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Developing models for the prediction of microbial biotransformation pathways and half>lives of trace 15 

organic contaminants in different environments requires as training data easily accessible and 16 

sufficiently large collections of respective biotransformation data that are annotated with metadata on 17 

study conditions. Here, we present the ���������	 package, a public database that has been developed 18 

to contain all freely accessible regulatory data on pesticide degradation in laboratory soil simulation 19 

studies for pesticides registered in the EU (282 degradation pathways, 1535 reactions, 1619 20 

compounds and 4716 biotransformation half>life values with corresponding metadata on study 21 

conditions). We provide a thorough description of this novel data resource, and discuss important 22 

features of the pesticide soil degradation data that are relevant for model development. Most notably, 23 

the variability of half>life values for individual compounds is large and only about one order of 24 

magnitude lower than the entire range of median half>life values spanned by all compounds, 25 

demonstrating the need to consider study conditions in the development of more accurate models for 26 

biotransformation prediction. We further show how the data can be used to find missing rules relevant 27 

for predicting soil biotransformation pathways. From this analysis, eight examples of reaction types 28 

were presented that should trigger the formulation of new biotransformation rules, e.g., Ar>OH 29 

methylation, or the extension of existing rules e.g., hydroxylation in aliphatic rings. The data were also 30 

used to exemplarily explore the dependence of half>lives of different amide pesticides on chemical 31 

class and experimental parameters. This analysis highlighted the value of considering initial 32 

transformation reactions for the development of meaningful quantitative>structure biotransformation 33 

relationships (QSBR), which is a novel opportunity offered by the simultaneous encoding of 34 

transformation reactions and corresponding half>lives in ���������	. Overall, ���������	 provides an 35 

unprecedentedly rich collection of manually extracted and curated biotransformation data, which 36 

should be useful in a great variety of applications.
37 
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When chemicals are released into the environment during or at the end of their product life cycle, their 39 

persistence in the environment is highly undesirable. Biotransformation by microbial communities in 40 

technical and environmental systems such as sewage treatment plants, aquatic sediments, and soils is a 41 

very efficient mechanism to reduce their environmental persistence, but might also lead to the 42 

formation of potentially hazardous transformation products 1>3. Since the experimental assessment of 43 

chemical persistence and transformation product formation on a compound>by>compound basis is 44 

highly laborious and costly, so>called �
���	�
� or 
�
������
� approaches that rely on computer>based 45 

algorithms to predict biotransformation have gained in importance for the evaluation of new and 46 

existing chemicals 4. It has been suggested that such approaches would also be of use in the 47 

implementation of the “benign by design” concept where the environmental risk of a chemical is 48 

considered early in the development process or even before synthesis 5. 49 

Quantitative structure>biodegradation relationships (QSBRs) predict chemical persistence, i.e., half>50 

lives or readiness of biodegradation, based on chemical structure. They range from chemical class>51 

specific to more broadly applicable models, and from simple regression models to models developed 52 

with machine learning methods 5>7. Chemical class>specific models 8>10 typically yield reasonably 53 

accurate predictions of actual degradation half>lives, but are of limited use for risk assessment 54 

purposes due to their restricted applicability domain. In contrast, more widely applicable models are 55 

typically trained on a number of databases containing collections of ready biodegradability data from 56 

standardized tests carried out according to the OECD test guidelines for a wide variety of chemicals 11. 57 

They usually show reasonable predictive power with approximately 80% correct binary classification 58 

as to whether a chemical is readily biodegradable or not (e.g., 12>14). However, the accuracy of these 59 

more widely applicable models for quantitatively predicting biotransformation rates or half>lives under 60 

specific environmental conditions, which is what would actually be needed for risk assessment 61 

purposes, remains rather low 
15>17

. 62 

Pathway prediction systems (e.g., PathPred 18, Catalogic 19, BNICE 20, and Eawag>PPS (former UM>63 

PPS 
21

)) typically rely on dictionaries of biotransformation rules that recognize compound functional 64 

groups and transform them into product substructures. These biotransformation rules were designed to 65 

reflect known microbial transformation pathways of chemical contaminants. They are mostly based on 66 

the respective data collected in the Eawag Biodegradation/Biocatalysis Database (Eawag>BBD), 67 

formerly known as the University of Minnesota Biodegradation/Biocatalysis Database (UM>BBD) 22, 68 

which is considered the most extensive collection of manually curated biotransformation pathways of 69 

chemical contaminants 23 and, more recently, is available as Eawag>BBD from two online platforms 70 

(Eawag>BBD/PPS 
24

and enviPath 
25, 26

). Rule>based systems have been shown to predict 71 

transformation products observed in the environment fairly comprehensively (i.e., to display high 72 

sensitivity), but to notoriously predict many irrelevant products that are not likely to occur under 73 

specific environmental conditions (i.e., to display low selectivity) 27. While application of machine 74 
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learning methods to improve relative reasoning between rules has increased the selectivity for the 75 

training database (i.e., Eawag>BBD), selectivity on a set of pesticide soil degradation data used for 76 

external validation remained low 
28

. This poses a problem if the models were to be used in a chemical 77 

risk assessment context where resources for assessing the risk associated with transformation products 78 

are limited. 79 

We argue that the low accuracy of QSBRs and the low selectivity of pathway prediction have at least 80 

two common causes. First, almost all approaches to biotransformation prediction are based on 81 

chemical structure only and have so far mostly ignored the fact that half>lives for the same compound 82 

can vary strongly within the same type of environmental compartment 
15

. This observed variance 83 

stems from the fact that slightly different environmental conditions shape different microbial 84 

communities that differ in their taxonomic composition and hence their pool of enzymes that catalyze 85 

biotransformation reactions of chemical contaminants. Thus, different enzyme>catalyzed reactions 86 

might occur at vastly different rates across different microbial communities 
29, 30

. This suggests that 87 

biotransformation prediction could be greatly improved by not only considering chemical structure, 88 

but by also factoring in specific environmental conditions. Second, most of the data in Eawag>BBD 89 

stems from studies with pure cultures of microorganisms or laboratory cultures with elongated 90 

adaptation periods. Thus, while the organisms and degrading enzymes are typically well>characterized 91 

in these studies and hence reported in the database, the current data in Eawag>BBD cannot be used for 92 

understanding the influence of environmental factors on biotransformation pathways nor is the 93 

relevance of the reported pathways under actual environmental conditions known. In pure and 94 

enrichment culture systems, besides being known to be impacted by culturing artifacts 
31

