity (7 %).  654 

Phagocytic activity (17 %): Phagocytosis plays a key role in the initial defense against 655 

pathogens (Castro & Tafalla 2015). Remarkably, in addition to the “classical” phagocytic 656 

cells like e.g. granulocytes, piscine B cells also display considerable phagocytic activity (Li 657 
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et al. 2006). Methodologically, phagocytic activity is measured mainly as incorporation of 658 

fluorescent-labeled beads or (inactivated) bacteria into leukocytes (Shelley et al. 2009; 659 

Müller et al. 2009). Both methods enable rapid flow cytometric analysis for determination of 660 

the degree of phagocytosis.  661 

Respiratory burst activity (10 %): The respiratory burst activity of phagocytic cells involves 662 

the generation of oxyradicals, which then kill pathogens ingested by the phagocytic cells. 663 

Methods to measure respiratory burst activity include the reduction of nitro blue tetrazolium 664 

(NBT) or chemiluminescence analysis of the reactive oxygen species (ROS; Koellner et al. 665 

2002).  666 

Lysozyme activity (7 %): Lysozyme disrupts the cell walls of bacteria by splitting glycosylic 667 

linkages in the peptidoglycan layers. Methodologically, lysozyme activities can be assessed 668 

by adding test sera from the study animals to defined bacterial cell suspensions, and then 669 

measuring the lysis of the bacterial cells (Alexander & Ingram 1992).  670 

Expression of immune-related genes (13 %): Mostly, cytokines and other soluble immune 671 

mediators were measured. Methodologically, the analysis of cytokines and other mediators 672 

was usually performed at the mRNA level using quantitative RT-PCR (reverse transcription 673 

polymerase chain reaction; microarrays or omics-studies were not included in this 674 

quantitative analysis). Immunochemical methods were applied rarely, probably because only 675 

few antibodies against immune proteins in fish are available. The most frequently analyzed 676 

immune mediators were (Figure 5) (i) interleukins, ILs (representing 24 % of the analyzed 677 

genes), (ii) TNF (11 %), (iii) interferons, IFNs (7 %), and (iv) CXC chemokines (5 %). A list 678 

of all analyzed genes (via qRT-PCR) is available as Supplement S 4.  679 

A few studies applied microarray technology to evaluate the global transcriptomic response 680 

of fish to immunotoxicants. Shelley et al. (2012) performed hepatic transcriptomic profiling 681 

with rainbow trout exposed for four days to either atrazine or NP. High doses of the toxicants 682 
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modulated the expression of a number of pathways related to immune system function. Both 683 

toxicants down-regulated pathways involved in B cell activation and viral infectivity, 684 

whereas complement activation (alternative pathway) and several STAT signaling pathways 685 

were differentially regulated, with NP exposure leading to an up-regulation and atrazine 686 

exposure leading to a downregulation. These changes of immune gene transcript levels were 687 

associated with increased susceptibility of rainbow trout to pathogen infection (Vibrio 688 

anguillarum), both NP and atrazine. Similar results were found for E2 in combination with 689 

the pathogen Yersinia ruckeri in the study of Wenger et al. (2014). And a number of 690 

microarray studies which were not aiming to assess immunotoxicity also found that immune-691 

related genes and pathways were significantly affected by the toxic exposure (Krasnov et al. 692 

2005; Williams et al. 2008; Leaver et al. 2010) – indicating again the sensitivity of immune 693 

parameters to toxicants. The microarray studies were not included in this quantitative analysis 694 

of immune gene responses due to the high number of genes in these studies, they would 695 

outweigh the data of PCR-based studies and would introduce a bias. 696 

 697 

Three of the four most frequently measured parameters (phagocytosis, respiratory burst, 698 

lysozyme) are constituents of the innate immune system, and even among the measured 699 

immune-related genes, the majority of analyzed genes belonged to the innate immune system. 700 

Although adaptive immune parameters are responsive to toxic exposure (e.g. Koellner et al. 701 

2002; Carlson et al. 2004; Martins et al. 2015), they are rarely considered in fish 702 

immunotoxicity studies. Why do fish immunotoxicological studies place so much emphasis 703 

on the innate immune system? It may be due to the general believe that the innate immune 704 

system is the dominating immune component of fish (Tort et al. 2003; Magnadóttir 2006; 705 

