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Abstract  27 

Phenotypic variation is vital for microbial populations to survive environmental 28 

perturbations. Both genetic and non-genetic factors contribute to an organism’s phenotypic 29 

variation and therefore its fitness. To investigate the correlation between genetic diversity and 30 

phenotypic variation, we applied our recently developed mass spectrometry method that 31 

allows for the simultaneous measurement of more than 25 different lipids and pigments with 32 

high throughput in the unicellular microalga Chlamydomonas reinhardtii. We monitored the 33 

impact of nitrogen limitation on a genetically diverse wild-type strain CC-1690 and two 34 

isoclonal isolates from CC-1690 named ANC3 and ANC5. Measuring molecular composition 35 

of thousands of single cells at different time points of the experiment allowed us to capture a 36 

dynamic picture of the phenotypic composition and adaptation of the populations over time. 37 

While the genetically diverse population maintained phenotypic variation over the whole time 38 

course of the experiment, the isoclonal cultures showed higher synchronicity in their 39 

phenotypic response. Furthermore, the genetically diverse population showed equal or greater 40 

phenotypic variation over the whole time range in multidimensional trait space compared with 41 

isoclonal populations. However, along individual trait axes non-genetic variance was higher 42 

in isoclonal populations.   43 
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Introduction 44 

The ability of organisms to express phenotypic variation is a basic feature of life. The 45 

expression of phenotypic variation among individuals within a population can increase the 46 

chances that some individuals in a population will express adaptive phenotypes in a new or 47 

changed environment (Forsman and Wennersten, 2016), and therefore improve the fitness of 48 

the species, and increase the chances of its survival (reviewed in Schlichting and Pigliucci, 49 

1998). Phenotypic variation of organisms can result from genomic differences among 50 

individuals, but may also occur in isogenic populations due to phenotypic plasticity, 51 

epigenetic effects, and bet-hedging, among others (Ackermann, 2015, Simons, 2011, 52 

Wennersten and Forsman, 2012). Understanding the relative contributions of genetic and non-53 

genetic sources of phenotypic variation is particularly important in studies of evolution and 54 

eco-evolutionary feedbacks for numerous reasons (Ghalambor et al., 2007, Pigliucci, 2005, 55 

DeWitt et al., 1998, Auld et al., 2010, Simons, 2011, Hairston et al., 2005, Collins and 56 

Gardner, 2009, Yamamichi et al., 2011, Hendry, 2016). First, plasticity and other non-genetic 57 

sources of variation may be more limited in the extent of phenotypic variation that can 58 

generate than genetic sources of variation (Gienapp et al., 2008, DeWitt et al., 1998, Auld et 59 

al., 2010). Second, genetic and non-genetic phenotypic variation respond to environmental 60 

change at different rates, with the expectation that non-genetic sources of variation tend to 61 

respond faster (Yamamichi et al., 2011). Lastly, due to the first two points above, the relative 62 

contributions of each may differ depending on the rate and strength of environmental change 63 

observed (Yamamichi et al., 2011, Hendry, 2016). Furthermore, in order to predict 64 

evolutionary responses of populations to future environments, an estimate of the genetic basis 65 

of phenotypic variance among individuals is required (Schlichting and Pigliucci, 1998). In 66 

this paper we provide the first comparison of the extent to which genetic and non-genetic 67 
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mechanisms are capable of producing phenotypic variation in a well-studied alga 68 

(Chlamydomonas reinhardtii) under a well-studied stress (nitrogen limitation) at the level of 69 

the single cell. 70 

 While there is a wealth of recently developed methods for extracting single-cell 71 

information from genomes (Lu et al., 2012, Zong et al., 2012), transcription (Macosko et al., 72 

2015, Klein et al., 2015) and protein expression (Spitzer and Nolan, 2016), methods for the 73 

multiparametric analysis of metabolites in single cells are scarce (Zenobi, 2013). What is 74 

more, the great majority of these techniques were developed for mammalian cells. Some 75 

methods with single-cell sensitivity have successfully been transferred to microbes, including 76 

genome analysis (Kashtan et al., 2014, Rinke et al., 2013, Spencer et al., 2016) and the 77 

characterization of phenotypes using fluorescence (Breker et al., 2013, Fontana et al., 2014), 78 