, the 95 

compound of concern serves as sole growth substrate. The latter is most likely also true for the ready 96 

biodegradability tests that are run at high concentrations of the test chemicals as dominant carbon 97 

source 32. Under actual environmental conditions, contaminant trace concentrations are likely 98 

transformed co>metabolically by mixed microbial communities alongside varying amounts of other, 99 

natural organic material. The determinants of such co>metabolic transformations are typically not of 100 

thermodynamic nature as in growth>related metabolism, but rather the available pool of catalytic 101 

enzymes of the microbial community as shaped by the prevailing environmental conditions 23. Finally, 102 

it is worth noting that QSBRs and systems for the prediction of biotransformation pathways have so 103 

far mostly been developed independently. However, given the fact that observed biotransformation 104 

half>lives and transformation product spectra (i.e., the observed biotransformation pathways) both 105 

depend on the rates of individual enzyme>catalyzed biotransformation reactions, treating these two 106 

types of information separately may lead to a loss of information content. 107 

In summary, we hypothesize that development of more accurate QSBRs and pathway prediction 108 

models is impeded by a lack of biotransformation data (i.e., half>lives and pathway information) from 109 

environmentally relevant mixed microbial communities and associated metadata on environmental 110 

and/or experimental conditions. The latter are needed to account for their influence on the observed 111 
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biotransformation outcomes. Recently, we have introduced enviPath as a new database and pathways 112 

prediction system that is suited to approach these information gaps 25. enviPath offers a database 113 

environment that, first, facilitates the annotation of biotransformation half>life and pathway 114 

information, and, second, allows for supplementing the half>life and pathway information with 115 

metadata, e.g., environmental and/or experimental conditions, through so>called scenarios. One fairly 116 

consistent and large resource of chemical biotransformation data is data submitted for regulatory risk 117 

assessments. These substance>specific dossiers typically contain information on biotransformation 118 

half>lives and pathways from so>called simulation studies conducted for different relevant 119 

environmental compartments (i.e., agricultural soil, aquatic sediments, activated sludge). Such data is 120 

currently mostly available for pesticides 33, but upon implementation of REACH should increasingly 121 

also become available for industrial chemicals 
34

. However, these data are currently not readily 122 

available in electronic format 35, and, if so (e.g., PPDB 36), do not contain pathway information, lack 123 

annotation with metadata on study conditions, or, to the best of our knowledge, are not publically 124 

available (e.g., MetaPath 35, 37). 125 

Therefore, the objective of the work presented here was to electronically encode all freely accessible 126 

regulatory data on pesticide degradation in laboratory soil simulation studies and to make these data 127 

publically available for the development of improved QSBR models. Here, we present a thorough 128 

description of this novel data resource, discuss characteristics of pesticide soil degradation data that 129 

are relevant to model development, and give two examples of explorative analyses that should support 130 

the further development of QSBRs and pathway prediction models. 131 

132 
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133 
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�
��	���
�
�134 

We extracted pesticide soil degradation information from pesticide registration dossiers made 135 

publically available through the European Food Safety Authority (EFSA) 
33

. Specifically, only results 136 

from laboratory studies conducted under aerobic conditions as reported in “Annex B.8: Fate and 137 

behavior, B8.1: Route and rate of degradation in soil” in the respective dossiers were considered. 138 

Initially, assessment reports, draft assessment reports (DARs) and additional reports available between 139 

6/2015 and 6/2016 for 375 active substances were screened. Of these, dossiers for 93 active substances 140 

were not considered further because the pesticides agents were not actual chemicals (e.g., bacteria) or 141 

complex mixtures (e.g., clover oil), or because no degradation scheme was available or no aerobic 142 

degradation studies in soil had been submitted at all. For the remaining 282 pesticides and agriculture>143 

related compounds, degradation information and accompanying metadata on study conditions were 144 

encoded as separate data package, ���������	, in enviPath 
38

. 145 

In �������������	 package, pathway information is stored in a biotransformation reaction scheme in 146 

the entity ������� (see example in Figure 1). Compounds and reactions participating in a given 147 

pathway are stored separately in the entities 
�����
� and ���
���
�(see Figure 1). Metadata on the 148 
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experimental conditions (e.g., soil texture, soil moisture, pH, etc.) are stored in the entity �
�
�����(see 149 

Figure 1). A detailed list and explanation of all experimental conditions considered in the ���������	 150 

package as well as the conventions used to store the data as standardized as possible are given in the 151 

Supporting Information (SI) (Section S1 ���������	 metadata and conventions) When available, one 152 

or several biotransformation half>lives (in the form of dissipation half>lives, DT50) are additionally 153 

associated with a given compound in the pathway and a specific scenario. �������� depict all 154 

reactions and compounds observed in aerobic soil experiments under any experimental condition. 155 

Since not all transformation products in a pathway scheme are always observed, compounds in the 156 

pathway are associated with a given scenario only when they have been experimentally observed 157 

under the specific experimental conditions (see example in Figure 1). The associated scenarios are 158 

listed on the compound page. 159 

160 

161 

Figure 1: Scheme of assembled screenshots showing the most important elements of the ���������	 162 

package. 1: ������� page, 2: ���
���
 page, 3: ������
� page, 4: List of half>lives determined for 163 

the compounds and the associated scenario names, 5: �
�
���� page, containing the metadata on study 164 

conditions (i.e., experimental parameters). 165 

166 

������

���
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�

�����167 

The chemical space covered by a set of compounds is defined by the multidimensional property space 168 

of the compounds and is used to define the applicability domain of a model. We compared the 169 

chemical spaces covered by ��������� and ���������	, and also compared them to the chemical 170 

space covered by a third set of 1024 pharmaceutical compounds prevalently used in Switzerland and 171 

the EU as extracted from Singer et al. 
39

. This latter set of compounds was used to explore the 172 
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hypothesis that the addition of the ���������	 package extends the chemical space of enviPath 173 

towards more polar, multifunctional compounds such as pharmaceuticals. 174 

The comparison was performed using a qualitative approach, i.e., the visualization of the top three 175 

principal components of the compounds in the three datasets, and a quantitative approach using a one>176 

class support vector machine to identify objects that lie outside the chemical space. The top three 177 

principal components were calculated using the DataWarrior software 40
178 

(http://www.openmolecules.org/datawarrior/) with the compounds represented using structural 179 

fragment fingerprints (i.e., binary structural features (ECFP4) 41) calculated with the CDK software 42. 180 