Lieschke & Trede 2009). Another reason may be that the majority of studies used naive, i.e. 706 

non-infected fish in rather short-term (less than a week) exposures– a scenario which argues 707 
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to study immediate innate rather than adaptive responses. Finally, the emphasis on innate 708 

parameters may be related to technical constraints such as the limited availability of tools and 709 

methods for adaptive immune parameters. For instance, antibodies to identify piscine T cells 710 

became available only very recently (Nakanishi et al. 2015).  711 

Methodological considerations may also explain the rare use of histopathology in fish 712 

immunotoxicity studies. Histopathological evaluation of immune organs like spleen, thymus, 713 

lymph nodes, blood and bone marrow is a central parameter in immunotoxicity risk 714 

assessment in mammalian immunotoxicology (Vos et al. 1983; Wester et al. 1994; 715 

Krzystyniak et al. 1995). The use of structural changes / histopathology as immunotoxicity 716 

marker has already been recommended at an early stage of fish immunotoxicity research 717 

(Wester et al. 1994), since the immunopathology provides an important link between the 718 

molecular response and the adverse outcome. Nevertheless, until now histopathology has not 719 

found widespread use in fish immunotoxicological studies. The bottleneck for a more 720 

intensive use of histopathology in fish immunotoxicology may be the limited availability of 721 

academic training and expertise in fish histopathology (Feist & Segner 2013; Wolf et al. 722 

2015). 723 

Overall, since most authors do not provide the rationale behind their selection of immune 724 

parameters, we can only speculate on the reasons for the preference on the innate immune 725 

system, whether this due to the fact that the innate system is indeed the main target of 726 

immunotoxic chemicals in fish, or whether it is due to a bias in the parameter selection.  727 

 728 

3.3.3 Which immune parameters of fish were responsive to chemical exposure? The 729 

search for screening parameters for potentially immunotoxic chemicals  730 

Beyond the question which parameters were used how often in fish immunotoxicity studies, 731 

the question is which of these parameters may serve in fish immunotoxicity screening. In 732 
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many hazard assessment programs, the first tier is a prioritization step in which chemicals are 733 

screened for possible toxic activities, which then are confirmed or rejected in the subsequent 734 

testing tiers. The screening for potential toxic activities can be done by means of in silico, in 735 

vitro and in vivo assays. Immune parameters to screen for potential immunotoxicants should 736 

ideally be responsive to all known immunotoxicants, independent of their MoA, and they 737 

should be non-responsive to non-immunotoxicants.  738 

In order to search for possible screening parameters for chemicals with immunotoxic activity 739 

to fish, we analyzed how often the parameters summarized in the 16 main groups 740 

significantly reacted to chemical treatments (parameter-based analysis, see Material & 741 

Methods).  742 

Analysis of all parameters: Within each of the 16 groups, in at least half of the experiments 743 

the measured parameters were responsive to chemical treatment (Figure 6), except the group 744 

„T cells“, with 38 % significant responses only. Two groups (non-assigned cellular 745 

components (innate) and acute phase proteins) showed 100 % significant responses, which 746 

means every time when they were analyzed in an immunotoxicological experiment, they 747 

were significantly modulated by the chemical exposure. At a first glance, this result might 748 

indicate that the two immune parameter groups are highly suitable as screening markers for 749 

potential immunotoxic activity of chemicals. However, since both groups contained only a 750 

low number of observations (n = 6 or 8, respectively), it is questionable whether this 751 

interpretation holds.  752 

A fairly high responsiveness (92 %) was also shown by the group “challenge induced 753 

mortality test”. However, it has to be considered that this type of – resource intensive – 754 

experiment is mostly done, when information on immunomodulating properties and 755 

concentrations of the chemical is already available. In other words: probably a pre-selection 756 

has taken place resulting in an overestimation of the responsiveness of the “challenge induced 757 



 34 

mortality test” parameter. Moreover, due to resource requirements of the challenge test 758 

concerning labor, animals and costs as well as due to ethical considerations, this test is not 759 

appropriate as a screening test.  760 

The groups with the largest number of observations were the groups of “cytokines” (n = 540) 761 

and “phagocyte functions” (n = 462). As a subset of the group “phagocyte function”, the 762 

phagocytosis assay (including the parameters “phagocytic activity”, “phagocytic index” and 763 