Raman microscopy (Schuster et al., 2000) or elemental analysis of isotopes using secondary 79 

ion mass spectrometry (Schreiber et al., 2016). However, in general, applying single-cell 80 

methods to microbes is challenging due to the great diversity of cell sizes, morphologies and 81 

structural properties of cell walls. Therefore, the study of phenotypic variation in microbial 82 

systems and its underlying mechanisms is still compromised by technical limitations in 83 

microbial systems (Altschuler and Wu, 2010, Ackermann, 2015).  84 

 We recently developed a method for the label-free analysis of small molecules in 85 

single cells of the microalga Chlamydomonas reinhardtii, which combines matrix-assisted 86 

laser desorption/ionization (MALDI) mass spectrometry (MS) with high-throughput 87 

microarray sample-preparation technology. This technique, here called single-cell mass 88 

spectrometry (SC-MS), showed the reproducible relative quantitative measurements of more 89 

than 15 lipids and pigments in thousands of single cells of a unicellular organism for the very 90 

first time (Krismer et al., 2015). Chlamydomonas reinhardtii is a popular model organism in 91 
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laboratory evolution experiments owing to the tools developed for transformation and 92 

sequencing of the genome (Merchant et al., 2007). Abiotic stress in C. reinhardtii is often 93 

linked with light availability, or macronutrient limitation. Phosphorous and nitrogen are 94 

among the most limiting macronutrients (Reynolds, 2006). Metabolic adaptations to nitrogen 95 

limitation are well characterized in C. reinhardtii and are the subject of continued study (Park 96 

et al., 2015). The main metabolic adaptations to nitrogen limitation include the 97 

downregulation of photosynthetic activity (Juergens et al., 2015, Huner et al., 2012), the 98 

accumulation of lipid droplets, and the increased mobilization and allocation of internal and 99 

external nitrogen (Miller et al., 2010). The downregulation of photosynthesis (reflected by 100 

fewer photosynthetic pigments such as chlorophyll-a) and the accumulation of neutral lipids 101 

(consisting mainly of triacylglycerols, hereafter “TAG”s) are attributed to a decreased 102 

utilization of reductant energy due to a slowdown in anabolic metabolism (Huner et al., 103 

2012). Different strains of C. reinhardtii do however display marked phenotypic differences 104 

in their responses to N-limitation (Siaut et al., 2011). In a recent study, Malcom and 105 

coworkers investigated the genetic basis of growth rate variation across 18 strains of C. 106 

reinhardtii across 30 environments and found that, while genetically-based phenotypic 107 

variation was constrained to only three main axes of selection (types of environmental 108 

variation), the response to nitrogen availability was one of them (Malcom et al., 2015) . 109 

 Here, we extended our SC-MS method to measure the impact of genetic diversity 110 

and plasticity (here defined as all phenotypic variation expressed by isoclonal populations 111 

including phenotypic heterogeneity (Ackermann, 2015)) in generating phenotypic variation 112 

under nitrogen-limited conditions. SC-MS was able to detect 26 small molecules from 113 

different pigment and lipid classes in individual cells, including chlorophylls, thylakoid lipids, 114 

membrane lipids and storage lipids (Table 1). Here we measured the lipid composition of 115 
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thousands of single cells to determine the variance and the composition of phenotypes present 116 

in different populations over time. We further investigated the correspondence between 117 

measures of population-level growth, resource limitation and single-cell phenotypes to 118 

investigate the possibility of different strategies in dealing with nitrogen limitation. To do so, 119 

we cultured the genetically diverse strain CC-1690 and two isoclonal populations isolated 120 

from CC-1690 termed ANC3 and ANC5 under N-replete and N-deplete conditions for 9 days. 121 

Population-level characterization showed differences among the populations selected for this 122 

experiment in their growth rate (μmax, Figure S1) and in their minimum nitrogen requirements 123 

(referred to here as R*, Figure S1). By sampling multiple time points of batch growth for SC-124 

MS, we captured the adaptation to nitrogen depletion in the different cultures with single-cell 125 

resolution.   126 
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Materials and methods 127 