One>class support vector machines (SVM) 
43

is a machine learning technique that was used to 181 

determine whether a compound belongs to the feature distribution space of an existing dataset or 182 

rather has to be considered as an outlier or a novel compound. One>class SVM models were trained on 183 

the ��������� dataset and the combined ��������� and ���������	 datasets using the LIBSVM 184 

implementation 
44

) with the compounds represented using structural fragment fingerprints as explained 185 

above. The ν>Parameter, which limits the number of predicted outliers in the training dataset, was set 186 

to a value of 2%. 187 

188 

��	��������	������������
��
�

���������
	�
�����
�

��������189 

The Eawag>PPS system, which is hosted and further maintained in our research group, currently uses a 190 

set of 249 biotransformation rules (btrules) that recognize specific functional groups in a molecule and 191 

transform them according to the generalized biotransformation reaction encoded in the rule 
22

. These 192 

same rules also form the basis of the successor system enviPath 25. When adding a new set of 193 

biotransformation data such as the ���������	� package to enviPath, a first pre>requisite to use its 194 

information for improving pathway prediction models is to test the ability of the current rule set to 195 

cover the reactions in the new database. As a first explorative analysis, we therefore conducted a 196 

missing rule analysis. 197 

Missing rule analysis was carried out in two steps: �� submission of the reactants of all chemical 198 

reactions in ���������	 to the complete set of btrules contained in Eawag>PPS, and ��� comparison of 199 

the predicted reactions, i.e., reactant>product pairs, with the experimentally observed reactions. More 200 

specifically, the reactants of all reactions in ���������	 were submitted to the Eawag>PPS system and 201 

three generations of transformation products were predicted through three times iterative application 202 

of the prediction cycle. Then all the predicted first>generation reactant>product pairs were compared 203 

with the experimentally observed reactant>product pairs and three different outcomes were noted: (�) 204 

an experimentally observed reaction is matched by a predicted reaction indicating that there is a rule 205 

that is correctly triggered by that reactant and that the system is therefore able to predict the 206 

biotransformation observed in the soil degradation studies; (��) a predicted reaction does not match any 207 

of the experimentally observed reactions indicating that the system either predicts products that are not 208 

actually relevant for a given reactant, or that the product, although plausible, escaped analytical 209 
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identification in the soil degradation studies; and (���) an experimentally observed reaction is not 210 

matched by any of the predicted reactions pointing towards a missing rule for that specific kind of 211 

biotransformation reaction. While (�) gives the current sensitivity of the system towards pesticide 212 

active ingredients, and (��) is indicative of its current selectivity (prior to the addition of new rules), 213 

reactions in (���) were further explored to identify possible missing rules. 214 

In a next step, for the set of reactions in (���), the 2nd and 3rd generation products associated with their 215 

respective substrates were explored to see whether any of them matched with the experimentally 216 

observed product of the reaction. If so, this reaction is predicted in Eawag>PPS through a series of 217 

multiple reactions where the intermediates might actually be readily transformed further and therefore 218 

were not necessarily analytically observed and identified. These reactions were assigned as multi>step 219 

reactions and added to the pool of reactions in (�). 220 

To find a first set of missing rules, the remaining reactions in (���) were, first, sorted according to mass 221 

differences between the reactant and the product and, second, for a given mass difference, further 222 

manually sorted into types of reactions based on our perceived similarity of the reaction center. This 223 

approach is potentially limited because it will not group together reactions of the same type if 224 

functional groups of different size are cleaved off. Therefore, in a next step, some groups of reactions 225 

were joined together to make the reaction type more general and to more easily implement it as a new 226 

rule later. For example, O>demethylations and O>deethylations were grouped together as O>227 

dealkylations, and, similarly, N>demethylations and N>deethylations were grouped together as N>228 

dealkylations. While fully manual, the approach was found appropriate for the identification of the 229 

most populated reaction types. This approach also provides well>curated information that can be used 230 

for validation of semi> and fully automated chemoinformatics methods for reaction classification, 231 

which we plan to explore in a follow>up study. 232 

233 

����
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���
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�

�����	���
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�

���������234 

We performed an exploratory analysis of relationships between the experimental parameters and the 235 

DT50 values for a group of six sulfonamide herbicides. We calculated Spearman rank correlation 236 

coefficients and their related significance of being different from zero; significance was tested using a 237 

two>tailed t>test on an approximation of the Student's t distribution equated by �������
��� �!��
�
��

"#$
� 238 

where � is the Spearman rank correlation coefficient and 
 the number of half>lives per compounds. 239 

Due to the multidimensional problem, the experimental parameters were also used to build multiple 240 

linear regression models. Selection of the most relevant descriptors was performed with the 241 

Correlation>based Feature Subset Selection (CFS) algorithm 45 implemented in Weka 3.8.1 46. The 242 

algorithm takes into account the usefulness of the individual parameters for predicting the DT50 243 

together with the level of intercorrelation among them. The experiments were carried out using the 244 

AttributeSelectedClassifier routine of Weka with the CfsSubsetEval option for evaluator and BestFirst 245 

or LinearForwardSelection options for search. The final set of parameters selected to build the model 246 
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will be in principle also the most relevant to explain the transformation of compounds across a 247 

structural class of compounds and transformation reaction. 248 

249 

����	��
���
 ��������� 250 

��
��
�����
�
�����������	���
�
�� 	�
��
�
�251 

In its current form, the ���������	 package contains 282 degradation pathways, 1535 reactions 252 

(excluding reactions leading to CO2 through an unknown sequence of reactions) and 1619 compounds 253 

(282 parent pesticides and agriculture>related compounds and 1337 biotransformation products). Of 254 

these 1619 compounds, 777 (282 parent compounds and 495 biotransformation products) have at least 255 

one associated half>life value. Since multiple half>lives may be available for individual compounds, 256 

the ���������	 package altogether contains 4716 biotransformation half>life values with 257 

corresponding scenarios. These numbers will increase over time as the package is being further 258 

developed. The size of the ���������	 package in terms of numbers of pathways, reactions and 259 

compounds lies in a similar range as the current size of the ��������� package (i.e., 219 pathways, 260 

1503 reactions, 1396 compounds). Introducing it thus not only doubles the amount of 261 

biotransformation pathway information to learn QSBRs and pathway prediction models from, but also 262 

extends the chemical space covered from mostly legacy chemicals (i.e., persistent organic pollutants 263 

and a few pesticides with long and extensive usage history) to modern, polar, and structurally more 264 

complex pesticide active ingredients (see section on Chemical Space Analysis for a detailed 265 

discussion). 266 

A descriptive statistical analysis of the entire data set was performed. In the pre>processing of the data 267 

set, values that seemed to be physically implausible based on the frequency distribution of the 268 

parameters and on our knowledge about the different soil properties and their ranges were removed. 269 

For example, values for the three ���	���%���� parameters, i.e., % ��
�, ��	� and 
	��, were removed if 270 

the sum of the three parameters was higher than 100%, for �������� parameter values higher than 271 