“phagocytic capacity”; table 1; parameter-based analysis) was measured 167 times and thus, 764 

provided a good data basis for further evaluation. In 71 % of the measurements, the 765 

phagocytosis showed a significant chemical-related response, either an up- or down-766 

regulation, while no response was seen in 29 %. In 49 % of the studies, in which 767 

phagocytosis showed no response, other measured immune parameters also did not react, 768 

while 51 % in contrast displayed a significant chemical-related change. This implies that if 769 

the phagocytosis assay would be used as the only screening assay, it might miss about 50 % 770 

of potential immunotoxicants.  771 

Analysis of the cytokines: “Cytokines”, being the group with the largest number of 772 

observations, were employed 540 times as immune parameter among all the 241 773 

immunotoxicity studies with fish analyzed for the present review. This high number is 774 

probably related to the fact that the emergence of molecular techniques including qRT-PCR, 775 

together with the rapid progress in sequencing of piscine cytokines during the last two 776 

decades (Saeij et al. 2003; Secombes et al. 2004; 2011; Zou & Secombes 2011; Zhu et al. 777 

2013; Wang & Secombes 2013) has significantly facilitated the measurement of cytokines. 778 

Since cytokines display huge functional diversity and belong to a variety of immune 779 

pathways, it is unlikely that they are 100 % responsive. In fact, the group “cytokines” was 780 

found to be responsive to toxicant exposure in 66 % of the 540 measurements (parameter-781 

based analysis).  782 
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In order to learn on the immunotoxicity screening value of cytokines, it is probably necessary 783 

to break down this amorphous group into functionally defined sub-groups such as pro- and 784 

anti-inflammatory cytokines. Admittedly, current knowledge of the functional categories of 785 

the various cytokines in fish is limited; therefore, only a rather rough classification into five 786 

“functional” groups was applied (Figure 7; Table 2). The majority of the analyzed cytokines 787 

were pro-inflammatory (n = 275; parameter-based analysis). When quantifying the 788 

percentage of significant responses, either up- or downregulation, of the various cytokines to 789 

chemical exposure among the five groups, no major differences were found.  790 

Overall, the results of this analysis provide no convincing arguments that a more function-791 

based grouping would improve the identification of markers for immunotoxicity screening. 792 

However, since for all groups except the pro-inflammatory cytokines, the n-numbers were 793 

low, the results may be largely random-driven.  794 

Analysis of immune parameter responsiveness in relation to chemical MoA: In the analysis 795 

above, we asked how responsive the immune parameters to toxicants were in general; we did 796 

not discriminate between chemical classes and / or the toxic MoA of the chemicals. However, 797 

it is well possible that certain immune parameters are specifically reactive to distinct modes 798 

of actions or chemical classes. As a case study (parameter-based analysis) to address this 799 

question, we examined all experiments conducted only within the toxicant group of EDCs in 800 

general (Figure 8), and only the “estrogen-active EDCs” in particular (Figure 9). These 801 

groups were selected since the literature provides comparatively abundant information for 802 

them, and, in addition, estrogenic EDCs share a well-defined, common molecular initiating 803 

event (i.e. binding and activation of ER). The parameters in the groups “challenge induced 804 

mortality test”, “leukocytes”, “non-assigned humoral components (innate)”, “antimicrobial 805 

peptides”, and “non-assigned humoral components (adaptive)” were 100 % responsive to 806 

both EDCs in general and estrogen-active EDCs in particular. Additionally, in case of only 807 
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the estrogenic EDCs, all parameters of the groups “lysozyme”, “complement” and “non-808 

assigned cellular components (adaptive)” were 100 % reactive to the chemical treatment, too. 809 

Nevertheless, the shift from analyzing all chemicals to analyzing only chemicals which share 810 

a common mode of action did not drastically alter the responsiveness of the groups. Hence, 811 

the mentioned groups seem to be no reliable indicator for the detection of immunotoxic 812 

EDCs.  813 

However, a biomarker should be supported by mechanism-based rather than correlative 814 

relationships (Segner 2011). For mammals, for instance, it is known that certain complement 815 

genes possess estrogen-responsive elements in their promoters and therefore their transcript 816 

levels can be modulated by estrogenic EDCs; corresponding information, however, is lacking 817 

for teleost fish. In conclusion, at the current state of knowledge, there appears to be not one 818 

single immune parameter available which would serve as general screening parameter for 819 

potential fish immunotoxicants. Given the diversity of the immune system and the 820 

immunotoxic MoA, it is likely that rather than a single immune parameter it will need a set of 821 

markers to screen chemicals for their potential immunotoxicity to fish. Currently, however, it 822 

appears that there is even not sufficient information to decide which set of immune 823 

parameters could be used for screening. To advance this field, it would require systematic 824 

studies using an array of immune endpoints including parameters of the adaptive immune 825 

system, to test an array of chemicals with structural similarities, as well as chemicals with 826 

different modes of immunotoxic actions. 827 

 828 

3.3.4 Relationship between immunomodulating and immunotoxic effects in fish 829 

While chapter 3.3.3 discussed the relationship between chemicals or MoA and the reactivity 830 