Microbial populations and culture conditions 128 

CC-1690 wild type mt+ was obtained from the Chlamydomonas Resource Center, 129 

University of Minnesota (http://www.chlamycollection.org). The culture inoculum was grown 130 

up in sterile COMBO freshwater medium (Kilham et al., 1998) lacking silicate, animal trace 131 

elements and vitamins, and then again plated onto YA agar plates in order to allow for the 132 

formation of individual isoclonal colonies. Five isoclonal isolates were selected from agar 133 

plates by haphazardly picking five spatially isolated and distinguishable colonies and 134 

inoculating them again into liquid medium. These isoclonal isolates were designated as 135 

Ancestors 1-5 (ANC1-ANC5).  136 

Prior to the single-cell MS experiment, we performed an extensive set of pilot experiments to 137 

determine the population-level growth trajectories, growth rates and minimum rates of each 138 

population in media containing a wide range of nitrate concentrations (see detailed methods in 139 

the Supplementary information, Section 3.1). Based on these data (Figures S1-S3), we 140 

selected ANC3 and ANC5 for further investigation at the single-cell level because they 141 

showed distinct population-level characteristics relative to each other and to their parental 142 

population, CC1690. In particular, ANC3 showed a high growth rate (µmaxANC3 = 0.96 d-1) 143 

and a higher nitrogen requirement (R*ANC3 =1.78 µM N) than CC-1690(µmaxCC-1690 = 0.80 d-1 144 

,R*CC-1690 = 0.27 µM N). ANC5 showed a lower growth rate (µmaxANC5 = 0.54 d-1) than CC-145 

1690 and a nitrogen requirement of R*ANC5 = 0.5 µM N. 146 

Nitrate limitation experiments  147 

Before performing the single-cell MS experiments, the wild type strain CC-1690 and 148 

the two isoclonal isolates, ANC3 and ANC5, were acclimated and inoculated as described in 149 
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Supplementary information, Section 3.2. The batch-cultures were maintained at 20 °C, at a 150 

light intensity of ca. 100 µEinstein m-2 s-2, and under 100 rpm continuous shaking for nine 151 

days. We stopped the single-cell experiment on day 9 because growth trajectories from the 152 

pilot experiments had shown that the deplete cultures had all reached steady-state after 8 days, 153 

at which time the replete cultures were also approaching steady-state (Figure S3). For SC-MS, 154 

the cultures were sampled 2, 4, 6 and 9 days after inoculation. We sampled the cultures for 155 

dissolved nitrogen and phosphorus and for microscopy and on days 2 and 9 (details in the 156 

Supplementary information, Section 3.3 and 3.4). The dissolved nutrient samples showed that 157 

the nitrogen concentrations were always below the 0.25 mg L-1 detection limit in the deplete 158 

medium, and that the concentrations of nitrogen had decreased over time in the replete 159 

environment (Table S1). 160 

Single-cell mass spectrometry  161 

Single-cell MALDI mass spectrometry was performed as described recently (Krismer 162 

et al., 2015). In short, slides were prepared for SC-MS as follows: on each day each culture 163 

covered a complete stainless steel slide (of 1430 spots each). Each spot was 300 μm in 164 

diameter and had a center-to-center distance of 720 μm. A layer of matrix, corresponding to 165 

approx. 5 nl of a 10mg/ml solution of 2, 5-DHB (Sigma Aldrich, 85707) in 80% aqueous 166 

acetone, was deposited before spotting the cells. Cells were centrifuged three times at 5’000 g 167 

for 5 min and re-suspended in deionized water. The integrity of the cells was monitored by 168 

fluorescence microscopy throughout the sample preparation as shown in previously published 169 

work (Krismer et al., 2015). To adjust the number of cells per spot for increased single-cell 170 

yield on the target the optimal number of drops was determined for each culture using a 171 

dilution series (4x4 array of 1, 2, 3, 5, 10 drops of cell solution). The rest of the slide was 172 

covered with cells and the cells were quenched immediately using liquid nitrogen. The slide 173 
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was reconstituted to room temperature in a desiccator and lipids were extracted from the cells 174 

and co-crystallized with the MALDI matrix. The extraction was performed in five 175 

consecutive cycles (each approx. 5 nl of 10 mg/ml DHB in 80% aqueous acetone) for 176 

homogeneous lipid extraction. The whole procedure was monitored using a confocal 177 

fluorescence scanner (LS400, Tecan, Switzerland). The number of cells per spot was 178 

determined based on a confocal scan of the slides after quenching with liquid nitrogen. 179 