100% were removed (5 values removed), or for soil�����
�
�
�
��
� parameter values higher than 10 g 272 

OC/100g soil were removed (12 values removed). In general, only a few values per parameter were 273 

removed due to this analysis, corresponding to less than 1% of the values for most part of the 274 

parameters. 275 

For the experimental parameter ����
�
�
�
��
� the soil organic content reported as soil organic matter 276 

(OM) was transformed to organic carbon (OC) using the relationship OC = OM/1.724 47. For each 277 

parameter, the number of missing values was determined and the distribution of values was 278 

characterized by several statistical measures. A summary of results for DT50 and all experimental 279 

parameters is given in Table 1 and additional statistical measures and histogram plots of all parameters 280 

can be found in the SI (Table S1 and Figures S1 and S2). 281 

The number of DT50s per compound in ���������	 varies strongly. From the 777 compounds with 282 

associated half>lives, 113 have more than ten DT50s (each one for a set of unique experimental 283 
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conditions) and more than half of the compounds, i.e., 419, have more than five DT50s (see SI Figures 284 

S3 for a plot of the frequency distribution of half>lives per compounds). Figure 2 gives the maximum, 285 

minimum and median DT50 values for all compounds in ���������	 with at least 10 DT50 values per 286 

compound (N=113). A corresponding graph for all 777 compounds with one or more associated half>287 

lives is given in the SI (Figure S4). The median half>lives across all of these compounds cover about 288 

three orders of magnitude, suggesting that these data should provide a valuable resource to develop 289 

QSBR models for soil half>life prediction. Also, the dataset separates out into 139 out of 777 290 

compounds, i.e., 18%, having a median DT50 above 120 days, which is the persistence criterion for 291 

pesticides and industrial chemicals in soil 
48, 49

. Using appropriate sampling procedures the dataset can 292 

be fairly balanced for the potential purpose of developing a persistence classification model from the 293 

data. The presence of half>lives values close to zero is due to the presence of some rapidly degradable 294 

or volatile compounds in the data set, e.g., metam>sodium or dazomet. On the opposite side, half>lives 295 

above 1000 days indicate the presence of stable compounds in the data set, e.g., flutriafol and butralin, 296 

where the DT50 values are extrapolated well beyond the study duration for most cases. For these cases 297 

of extreme behavior, the DT50 values should be considered merely approximate values of the 298 

behavior of the respective pesticides in soil. 299 

Another important aspect that can be learned from the DT50 data shown in Figure 2 is the large 300 

variability of DT50 values for individual compounds observed across different experimental 301 

conditions. Considering the maximum and minimum half>lives, 244 out of 777 compounds, i.e., 31%, 302 

show a variability in the DT50 values of two orders of magnitude or more. This shows that the 303 

consideration of the experimental parameters is crucial for the development of QSBR models with 304 

improved accuracy for the prediction of soil half>lives. The extensive collection of metadata made 305 

available in ���������	 should provide a useful resource for this purpose. 306 
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Table 1. Summary statistic of �&$" and experimental parameters '���
�, '���	�, '�
	��, �(, �����������, ��������������
���
���, '���������,�����
�
�
�
��
� 307 

()��, 
����
��%
��
���
���
��� (����, ��	*���
����, �������������, ���������
��and����*��
�

�
������
. 308 

309 

����!����
  �!������
 "

����
 ������
 ���#
 �
������
 ����!�!
 ����!�!


$�	��
 �������


�&$" days 4716 0 88.8 24.0 206 0.003 3690 

'���
� – 4108 608 51.9 55.0 24.6 0.00 99.0 

'���	� – 4114 602 32.0 28.0 18.6 0.00 88.6 

'��	�� – 4132 584 16.0 12.6 11.0 0.10 94.3 

+
�����,��( – 4641 75 6.62 6.70 0.888 3.60 8.80 

&���������� °C 4659 57 20.1 20.0 3.50 1.00 49.0 

-�����������������
���� g water / 100 g dry soil 3998 718 40.2 38.9 18.1 1.54 137 

'�(������� – 4350 366 55.4 45.0 21.6 5.00 100 

)� g OC/100 g soil 4540 176 1.81 1.62 1.08 0.02 10.0 

���� mEq/100 g soil 3785 931 14.0 12.2 7.92 1.20 60.0 

��	*���
����� g/cm3 1741 2975 1.34 1.40 0.282 0.00 2.66 

�������������  µg C/g 3147 1569 408 312 360 1.00 2445 

���������
� µg C/g 2651 2065 345 257 339 0.05 2452 

���*����

�
������
 mg/kg dry soil 3917 799 1.28 0.400 2.55 0.003 25.0 

310 

311 

312 
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313 

Figure 2: Median DT50 values (red diamonds) and DT50 distributions (minimum to maximum) for 113 compounds with more than 10 associated DT50 values in 314 

���������	�(data used to build the Figure is available in Table S2 in SI).  The dashed line indicates a persistence criterion in soil of 120 days. 315 
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Regarding the collection of metadata, missing values may pose a problem in data analysis. The 316 

analysis of missing values in Table 1 shows that for 9 of the 13 numeric experimental parameters the 317 

number of missing values is reasonably low and varies between 1.2% for '��������� and 17% for 318 

���*�� 
�

�
������
. The ���	� ��%����, a categorical parameter not shown in Table 1, is another 319 

parameter with a small number of missing values, i.e., only 134 out of 4716, or 3% (see Figures S1 in 320 

the SI for a frequency plot of the distribution of the 12 soil textural classes). The ������ ��������321 


���
��� only shows 8% of missing values, but will need some further pre>processing to be used for 322 

modeling purposes. First, the ��������������
���
��� is a property of the soil that could per se have an 323 

influence on observed degradation. However, it has been measured under slightly varying water 324 

tensions and therefore needs to be harmonized to one set of conditions. Second, the ������ ��������325 


���
��� does not directly describe the experimental moisture content of the soil, which also 326 

potentially influences degradation. The latter could be obtained from multiplying the ������ ��������327 


���
��� with the '���������. 328 

Considerably more problematic in terms of missing values are the 
����
� �%
��
��� 
���
���, ��	*�329 

��
����, ������������� and ���������
� parameters, with 20%, 63%, 34% and 44% of missing values, 330 

respectively. Bulk density shows the highest number of missing values, with 2975 scenarios out of 331 

4716 not containing any information on it. Preliminary experiments showed that the missing bulk 332 

densities could be imputed using the known relation between ��	*���
����, soil texture and ����
�
�333 


�
��
�. A k>nearest neighbor model trained using the available ��	*���
���� values and '�
	�� and 334 