patterns of fish immune parameters, the present chapter evaluates which immune marker 831 

responses are indicative of adverse outcomes, i.e. whether molecular and cellular marker 832 
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responses are predictive of alterations in immunocompetence and disease susceptibility of the 833 

organism. Not any chemically-induced modulation of an immune parameter (e.g. cytokine 834 

levels or phagocytic activity) translates into immune dysfunction, but the adversity of the 835 

effect needs to be demonstrated (Selgrade 2007). In immunotoxicity studies with fish, the 836 

most frequently used parameter to demonstrate that chemical exposure has an adverse effect 837 

on immune functioning is the challenge test with pathogens. In this test, fish are exposed to a 838 

chemical, in the absence or presence of a pathogen, and if the presence of the chemical alters 839 

the susceptibility of the fish towards the pathogen, this is taken as demonstration of the 840 

immunotoxicity of the chemical. A broad variety of pathogens was applied in the reviewed 841 

studies, probably corresponding to the variety of fish species used. The most commonly 842 

applied pathogens for the stimulation of the immune system were Aeromonas hydrophila (25 843 

%), Aeromonas salmonicida (14 %), Vibrio anguillarum (15 %), Yersinia ruckeri (7 %) and 844 

IHNV(7 %; article-based analysis). 845 

The effect parameter typically used in those challenge tests is the pathogen-induced 846 

mortality. As explained in “Material and Methods” we designate this parameter as “challenge 847 

induced mortality test”. Among the reviewed studies in which a challenge induced mortality 848 

test was employed, 75 % could show an increase of pathogen-induced mortality if the fish 849 

were exposed to chemicals. In 17 % of the experiments a decrease and in 8 % no significant 850 

differences between exposed and control fish were observed (parameter-based analysis). The 851 

challenge induced mortality test, however, is complex, costly, and critical with respect to 852 

animal welfare. Thus, it would be advantageous to have molecular or cellular immune marker 853 

parameters that can qualitatively or quantitatively predict the consequence for the 854 

immunocompetence and disease resistance of the fish. The predictive value of immune 855 

parameters for host resistance has been extensively studied in mammalian toxicology (Luster 856 

et al. 1993; Germolec 2004). Certain immune marker responses were found that show good 857 
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correlation with immune functioning of the organism as indicated from challenge tests. For 858 

instance, in rodents the plaque forming assay had a 73 % correlation with host resistance 859 

(Germolec 2004). The question is whether the quantitative analysis of the fish 860 

immunotoxicology literature since 1995 points to molecular or cellular immune markers that 861 

might have a predictive value for the immunocompetence of the fish. To this end, the articles 862 

were analyzed on correlations between the immune markers and the results of the challenge 863 

induced mortality tests. Only for one parameter, phagocytic activity, a trend could be 864 

observed: decreased activity in the phagocytosis assay (n=5 out of 8 experiments) was 865 

associated with increased mortality, and increased phagocytic activity (n=4 out of 4 866 

experiments) was associated with decreased mortality after pathogen challenge (as a subset of 867 

the main group “phagocyte function”, the “phagocytic activity”, “phagocytic index” and 868 

“phagocytic capacity”, were included in this parameter-based analysis). However, as 869 

discussed before, this observation must be interpreted with care, given the high diversity of 870 

the database together with the small number of studies. Thus, at this current state of literature 871 

data, fish immunotoxicologists seem to have no predictive immunotoxicity markers available.  872 

 873 

3.3.5 In vitro assays to screen for potential immunotoxicants of fish 874 

Chemical regulations increasingly ask for the use of in vitro assays rather than in vivo tests 875 

for hazard assessment. In immunotoxicity assessments, a major drawback of in vitro assays is 876 

that they do neither reflect systemic interactions within the immune system nor other 877 

interactions such as the neuro-endocrine-immune crosstalk. Thus, the complexity of 878 

chemical-induced immunotoxicity assessed in whole animal tests is difficult to cover by in 879 

vitro assays. Nevertheless, apart from the value of in vitro assays for mechanistic studies 880 