MALDI-MS parameters for the measurements on the MALDI TOF-TOF mass spectrometer 180 

(AB Sciex 5800, Sciex, Canada) were as follows: the laser was operated at a repetition rate of 181 

400 Hz and an intensity of 4300-4400 arbitrary units. Spectra were measured for the range of 182 

550-1000 m/z with an extraction delay time of 200 ns, exhaustively ablating each spot using a 183 

spiral pattern. The absence of MS and fluorescence signals in empty spots ensures that there 184 

is no cross-contamination, and spots with multiple cells were discarded before data analysis. 185 

Details on spectral processing and peak assignment of the mass spectra can be found in the 186 

Supplementary information, Section 3.5 and 3.6. A table of with peak assignments can be 187 

found in Table S2. A more detailed description of the SC-MS method can be found in 188 

(Krismer et al., 2015). Due to technical problems during the spotting only very few single 189 

cells of ANC5 culture were successfully measured on days 4 and 6.  190 

Data analysis for single-cell mass spectrometry 191 

 A principal component analysis (PCA) on the dataset, including all populations, all 192 

nitrogen conditions and all days of the time series, was performed (princomp in R 3.2.4 193 

Revised). A detailed procedure for the handling of the data (including spectral processing), 194 

submitted to PCA analysis can be found in Figure S7. The recorded peak areas span three 195 

orders of magnitude thus the dataset was square root transformed. We used ggplot2 function 196 

including the contour plot tool density2d for visualization of the PCA (Wickham, 2009). The 197 
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first five principal components (PC) explain 91.8 % of the observed variance in the dataset 198 

(see Figure S8). The PC1 (49.5 % of variance explained) shows all-negative signs. The fact 199 

that all PC loadings have the same sign indicates that this PC does not refer to relative but to 200 

absolute intensities, which is underlined by the fact that the loadings closely resemble the 201 

average intensity of the peak in the experiment (see Figure S9). In MALDI mass spectra, only 202 

relative abundances hold quantitative information thus we restricted our interpretation on the 203 

other PC’s showing loadings with opposite signs. This is especially relevant in single-cell 204 

analysis, since there is no option for introducing an internal standard and there is no single 205 

compound that is present in equal amounts in each cell. The PC2 explains 26.0 % of the 206 

observed variance and segregates between photosynthetic pigments and the extra-plastidic 207 

Diacylglyceryltrimethylhomo-Ser lipids (hereafter “DGTS”, Supplementary Information, 208 

Figure S9). PC3 explains 8.2 % of the observed variance and segregates cells that detect high 209 

levels of TAG storage lipids. PC4 explains 4.2 % of the observed variance and segregates 210 

between DGTS lipids of different fatty acid composition. Details on non-parametric testing 211 

can be found in Supplementary Material, Section 3.7. 212 

Based on plots of cellular phenotypes on PC2 and PC3, we assigned cells to one of 213 

three apparent phenotypic categories. Based on the cut-offs of the PC scores, we defined three 214 

categorical phenotypes as ‘high chlorophyll’ (PC3 < 5, PC2 > 0), ‘high membrane lipid’ (PC3 215 

< 5, PC2 < 0) and ‘high storage lipid’ (PC3 > 5). The absolute numbers of cells in each 216 

phenotypic class can be found in Table S3. Contingency table analysis of Table S3 by means 217 

of the Fisher’s exact test was performed using Myfisher23.m function (Cardillo, 2007). 218 

Details on the bivariate data analysis can be found in the Supplementary Material, Section 219 

3.8.  220 

In order to compare the whole range of phenotypic variation observed in the isoclonal 221 
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populations to that observed in the genetically diverse population, we calculated an index of 222 

multidimensional individual-level trait variation, called “Trait Onion Peeling” or TOP (see 223 