����
�
�
�
��
� as descriptors yielded results with a mean absolute error of 0.06 g/cm3 in 10>fold cross 335 

validation. Similarly, 
����
��%
��
���
���
��� could be imputed from '�
	��, ����
�
�
�
��
� and 336 

�( with a mean absolute error of 1.12 mEq/100 g soil in 10>fold cross validation. While imputation of 337 

some parameters based on known relationships between soil properties thus seems feasible and useful 338 

for further model development, other missing values such as ������������� and ���������
� will be 339 

more difficult to address in this way because of the unknown relationship between these parameters 340 

and other experimental parameters. 341 

Overall, ���������	 provides an unprecedentedly rich collection of half>lives and experimental 342 

parameters manually extracted and curated, which should be useful in a great variety of applications, 343 

some of which will be demonstrated in the following subsections. 344 

345 

������

���
���
�

�����346 

The projection of the top three principal components deduced from the structural fingerprints of the 347 

compounds in the ��������� and ���������	 packages is shown in Figure 3A, and with the 348 

inclusion of the pharmaceuticals in Figure 3B. While ���������	 overlaps with ��������� in some 349 

regions of the space, it clearly extends it to a point where it also allows for a better coverage of other 350 

relevant classes of compounds, e.g., the set of pharmaceuticals included for illustrative purposes 351 

(Figure 3B). 352 
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353 

354 

Figure 3. Projection of the top three principal components of A) ��������� and ���������	, and B) 355 

���������, ���������	 and pharmaceuticals set. 356 

357 

To quantitatively confirm the results shown in Figure 3, an analysis was also carried out based on one>358 

class SVM for outlier detection. The ν>Parameter, which limits the number of outliers in the training 359 

dataset, was initially set to a default value of 2%. To confirm that this value was reasonable, the 29 360 

compounds identified as outliers in the ��������� package were visually checked and confirmed as 361 

reasonable outliers. The outlier analysis indeed showed that the combined set of ��������� and 362 

���������	 compounds covers a wider area of the relevant chemical space, compared to using only 363 

the ��������� compounds. First, the outliers for the set of parent pesticides from ���������	 364 

showed a reduction from 134 to 6 (Table 2). Similarly, the number of outliers for all compounds in 365 

��������� and ���������	 combined showed a reduction from 590 to 61 (Table 2). These results 366 

confirm that compounds such as pesticides would have been badly covered by the ��������� dataset 367 

alone and, at the same time, can be considered as an internal validation of the outlier detection method. 368 

More importantly, the number of outliers for the set of pharmaceuticals is reduced by 70% (152 369 

instead of 515) when adding the ���������	 dataset to the ��������� dataset. Three examples of 370 

pharmaceuticals that were outliers in ��������� but are considered inside the combined chemical 371 

space of ��������� and ���������	 are shown, together with their corresponding three nearest 372 

neighbors, in Table S3 of the SI. With the inclusion of the ���������	 package, 85% of the 373 

pharmaceuticals are now covered by the chemical space of the compounds in enviPath. Based on the 374 

combination of the ��������� and ���������	 packages, it should therefore become possible to train 375 

models with a significantly enlarged application domain, and hence strongly increased prediction 376 

accuracy and reliability for structurally complex and polar compounds, which are of particular concern 377 

for water quality 50. 378 
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379 

Table 2. Number of outliers detected in the different datasets. 380 

Number of compounds detected as outliers 

����������

(N = 1399)�

��������� and 

���������	 

(N = 3018) 

Parent Pesticides in 

���������	 

(N =280) 

Pharmaceuticals 

(N = 1006) 

���������a 29 590 134 515 

��������� & ������

���	a 
21 61 6 152 

aCompound sets used to define the chemical space 381 

382 

!���������
���
�

�����383 

From the set of 1535 experimental reactions, 711 reactions (i.e., 46%) are not predicted by the Eawag>384 

PPS system over a three>generation prediction cycle. Thus, the current sensitivity of Eawag>PPS to 385 

predict transformation of the compounds contained in ���������	 is only 54%. For the 711 reactions 386 

not predicted, the respective type of transformation might be missing completely, or corresponding 387 

rules exist but their specificity does not fully cover the substrate spectrum of compounds in ������388 

���	. Table 3 shows the eight reaction types that contain at least eight reactions that were not predicted 389 

by Eawag>PPS. Together they cover 20% of the 711 reactions not predicted by Eawag>PPS. Another 390 

253 reactions were classified into 48 more reaction types or combination of reaction types of smaller 391 

size. 315 reactions could so far not be classified at all, amongst other reasons because of incompletely 392 

documented biotransformation pathways with missing intermediates and improbable reported 393 

structures of intermediates. These cases will need further attention, but might not be fully resolvable. 394 
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Table 3: Most populated reaction types not predicted by Eawag>PPS with example reactions. 395 

��������
%���

����	���
��


��������
%���

"#
&
 ���!�	�
��������
 ��	����
"���
�


Hydroxylation 

(52 reactions) 

Hydroxylation in 

(hetero)aromatic 

ring  

33 

bt0013 

Hydroxylation in 

aliphatic ring 
7 

bt0242 

Hydroxylation in 

alpha>position to 

allyl/aryl/carbonyl 

group 

6 

Hydroxylation in 

(hetero)aromatic 

ring followed by 

keto enol 

tautomerism 

6 

Scission of aryl>

heteroaryl ether 

bond 
19 
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Amide hydrolysis 

(16 reactions) 

(Cyclic) N>

acylurea 

hydrolysis 

5 

bt0067

(Cyclic) Sulfonyl 

urea hydrolysis 
7 

Aliphatic amide 

hydrolysis 
4 

Decarboxylation 13 

bt0051

N>dealkylation 11 

bt0063 
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Ar>OH 

methylation 
9 

O>dealkylation 
8 

bt0023

Reduction of 

ketone to alcohol 
8 

396 
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The most populated reaction types cover hydrolysis, oxidative N> and O>dealkylations, 397 

decarboxylations, reductions and also addition reactions. For most of these reaction types, i.e., 398 

hydroxylations, amide hydrolyses, decarboxylations, and oxidative N> and O>dealkylations, similar 399 

����	�� already exist but are too specific to predict the observed reactions. For instance, they may be 400 

too specific in the definition of the neighborhood atoms of the reaction center. This is case for rules 401 

bt0011, bt0012, bt0013 and bt0014, which predict hydroxylations of monosubstituted benzene and 402 

pyridine rings in �>, �>, and �>position, but do not cover multiply substituted aromatic rings and N>403 

heteroaromatic rings other than pyridine, which, however, are present as observed reactions in the 404 