(Corsini et al. 2012), they may still be of value for rapid screening of substances for 881 

immunotoxic potentials and their prioritization for in vivo testing. An example is provided by 882 
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the T cell-based in vitro assays used in human immunotoxicology (Martin et al. 2010). The 883 

induction of a T cell response by chemicals, drugs or allergens is the crucial step for the 884 

manifestation of allergic diseases and T cell-mediated adverse drug reactions. Therefore, T 885 

cell-based assays can serve as an in vitro screen to identify compounds that have the 886 

capability to interfere with T cells. Importantly, a screening assay may well produce false 887 

positives, but it should not produce false negatives.  888 

Among the 241 reviewed publications, 54 of the conducted experiments (21 %; parameter-889 

based analysis) were carried out in vitro, either alone or in combination with in vivo tests. Ex 890 

vivo assays were taken as in vivo study for this analysis, because in this approach, the cells 891 

are conditioned in vivo and only their response capacity is measured outside the animal 892 

(Gatta et al. 2001; Dautremepuits et al. 2004; Leclair et al. 2013). The in vitro studies 893 

included experiments with permanent cell lines or with cells isolated from non-exposed 894 

control animals (Bols et al. 2001; Law et al. 2001; Castro et al. 2011).  895 

Initially, we examined how often immune parameters of the 16 main groups responded 896 

significantly to chemical treatment in the in vitro experiments (Figure 10; parameter-based 897 

analysis; only in vitro conducted experiments were considered for this analysis). Four out of 898 

the 16 groups – “non-assigned cellular components (innate)”, “antimicrobial peptides”, 899 

“acute phase proteins” and “B cells” – showed 100 % reactivity. The very low n-numbers 900 

(for each of these groups: n < 5), however, raise question marks on the robustness of the 901 

findings. An important drawback in the analysis of in vitro data is that many studies did not 902 

determine the cytotoxicity of the chemical exposure (see 3.1 Exposure concentration). 903 

Therefore, it is not clear whether the observed responses are indeed due to an 904 

immunomodulating activity of the test chemicals, or may represent secondary effects of 905 

cytotoxicity.  906 
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In a next step, an in vitro / in vivo comparison was performed, analyzing those studies that 907 

included both, in vivo and in vitro measurements. An example is provided by the study of 908 

Cabas et al. (2012) who compared the immunological effects of EE2, an estrogenic EDC, in 909 

the gilthead seabream (Sparus aurata) in vivo and in isolated head kidney leukocytes in vitro. 910 

Both approaches classified EE2 to be an immuno-modulator and thus yielded a congruent 911 

conclusion, although the responsive immune parameters differed partly between the in vitro 912 

and the in vivo tests. Overall however, the number of studies that allow a comparative in vitro 913 

/ in vivo analysis was too low to support any conclusive statement on the suitability of in vitro 914 

assays to screen for potential immunotoxicants. 915 

 916 

4.	Conclusions	917 

A first conclusion from this quantitative analysis of the fish immunotoxicological literature is 918 

that to date fish immunotoxicology mainly focused on immunosuppressive effects, but did 919 

not consider possible autoimmune or hypersensitivity reactions. This is in sharp contrast to 920 

human immunotoxicology, where much emphasis is given to hypersensitizing effects of 921 

chemicals (Luster 2014). The fact that there are no reports on chemical-induced immune 922 

hypersensitivity / allergy in fish does not necessarily mean that there are not such effects, but 923 

may be more related to the fact that currently there is little understanding what an allergic 924 

reaction in fish is. This is an important knowledge deficit in fish immunotoxicology which 925 

should be to be addressed in future research. 926 

Similar to the underrepresentation of studies on autoimmune and allergic responses in fish 927 

immunotoxicology, also toxic effects on the adaptive immune system of fish are little studied. 928 

This is surprising since adaptive immune parameters such as lymphocyte assays are broadly 929 

used in human immunotoxicology (Luster et al. 1992; 1993). Protocols for assays measuring 930 

adaptive immune parameters in fish are available, for instance, B and T cell lympho-931 



 41 

proliferation assays (Zelikoff 1998; Carlson et al. 2002; Koellner et al. 2002). Thus, it is not 932 

necessarily the lack of methods that can explain the under-representation of adaptive immune 933 

parameters in fish immunotoxicological studies, but it may be more related to the general 934 

belief that fish rely primarily on the innate immune system.  935 

 936 

A second conclusion from this literature analysis is that in numerous fish immunotoxicity 937 

studies, the experimental conditions are poorly documented. For instance, age and sex of 938 

the experimental fish are often not reported, nor do the studies provide an explanation for the 939 

selection of exposure duration: why were fish exposed for one day, for one week, or longer. 940 

Were these selections based on, e.g. information on the immunotoxic MoA of the test 941 

chemical or were they chosen arbitrarily? A particularly important drawback is the fact that 942 

often no information is provided on the ratio of the selected effect concentrations to test 943 

compound concentrations that induce general toxicity such as lethality or cytotoxicity. 944 