Fontana et al., 2016 for detailed description and methods). For this analysis we were 224 

interested in the total amount of multidimensional phenotypic space covered by a population 225 

in a given treatment over the course of the whole experiment, and so we pooled all of the cells 226 

in each population x nutrient combination over time. In order to compare samples of equal 227 

size for each treatment, we performed a bootstrap resampling of 100 cells from each 228 

population x nutrient combination 1000 times and calculated the TOP index on the PC2 and 229 

PC3 scores of the cells in each sample. We then compared the TOP index for each 230 

bootstrapped isoclonal population to the TOP index of a bootstrapped CC1690 population, 231 

and using the 1000 repeated bootstraps, we calculated the probability that a difference in trait 232 

variation between the isoclonal populations and the genetically diverse was greater than or 233 

less than zero.  234 
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Results 235 

Phenotypic differences among populations and treatments over time 236 

To characterize important phenotypic differences among the three populations, CC-237 

1690, ANC3 and ANC5 in response to nitrogen depletion treatment we used PCA to 238 

decompose the variation in the mass spectra. SC-MS values report differences in relative lipid 239 

and pigment composition of the single cells. PC1 refers to the absolute intensities of peaks in 240 

the mass spectra that cannot be assessed quantitatively using our MALDI-MS method (see 241 

Methods). PC2, however, separated between chlorophylls and DGTS while PC3 additionally 242 

separated between TAGs (Figure 1, for the PC loadings see Figure S9). Based on this 243 

analysis, we defined three phenotypes called ‘high chlorophyll’ (PC2 > 0 and PC3 < 5), ‘high 244 

membrane lipid’ (PC2 > 0 and PC3 <5) and ‘high storage lipid’ (PC3 > 5) (see Table S3). For 245 

exemplary spectra of the three phenotypes, see Figure 2B. For PC scores of the respective 246 

cells see Figure S10. The ‘high chlorophyll’ phenotype was ubiquitous in N-replete cultures 247 

and especially prominent on day 2 (e.g. 97.4 % of cells measured in N-replete CC-1690). 248 

Fisher’s exact test showed that in deplete cultures there was no significant difference between 249 

the phenotype frequencies in CC-1690 and ANC3 on day 2 (p=0.20) while CC-1690 and 250 

ANC5 differed significantly (p=0.008). With increasing nitrogen limitation ‘high chlorophyll’ 251 

phenotypes made up a decreasing fraction of the population (see green circles in Figure 2A) 252 

while the fraction of ‘high membrane lipid’ phenotypes increases (Table 1). Focusing on the 253 

most abundant chlorophyll (chlorophyll a) and the most abundant extraplastidic membrane 254 

lipid in the spectra (DGTS (34:3)) a bivariate analysis revealed a marked transition between 255 

‘high chlorophyll’ stages on day 2 and ‘high membrane lipid’ on day 9 in N-deplete cultures 256 

as can be seen in Figure 3. Remarkably, CC-1690 shows a distinct bimodal distribution 257 

including both spectra high in chlorophyll a and high in DGTS (34:3) on day 9.  258 
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The three populations also differed in the timing of the onset of the ‘high storage lipid’ 259 

phenotypes (Table 1) in N-depleted cultures (Figure 1 and Figure 2A). In CC-1690 we 260 

detected ‘high storage lipid’ phenotypes throughout the time series (12.5 – 36.3 % of the cells 261 

in the population) while in ANC3, only small fractions of the populations showed ‘high 262 

storage lipid’ phenotype until day 6 (1.6% on day 2, 4.8% on day 6, see also Table S3). 263 

ANC5 showed a very small fraction of ‘high storage lipid’ phenotypes on day 4 (3.9%) and 264 

on day 6 (0.6%). Highest frequencies of ‘high storage lipid’ phenotypes for both isoclonal 265 

populations were found on day 9. ANC3 contained almost 40% of cells with a ‘high storage 266 

lipid’ phenotype while ANC5 contained the lowest level of ‘high storage lipid’ phenotype 267 

cells (14.8%) in comparison to the other two populations. Fisher’s exact test showed that 268 

under deplete conditions, CC-1690 differed significantly both from ANC3 (p = 0.00008) and 269 

from ANC5 (p≈0) on day 9. In CC-1690, phenotype frequencies were not significantly 270 

different between day 6 and day 9 (p=0.91). CC-1690 was the first culture to respond to 271 

nitrogen stress with ‘high storage lipid’ phenotypes, but also the population that was able to 272 

retain the highest fraction of ‘high chlorophyll’ cells until day 9 (15.6 % in CC-1690, 3.6% 273 