���������	 dataset. Another case of existing rules being too specific are rules that have restrictions 405 

related to the presence of specific functional groups in the molecule. Here, hydroxylations in aliphatic 406 

rings and in alpha position to allyl, aryl and carbonyl groups are an interesting example since the 407 

existing rule bt0242 handles hydroxylation of secondary aliphatic carbon atoms in a ring, adjacent to a 408 

carbon that is sp2 hybridized, or bound to N or O, and should thus cover the observed reactions. 409 

However, rule bt0242 has been prevented from acting on these compounds due to “functional group 410 

restrictions” that state that the rule should not act on esters and amides, which, however, are present in 411 

the substrates of the respective, not predicted reactions. In these and similar cases, existing rules 412 

should be extended to cover the structural patterns observed in the ���������	 reaction set, and 413 

functional group restrictions removed where they are in contradiction to evidence from ���������	. 414 

The latter point suggests itself even more since approaches have been developed to learn relative 415 

priorities between rules (e.g., between hydroxylation and amide or ester hydrolysis) from the data and 416 

implement them in terms of relative reasoning models, rather than hardcode them into the rules 
25, 27, 28

. 417 

Of the most populated reactions in Table 3 only the scission of the aryl>heteroaryl ether bond, Ar>OH 418 

methylation and the reduction of the ketone group are not covered by any existing rule. The scission of 419 

the ether bond is an interesting case because the ether linkage is a common feature that, due to the high 420 

energy of the ether bond, confers stability and consequently renders these compounds typically rather 421 

resistant to microbial degradation. However, abiotic hydrolysis data 36, 51 demonstrate that at least 422 

some of these aryl>heteroaryl ether bonds can be hydrolyzed at acidic pH, resulting in the formation of 423 

a phenol and a 2>pyridone derivative. This must be due to the presence of the N>atom in the aromatic 424 

heterocycle, which renders it more e>deficient and draws electron density from the carbon atom that is 425 

attached to the ether bridge, making it more vulnerable for nucleophilic attack. These considerations 426 

suggest that the observed scission of aryl>heteroaryl ether bonds is due to hydrolysis, but based on the 427 

data available in ���������	 it remains difficult to judge whether it is a purely abiotic or enzyme>428 

catalyzed hydrolysis. 429 

The Ar>OH methylation is another interesting case since it is an addition reaction. Methylation of 430 

phenol to anisol is a common transformation in many biosynthetic pathways (e.g., lignol, hormone, 431 

and flavonoid biosynthesis) and may be catalyzed by enzymes from the methyltransferase class (EC 432 

numbers of class 2.1.1.>). The substrates of six out of the nine Ar>OH methylations in ���������	 are 433 
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halogenated substituted phenols. Therefore, likely candidate enzymes that could perform this type of 434 

biotransformation are EC 2.1.1.136, a halogenated phenol O>methyltransferase that acts on mono>, bi> 435 

and trichlorophenols, and EC 2.1.1.25, a phenol O>methyltransferase that acts on a wide variety of 436 

simple alkyl>, methoxy> and halophenols. Interestingly, EC 2.1.1.136 has so far only been found to 437 

occur in fungi, which suggests that the ���������	 data set might also highlight some fungal 438 

transformations that are only scarcely covered in ��������� and hence not only extend the coverage 439 

of enviPath towards new types of compounds but also other types of catalyzing enzymes and 440 

microbial organisms. There are also other addition reactions such as formylations, acetylations or 441 

conjugations with more complex groups that are increasingly observed in microbial communities 
52>54

, 442 

and, at least for the case of N>formylation (1 reaction) and N>acetylation (3 reactions), have also been 443 

observed in ���������	. Addition reactions have typically not been implemented in pathway 444 

prediction systems so far because their focus was on catabolic reactions. As a consequence, as is the 445 

case for Ar>OH methylation, a ����	� for the reverse reaction, i.e., the oxidative O>dealkylation, often 446 

exists. Therefore, if addition reactions were to be implemented in the future, care has to be taken that 447 

the system does not predict any products from a given substrate that are identical with any of its 448 

precursor compounds in the pathway to avoid “dead cycles” in the prediction.  The same is true if 449 

rules for reductions such as the reduction of ketones to secondary alcohols (Table 3) were to be 450 

implemented. Since these are more likely to proceed under anaerobic conditions, assigning them a low 451 

aerobic likelihood within the Eawag>PPS system 
55

 could further restrict the application of such rules. 452 

453 

���
	������

��
�����
��
"�
����454 

As discussed in a previous section, median half>lives across all pesticides cover about three orders of 455 

magnitude, yet variability in half>lives for individual pesticides also spans about two orders of 456 

magnitude. Thus, improved QSBR models need to account for both inter> and intra>compound 457 

variability in half>lives. This should become more achievable if mechanistic understanding about the 458 

fate of the pesticides in soil and about the ongoing transformation processes is included in the model 459 

development as much as possible. Here, we therefore explore whether the consideration of initial 460 

transformation reactions can support such an endeavor. The underlying hypothesis is that if a set of 461 

structurally similar compounds, i.e., from the same pesticide class, showed the same initial 462 

transformation reaction, this transformation is likely catalyzed by the same type of enzyme. The two 463 

ensuing hypotheses, for which we did some initial exploration here, are ��� that inter>compound half>464 

life variability is considerably smaller within compounds that belong to the same pesticide class and 465 

undergo the same transformation than across all compounds, and ���� that intra>compound half>life 466 

variability shows similar, characteristic dependencies on environmental conditions across compounds 467 

that belong to the same pesticide class and undergo the same transformation. Hypothesis (��) is 468 

restricted to compounds belonging to the same pesticide class because we assume that direct effects of 469 
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the environmental conditions on their bioavailability and abiotic stability are consistent within a class 470 

of pesticides but not necessarily across classes. 471 

We explored these two hypotheses for all amide pesticides in the ���������	 package. Amides were 472 

selected because they constitute a large class in the ���������	 package (i.e., 40 out of 282 parent 473 

compounds are classified as amides according to ref 
56

). The class also contains several compounds 474 

that have particularly large numbers of half>lives and scenarios associated with them (i.e., 10 half>475 

lives/amide on average compared to 6 half>lives/compound on average across all of ���������	). The 476 

amides were then further grouped into consistent sub> and subsubclasses, first according to ref 56 and 477 

later through further manual curation. Finally, every amide was annotated manually with its initial 478 

transformation reaction(s) according to the pathway maps in the ���������	 package. This resulted in 479 

three amide subsubclasses (sulfonamides, chloroacetanilides, anilides with N>substituted pyrazole 480 

ring) that contained four or more structurally similar compounds undergoing the same type of initial 481 

transformation reaction (Table 4). All other subsubclasses were either smaller or their members 482 

underwent different initial transformation reactions. In the following, the three groups in Table 4 form 483 

the basis for testing hypotheses (�) and (��). 484 

485 

Table 4. Initial transformation reactions and half>lives (range and median) for sulfonamides, 486 

chloroacetanilides, and anilides with N>substituted pyrazole ring. 487 

Pesticide class� Compound 

Initial 

transformation 

reaction 

Median 

DT50 

[days] 