Therefore, it is often difficult to judge whether an observed effect indeed represents an 945 

immunotoxic effect or a side effect of general toxicity. Immunotoxic effects typically occur 946 

at concentrations clearly below general toxic levels (Koller 2001; Luster 2014), consequently, 947 

information on how the selected test concentration relates to general toxicity is essential. 948 

Overall, the standards in the reporting of immunotoxicity studies with fish need to be 949 

improved to achieve progress in this field, since the number of studies using the same 950 

experimental set-up is still too low to be able to compare them properly.  951 

 952 

A third conclusion is that although a broad variety of parameters and methods were used to 953 

assess the immunotoxic effects of chemicals, many studies give no rationale for the choice 954 

of the measured parameters. Selection of effect parameters in an immunotoxicity study is 955 

not trivial, since there is a plethora of potential target sites and functions for chemical attacks 956 
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in the immune system (Carlson & Zelikoff 2008; Segner et al. 2012), but exactly for this 957 

reason the rationale for the selection needs to be given. Also the purpose of the study needs to 958 

be considered – is it a screening study, an adverse effect study or a mechanistic study? In 959 

identifying which immune parameters should be measured in an immunotoxicological study, 960 

mechanistic information is of value. It is not only relevant to select appropriate effect 961 

parameters for the immunotoxicity screening, but also to link chemical-induced changes of 962 

molecular and cellular immune parameters to responses at the organism level, as it 963 

conceptualized in the adverse outcome pathway (AOP) framework (Ankley et al. 2010). 964 

However, often mechanistic information is lacking in fish immunotoxicology. In this 965 

situation, we may rely on “biological read across” (Rand-Weaver et al. 2013) utilizing 966 

mechanistic information from human immunotoxicology. An example of the biological read-967 

cross approach is provided by the study of Martins et al. (2015) who investigated the 968 

immunotoxicity of di(2-ethylhexyl)phthalate in rainbow trout. From mammalian studies it 969 

was known that this compound has effects on, among other targets, B cells and their 970 

maturation. Thus, a number of B cell-related parameters and function tests was selected to 971 

check for the immunotoxicity of di(2-ethylhexyl)phthalate in fish. Observed effects included 972 

inhibition of kidney B cell proliferation and IgM secretion. 973 

974 

A fourth conclusion is that fish immunotoxicology does not yet command on a validated set 975 

of immune parameters to screen for the immunotoxic potential of chemicals. Such 976 

parameters should have an integrative nature or they should be located at critical crossing 977 

sites in the immune network (Luster & Gerberick 2009; Hartung & Corsini 2013). One of the 978 

most frequently used parameters in fish immunotoxicity studies is the phagocytosis assay. 979 

Because fish rely strongly on the innate immune system, many authors appear to consider this 980 

assay as a kind of screening assay, although, as indicated from this quantitative data analysis, 981 
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the available evidence to support this claim is equivocal. To advance the establishment of 982 

screening parameters in fish immunotoxicology, it will need a more systematic evaluation of 983 

candidate markers and assays with respect to responsiveness to diverse chemical groups and / 984 

or immunotoxic MoAs, but also with respect to their sensitivity to immunotoxicity in 985 

comparison to general toxicity.   986 

 987 

A fifth conclusion from this review is that the understanding of how and when chemical-988 

induced modulations of molecular and cellular immune changes relate to alterations of the 989 

fish immunocompetence is not well developed yet. Since in ecotoxicology, the adverse 990 

outcome at the organism and population level is the relevant endpoint, immunotoxicologists 991 

have to place more emphasis on establishing the relation between screening measurements, 992 

immune dysfunction and impaired health of the organism. Currently we have too little 993 

information on how often immune parameters and assays that might be used for screening, 994 

for instance the phagocytosis assay, produce false negatives and false positive results. It is 995 

clearly not enough to identify immune parameters that are responsive to a broad variety of 996 

immunotoxic chemicals or immunotoxic MoAs, but we also have to know how these 997 

parameters relate to adverse immunotoxic outcomes. As evident from the results of the 998 

quantitative analysis of the relation between molecular / cellular effects and immunotoxic 999 

outcomes this is clearly an area where fish immunotoxicology has still a long way to go.  1000 
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Tables with captions: 2071 

2072 

Table 1: “Main immune function groups” used for the quantitative literature data analysis. 2073 