ANC3 and 3.2% in ANC5). Furthermore, CC-1690 N-deplete and N-replete cultures 274 

displayed greater phenotypic similarity on day 9 than ANC3 and ANC5, as shown by the high 275 

overlap of contour plots of CC-1690 N-replete and N-deplete cultures in Figure 1.  276 

Parallel chlorophyll measurements using microscopy 277 

Since SC-MS only reports relative compound levels and we cannot assume one of the 278 

compounds to be present in equal amounts in all the single cells measured, we aimed to 279 

confirm the trends in chlorophyll levels that we observed using SC-MS using fluorescence 280 

microscopy. As per our MS data, the fluorescence microscopy showed that on day 2, the N-281 

replete and N-deplete cultures tended to had comparable chlorophyll levels while on day 9 282 
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replete cultures were relatively much higher in chlorophyll than deplete cultures (Figure 4 283 

and Supplementary information Table S4). Fluorescence microscopy also showed that ANC5 284 

cells had relatively low absolute levels of chlorophyll on day 9. ANC3 still shows the highest 285 

absolute chlorophyll intensities of all populations under N-deplete conditions on day 9 286 

(Figure 4 and Supplementary information Table S4). 287 

Comparisons of pooled trait variation 288 

 The TOP index is an estimate of the cumulative area of multidimensional trait space 289 

that is covered by individuals of a population. We used bootstrapping to compare the 290 

temporally pooled trait variation between isoclonal and diverse populations of equal size (100 291 

cells). The analysis showed that the bootstrapped distribution of estimated trait variation 292 

(TOP) for ANC3 was largely overlapping with that of CC1690, regardless of nitrogen 293 

treatment (Figure S11a & b). By comparison, the distribution of ANC5 TOP index showed 294 

lower levels of trait variation than CC1690 in both the deplete (mean difference = -180.79, 295 

Figure S11c) and the replete (mean difference = -220.51, Figure S11d) environments. 296 

However, in all cases the bootstrap probabilities that the clones had greater or lower 297 

individual-level trait variation than the population were all <0.95 (reported in Figure S11), 298 

and were therefore not statistically significant at the p=0.05 critical threshold. 299 

 We were interested first and foremost in the multidimensional trait variation of the 300 

populations, but we also investigated differences in temporally pooled trait variance along 301 

individual PC axes for each populations x nitrate treatment combination. ANC3 did not show 302 

significant differences from CC1690 along PC2, but it showed significantly lower variance 303 

than CC1690 in the replete environment, and significantly higher variance in the deplete 304 

environment along PC3 (Table S5, Figure S11 & S12). By contrast, ANC5 showed lower 305 

variance than CC1690 in all scenarios, except along PC2 in the deplete environment, where it 306 
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had significantly higher trait variance (Table S5, Figure S11 & S12).  307 

Altogether, this suggests that both isoclonal populations had equal or lower 308 

phenotypic variation than the genetically diverse population in multidimensional trait space, 309 

but that they were able to display greater phenotypic variance in individual trait dimensions 310 

under nitrogen stress (Figure S11): ANC3 had greater variance along PC2 and ANC5 had 311 

greater variance along PC3 (Figure S12).  312 
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Discussion 313 

The single-cell phenotype data collected here are the first of their kind in term of 314 

complexity and extent. The depth of information collected from each cell revealed marked 315 

cell-to-cell variation within each culture at each time point. At the population level, the 316 

measurements followed the general trends reported in the literature with regards to C. 317 

reinhardti’s responses to nitrogen depletion, including the decrease in chlorophyll, an 318 

increase in DGTS content, and the accumulation of TAGs (Yang et al., 2015, Park et al., 319 

2015, Juergens et al., 2015). Following the phenotypic composition of the populations at the 320 

single-cell level over time renders a dynamic picture of changes in phenotypic variation 321 

within populations of C. reinhardtii in response to this well-studied nutrient stressor. 322 