DT50 

range 

[days] 

Number 

of DT50 

values 

Sulfonamides 

Penoxsulam O>demethylation 24.5 15>137 7 

Pyroxsulam O>demethylation 3.6 1>17 25 

Florasulam  O>demethylation 3.5 0>45 17 

Metosulam O>demethylation 9.15 4>25 4 

+��	���a�

��.���	,�)�

�������	����
�
���

������	��

/#01� /�!"� $�

)��2�	�
�a�

��.���	,�)�

�������	����
�
���

������	��

!0�� 3/�430� 0�

Chloroacetanilides�

Acetochlor 

Substitution with 

GSH & hydrolysis; 

reductive 

dechlorination 

10.2 0.28>44 50 

Dimethachlor 

Substitution with 

GSH; reductive 

dechlorination; 

others 

7.15 3.31>19.8 12 

Dimethenamide 
Substitution with 

GSH & hydrolysis 
13 7.8>43.4 5 
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Metazachlor 
Substitution with 

GSH; other 
13.6 3.1>109 49 

Propisochlor 
Substitution with 

GSH & hydrolysis 
11.4 8.4>40.2 5 

Anilides with N>substituted pyrazole 

ring 

BAS 700 

N>dealkylation; 

amide hydrolysis; 

other 

326 72.7>810 6 

Benzovindiflupyr N>dealkylation; 

amide hydrolysis; 

hydroxylation 

550 349>1000 7 

Bixafen N>dealkylation; 

amide hydrolysis 
>365 n.a. 4 b 

Isopyrazam N>dealkylation; 

amide hydrolysis; 

hydroxylation 

231 29.8>976 9 

Penflufen Hydroxylation 231 117>434 6 

Penthiopyrad Hydroxylation; N>

dealkylation; amide 

hydrolysis 

146 60.5>413 6 

Sedaxane N>dealkylation; 

other 
74.2 57.6>138 8 

a These two sulfonamides were included to demonstrate the effect of adding structurally similar 488 

compounds that undergo different initial transformation reactions.489 

b For all four scenarios, half>lives were given as >365 d. 490 

491 

The median half>life data given in Table 4 and the distribution of individual half>lives of the three 492 

groups as compared to the entirety of all amides shows that the distribution of half>lives for the 493 

chloroacetanilides and the sulfonamides are overlapping, whereas the median half>life distribution for 494 

the anilides is quite distinct. More importantly, however, the distributions for the three groups in Table 495 

4 are more narrow than the half>life distribution for all amides (Figure 4), which is also demonstrated 496 

by the coefficients of variation (CV) of the median half>lives, which are 0.97, 0.23, and 0.64 for the 497 

sulfonamides, the chloroacetanilides and the anilides, respectively, as compared to 1.24 for all amides. 498 

For demonstration purposes, we also considered half>life data for the remaining two sulfonamides in 499 

the ���������	 package (i.e., asulam and oryzalin), which, however, do not contain the 500 

methoxypyrimidine moiety that is subject to O>demethylation in penoxsulam, pyroxsulam, florasulam 501 

and metosulam and therefore undergo different initial transformation reactions. This resulted in a CV 502 

across all six sulfonamides of 1.89. Altogether, these observations lend some support to hypothesis ��� 503 

in that they demonstrate smaller inter>compound variability within groups of compounds undergoing 504 

the same initial transformation reaction amongst the class of amide pesticides. 505 

506 
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507 

Figure 4. Half>life distribution (frequency plot) for chloroacetanilides, sulfonamides, anilides with N>508 

substituted pyrazole ring, and remaining compounds classified as amides in the ���������	 package. 509 

510 

To explore hypothesis (��), first, Spearman rank correlation coefficients for the relationship between 511 

the DT50 values of the six sulfonamides and nine experimental parameters were calculated (Table 5). 512 

For some combinations of compounds and parameters the analysis was not possible because of 513 

missing values. A consistent negative relationship with temperature was observed (albeit only 514 

significant for one compound), which could be expected because of previous reports of Arrhenius>type 515 

dependence of pesticide soil degradation 57. Only few additional univariate relationships were found 516 

that are significant at the 5% level. The case of OC seems most interesting because contradictory, yet 517 

significant dependencies are found for pyroxsulam (negative dependence, O>demethylation) and 518 

oryzalin (positive dependence, transformations other than O>demethylation). Additionally, a close to 519 

significant negative dependence on OC was also found for florasulam (O>demethylation). These 520 

results lend some support to the hypothesis that dependencies on environmental conditions are more 521 

similar if compounds undergo the same initial transformation reaction. 522 

523 
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Table 5. Spearman rank correlation coefficients for relationships between DT50 values of six 524 

sulfonamides and selected experimental parameters. Significance of rank correlation coefficients are 525 

given in parenthesis and coefficients that are significant at the 5% significance level are highlighted in 526 

bold. 527 

Log(DT50)�

Penoxsulam�

N=7�

Pyroxsulam�

N=25�

Florasulam�

N=17�

Metosulam�

N=4�

Asulam�

N=5�

Oryzalin�

N=8�

% Sand 0.213 (0.685)� 0.095 (0.651)� 0.204 (0.661)� >0.738 (0.262)� 0.205 (0.741)� 0.627 (0.070)�

% Silt >0.213 (0.685)� 0.005 (0.981)� >0.204 (0.661)� 0.000 (1.00)� >0.205 (0.741)� �'#()*
+'#''(,�

% Clay >0.213 (0.685)� >0.172 (0.411)� 0.337 (0.460)� 0.800 (0.200)� >0.308 (0.614)� >0.627 (0.070)�

pH 0.273 (0.601)� �'#-'.
+'#')',� 0.163 (0.727)� >0.400 (0.600)� 0.718 (0.172)� >0.579 (0.102)�

Temperature �'#(*-
+'#'.*,� >0.283 (0.170)� >0.628 (0.131)� >� >0.707 (0.182)� >0.548 (0.127)�

Organic Content 0.395 (0.438)� �'#-/.
+'#''0,� >0.738 (0.058)� >1.00 (>)� >0.205 (0.741)� '#(*(
+'#''*,�

CEC 0.030 (0.955)� >0.312 (0.129)� 0.535 (0.216)� >0.80 (0.200)� 0.103 (0.869)� 0.034 (0.931)�

Biomass Start 0.516 (0.295)� �'#1))
+'#''),� >0.553 (0.198)� >1.00 (>)� >0.205 (0.741)� >�

Spike concentration >� 0.248 (0.232)� >� >� >� >0.402 (0.283)�

528 

Because univariate relationships are strongly confounded by the influence of all other experimental 529 

parameters on the observed half>lives, multiple linear regression models were developed to further 530 

explore the validity of hypothesis ���� for the example of the sulfonamide herbicides. Considering the 531 

fact that the DT50 ranges of all the sulfonamide herbicides are in the same range with exception of the 532 

oryzalin, multiple linear regression were developed using as training set a combination of all DT50 533 

values and corresponding scenarios for only those four sulfonamides undergoing O>demethylation 534 

(experiment 1) or for all six sulfonamides (experiment 2). In Table 6, a summary of the resulting 535 

models is given. 536 

537 

Table 6. Multiple linear regression models developed for DT50 values of sulfonamides. 538 

Training� Test (10>fold cross validation)�

Compounds�
N 

desc�

Desc. 

Selected�
R� MAE� RMSE� R� MAE� RMSE 

Penoxsulam�

Florasulam�

Metosulam�

Pyroxsulam�

(N=53)�

5�
pH; T; OC; 

CEC; Biomass�

0.813� 0.252� 0.315� 0.729� 0.312� 0.377�

Penoxsulam�

Florasulam�

Metosulam�

Pyroxsulam�

Oryzalin�

Asulam�

(N=66)�

4�

T; CEC; 

Biomass; 

Spike 

Concentration�

0.743 0.371 0.476 0.627 0.426 0.563 

539 
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After parameter selection, the final MLR model for experiment 1 yielded the following equation: 540 

������50	 = −0.166 ∗ �� − 0.0467 ∗ � − 0.166 ∗ �� + 0.0249 ∗ ��� − 0.0005

∗ �������	 !�"! + 2.75 

The final MLR model had a mean absolute error of 0.312 (corresponding to roughly a factor of two) in 541 

10>fold cross validation and showed an only minor decrease of R between training and cross>542 

validation, indicating that the data were not over fitted by the model. Also, at least two of the observed 543 

dependencies are plausible based on our understanding of the fate of pesticides in soil: The 544 

temperature>dependence again follows the logic of an Arrhenius relationship, and the negative 545 

dependence on biomass follows the logic of a second>order rate constant that depends on biomass and 546 

compound concentration. The fact that a model could be built that encompassed all four sulfonamides 547 

in experiment 1 and that remained robust in rigorous 10>fold cross>validation, without the need to 548 

include information on the structure of the compound or other molecular descriptors, clearly support 549 

both hypotheses ��� and ����. Hypothesis ���� is further supported by the fact that the regression model 550 

from experiment 2 performed worse than for experiment 1, suggesting that adding data for structurally 551 

similar compounds that, however, undergo a different type of transformation weakens the observed 552 

dependences on experimental parameters. The finding that experiment 2 performs worse than 553 

experiment 1 still holds true when the half>lives for each compound are z>normalized to account for 554 

the different half>life range of oryzalin compared to the other sulfonamides (i.e., R values of 0.680 and 555 

0.648 are obtained for training the model on only those sulfonamides containing the 556 

methoxypyrimidine moiety and on all six sulfonamides, respectively). Overall, the most encouraging 557 

outcome from this exploration of half>life variability is that for groups of structurally similar 558 

compounds undergoing the same transformation models can be built that capture a relevant part of the 559 

observed variability (i.e., >60%). 560 

561 

2���	������
3
���	��4
562 

In this article we presented the ���������	 package as a novel biotransformation data package made 563 

available through the enviPath environment. ���������	 contains a comprehensive collection of all 564 

freely accessible regulatory data on pesticide degradation in laboratory soil simulation studies under 565 

aerobic conditions for pesticides registered in the EU. This data resource has been developed in order 566 

to respond to the need for more environmentally relevant training data sets to develop models for the 567 

microbial biotransformation of polar, structurally complex trace organic contaminants such as 568 

pesticides and pharmaceuticals. An analysis of the chemical spaces covered by the existing ������569 

��� dataset and ���������	 confirmed a strongly improved coverage of these types of chemicals, 570 

suggesting that through the combination of the ��������� and ���������	 packages it should 571 

become possible to train models with an increased prediction accuracy and reliability for structurally 572 

complex and polar compounds. 573 
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We have further explored two lines of research that can greatly profit from the data in ���������	: ��� 574 

the formulation of new rules or adaptation of existing rules to obtain a better coverage for the 575 

prediction of soil biotransformation of structurally complex trace organic contaminants, and ���� the 576 

elucidation of the dependency of observed half>life variability on the study conditions as expressed by 577 

the experimental parameters. Based on the analysis of missing rules, eight examples of reaction types 578 

were presented that should trigger the formulation of new biotransformation rules, e.g., Ar>OH 579 

methylation, or the extension of existing rules e.g., hydroxylation in aliphatic rings. The exploration of 580 

the half>lives of different amide pesticides not only showed that different subsubclasses of structurally 581 

similar amides have significantly different median half>lives, but also yielded some first evidence that 582 

the consideration of initial transformation reactions within groups of structurally similar amides seems 583 

to support a more accurate description of how half>lives depend on environmental conditions. Based 584 

on these results, we argue that the consideration of the type of initial transformation reactions in the 585 

development of QSBRs should greatly facilitate the consideration of the influence of experimental 586 

parameters on half>lives in such models. Doing so is a novel opportunity offered by the simultaneous 587 

encoding of transformation reactions and corresponding half>lives in ���������	. Ultimately, a 588 

combined pathway prediction system could be developed where the reactivity pattern of the compound 589 

(as encoded by an extended set of btrules) is used as one type of descriptor in combination with 590 

molecular descriptors and experimental conditions to predict half>lives. To work towards this end, a 591 

more complete analysis of the reactions not predicted by Eawag>PPS will be sought, and an automated 592 

procedure for defining new rules based on a chemoinformatics approach for semi>automatic analysis 593 

and assignment of reaction types will be implemented. 594 

Overall, ���������	 makes an unprecedented amount of manually curated soil biotransformation 595 

information available to the public in an easily accessible manner. This should not only be of high 596 

interest for researchers developing QSBR>type models and pathway prediction systems, but also for 597 

regulators and the general public as an information resource. 598 

599 
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