The table shows which immune parameters measured in the reviewed studies (right column) 2074 

were aggregated into which “main group” (left column). Importantly, the “main groups” 2075 

contain those parameters that have been measured in the reviewed fish immunotoxicity 2076 

studies, and therefore do not represent a full coverage of the respective immune functional 2077 

groups but necessarily remain patchy. Furthermore, the assignment of certain parameters to 2078 

one or the other group is debatable, also because a number of immune parameters have multi-2079 

faceted functions. We tested how much a different group assignment of single parameters 2080 

would change the overall outcome of the quantitative analysis, and found that the effect is 2081 

negligible for the purposes of this review. The groups of “non-assigned” components contain 2082 

miscellaneous parameters difficult to assign to a specific main group. The 16 main groups 2083 

provided the basis for the parameter-based analysis as shown in Figs 6, 8, 9 and 10. 2084 

main groups parameters 

challenge induced 

mortality test 

challenge tests with bacteria, viruses and parasites with the purpose 

of having influence on the mortality of the fish 

leukocytes number of leukocytes, leukocrit, leukocyte apoptosis & 

proliferation, mitogenic response, blastogenic response 

phagocytes phagocyte number, total granulocytes, total neutrophils, total 

monocytes, total macrophages, total myeloids, CSF-1R / M-CSFR, 

NCC 

phagocyte function phagocytic activity & index & capacity, nramp, nrf2, keap1, 

bactericidal activity, bacterial agglutination, chemotaxis activity 

(leukocytes), chemiluminescence response of phagocytes / NBT / 
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nitroblue tetrazolium assay / ROS / resp. burst assay, NADPH 

oxidase, peroxidase activity & content, superoxide production, 

iNOS; nitric oxide (NO) production & release & concentration & 

synthase activity, reactive nitrogen intermediates & species (RNI & 

RNS), arg2 / arginase, mpo / myeloperoxidase content 

lysozyme lysozyme number & activity & assay, g-type lysozyme 

antimicrobial peptides elastase 2 / neutrophil elastase, bd / β-defensin, hamp 1 / hepcidin, 

antiprotease activity, extracellular trap release, degranulation 

acute phase proteins crp / c-reactives protein, saa, a-saa, tcpbp / trout c-polysaccharide 

binding protein 

complement acp & ach / alternative complement pathway & activity, C3 / 

complement, factor h & b, nhc / (natural) hemolytic complement, 

other factors like c1r/s, mbl-2, f2, c9, cfp 

non-assigned cellular 

components (innate) 

g-csf / granulocyte colony-stimulating factor, phagocyte migration

non-assigned humoral 

components (innate) 

pannexin 1, TLR9a, mx-protein / mx / mx-1 

cytokines This group contains all parameters mentioned in table 2 (cytokine) 

B cells B cell number & proliferation, surface immunoglobulin-postive 

leukozytes (sIG+) 

T cells T cell number & proliferation, TCR, CD 4, CD 8 

antibodies Ig (e.g. IgM), AB (antibody) titer, AB secretion; agglutination AB 

titer 

non-assigned cellular 

components (adaptive) 

lymphocyte / lymphoblast transformation & proliferation & index & 

blastogenesis & mitogenic response, number of lymphocytes 
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non-assigned humoral 

components (adaptive) 

MHC, MHC I, MHC II, pfc / plaque-forming cell assay & response 

2085 

2086 

Table 2: Assignment of individual cytokines (right column) to cytokine groups (left column). 2087 

Importantly, the groups do not contain full coverage of the respective cytokine groups but 2088 

represent those cytokines that have been measured in the reviewed fish immunotoxicity 2089 

publications. The groups of “non-assigned” components contain miscellaneous parameters 2090 

difficult to assign to a specific cytokine group. These groups provided the basis for the 2091 

parameter-based analysis as shown in Fig 7. 2092 

cytokine groups cytokines 

pro-inflammatory 

cytokines 

IL 1, IL 6, IL 8, IL 17, TNF, COX, PTGS 1&2 

anti-inflammatory 

cytokines 

IL 10, IL 14 

regulatory factors NFkB, NFkBia, NFkB-inh., nkapl, RELA, suppression of cytokine 

signaling; SOCS protein 

chemokines CC-chem, CXC, CXCA, CXCL, CXCL-C1C, CXCL-CLC, CC,

CX4C, XC, receptors: CXCR & CCR 

non-assigned cytokines lymphokine production, TGF-beta, IFN & IFN-1 & IFN-alpha & 

IFN-gamma, ISG15 / interferon stimulated gene 15, IL 12, γIP 

2093 

2094 
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Figure captions: 2095 

2096 

Figure 1: Number of fish immunotoxicology-related publications per year. The data are 2097 

based on the publications given in Supplement S 1. 2098 

2099 

Figure 2: Percentage use of different fish species in the reviewed immunotoxicity studies 2100 

(article-based analysis). The most commonly used species are O. mykiss (20 % of all used 2101 

fish species), C. carpio (11 %) and S. aurata (11 %). 2102 

2103 

Figure 3: Provision of general toxicity information in fish immunotoxicity (in vitro and in 2104 

vivo) among the 241 reviewed publications; article-based analysis. In 62 % no apical 2105 

toxicological endpoints (e.g. cytotoxicity in vitro and lethality in vivo) were determined after 2106 

chemical treatment. The ratio between general and immunotoxic thresholds remain unclear. 2107 

In 28 % of the studies, the general toxicity was determined. 10 % relied on literature derived 2108 

general toxicity values without confirming them experimentally. 2109 

2110 

Figure 4: Percent measurement of immune parameters in the reviewed studies on fish 2111 

immunotoxicity; article-based analysis. The total number of parameters was 1160 (= 100 %). 2112 

A detailed list of the frequency in the use of immune parameters / methods is provided in 2113 

Supplement S 2. The most commonly used parameters were phagocytic activity (17 % of all 2114 

used parameters), the expression of immune-related genes (13 %) and the measurement of the 2115 

respiratory burst activity (10 %). 2116 

2117 

Figure 5: Percent measurement of immune genes as effect parameters in the reviewed fish 2118 

immunotoxicity studies. The total number of analyzed genes was set to be 100 %; article-2119 
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based analysis. A detailed list of genes analyzed by means of qRT-PCR is provided in 2120 

Supplement S 4. Predominantly, the interleukins (IL, 24 % among all analyzed genes) were 2121 

analyzed, followed by the tumor necrosis factor (TNF, 11 %) and the interferons (IFN, 7 %). 2122 

2123 

Figure 6: The percentage of chemical-induced responses of immune parameters in the 16 2124 

main groups. The solid bars indicate how often (in percent) the immune parameters of a main 2125 

group responded significantly to the chemical treatment. The n-numbers depictured in the 2126 

bars represent the total number of measurements for the respective main group (in vitro and 2127 

in vivo) and were set to be 100 %. For details regarding the grouping see table 1; parameter-2128 

based analysis. 2129 

2130 

Figure 7: The percentage of chemical-induced responses of functional cytokine groups. 2131 

Each measured cytokine was assigned to one of the five functional groups: pro-inflammatory 2132 

cytokines (e.g. IL 1), anti-inflammatory cytokines (e.g. IL 14), regulatory factors (e.g. 2133 

NFκB), chemokines (e.g. CC-chem), and cytokines which are not predominantly associated 2134 

with one of the previous groups (“non-assigned cytokines”). The n-numbers depictured in the 2135 

bars represent the total number of measured cytokines included in each group (in vitro and in 2136 

vivo) and was set to be 100 %. The solid bars indicate how often (in percent) the immune 2137 

parameters of a main group responded significantly to the chemical treatment. For details 2138 

regarding the grouping see table 2; parameter-based analysis. 2139 

2140 

Figure 8: The percentage of EDC-induced responses of immune parameters in the 16 main 2141 

groups. The solid bars indicate how often (in percent) the immune parameters of a main 2142 

group responded significantly to EDC treatment. The n-numbers depictured in the bars 2143 

represent the total number of measured immune parameters in the respective main group (in 2144 
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vitro and in vivo) and was set to be 100 %. For details regarding the grouping see table 1; 2145 

parameter-based analysis. 2146 

2147 

Figure 9: The percentage of estrogenic EDC-induced responses of immune parameters in the 2148 

16 main groups. The solid bars indicate how often (in percent) the immune parameters of a 2149 

main group responded significantly to estrogenic EDCs. The n-numbers depictured in the 2150 

bars represent the total number of measured immune parameters included in the respective 2151 

main group (in vitro and in vivo) and was set to be 100 %. For details regarding the grouping 2152 

see table 1; parameter-based analysis. 2153 

2154 

Figure 10: The percentage of chemical-induced immune response as determined in in vitro 2155 

conducted exposure experiments. The n-numbers depictured in the bars represent the total 2156 

number of measured immune parameters of the respective main group (only in vitro) and was 2157 

set to be 100 %. The solid bars indicate how often (in percent) the parameters of in vitro 2158 

conducted experiments significantly responded to the chemical treatment. For details 2159 

regarding the grouping see table 1; parameter-based analysis. 2160 