Furthermore, it provides information about the amount of phenotypic variation generated by 323 

plasticity alone versus that generated by both plasticity and genetic diversity together. 324 

Our results show that genetic diversity tends to result in greater multidimensional 325 

phenotypic variation among cells within a population over time during N-limitation than 326 

plasticity alone (Figure 2A, Figure S11). Phenotypic variation (i.e. the expression of all three 327 

phenotypes: ‘high chlorophyll’, ‘high membrane lipid’ and ‘high storage lipid’) in the 328 

genetically diverse population is maintained over the time course of the experiment, while the 329 

isoclonal populations show more synchronicity in their response to N-limitation. It has been 330 

reported that the accumulation of high levels of TAG are a mechanism to alleviate oxidative 331 

stress concurrent with the slowdown of anabolic metabolism upon N-limitation (Huner et al., 332 

2012). We therefore attribute the ‘high storage lipid’ phenotype to cells that experience high 333 

N-limitation stress. While both isoclonal populations showed ‘high storage lipid’ phenotypes 334 

almost exclusively on day 9, the diverse population already showed cells with ‘high storage 335 

lipid’ phenotype within the first 6 days of the experiment. By contrast, CC-1690 also included 336 
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the highest fraction of cells with a ‘high chlorophyll’ phenotype on day 9. It should be noted 337 

that the level of a certain metabolite or biopolymer (including chlorophyll) in a single cell is 338 

the result both of its biosynthesis and degradation. Nevertheless, the presence of ‘high 339 

chlorophyll’ cells on day 9 might be an indication of cells that are little affected by the 340 

nitrogen-limitation, and is consistent with its relatively low nitrogen requirement (N*) and 341 

high maximum specific growth rate (μmax Figure S1 and S2). The functional interpretation of 342 

the ‘high membrane lipid’ phenotype is more difficult because extraplastidic membranes are 343 

involved in a variety of metabolic processes in the ER, the Golgi apparatus and the plasma 344 

membrane (Table 1). Despite the clear change in DGTS/chlorophyll a ratio in N-deplete 345 

cultures (Figure 3), the abundance of the ‘high membrane lipid’ phenotype and the variation 346 

of DGTS/ chlorophyll a ratio in replete cultures suggests that the increase of ‘high membrane 347 

lipid’ phenotypes is not only a response to nitrogen limitation, but is also part of the 348 

phenotypic variation in the N-replete environment. 349 

SC-MS suggested that ANC3 underwent a transition from ‘high chlorophyll’ to ‘high 350 

membrane lipid’ phenotypes early on (70% ‘high membrane lipid’, 30% ‘high chlorophyll’ on 351 

day 4). Fluorescence microscopy of the same population revealed that ANC3 still shows 352 

highest chlorophyll levels on day 9 compared to CC-1690 and ANC5 (Figure 4, Table S4). 353 

This suggests that downregulation of photosynthesis under N-limitation might be less 354 

pronounced in ANC3. However, ANC3 also showed a relatively high fraction of ‘high storage 355 

lipid cells’ on day 9, indicating high levels of nitrogen limitation. This is also in agreement 356 

with the significantly higher nitrogen requirement (N*) of ANC3 compared to CC-1690 357 

(Supporting Information, Figure S1). By contrast, ANC5 showed lowest chlorophyll values 358 

per cell compared to both CC-1690 and ANC3 on day 9 in fluorescence microscopy. 359 

However, the fewer ‘high storage lipid’ cells (14.8%) compared to both ANC3 and CC-1690 360 
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suggest an adaptive downregulation of photosynthesis. Population measures showed that 361 

ANC5 has a significantly lower population-level growth rate, which further supports the 362 

hypothesis that ANC5 shows conservative growth behavior beneficial in nutrient limited 363 

environments. Based on these responses of the isoclonal populations, it would stand to reason 364 

that they represent different strategies in coping with nutrient limitation. By keeping 365 

photosynthetic activity low, ANC5 may decrease its risk of running into oxidative stress upon 366 

intensification of nitrogen limitation. On the other hand, in keeping high amounts of 367 

chlorophyll, ANC3 may be able to utilize available nitrogen more quickly when it is supplied 368 

at a higher concentration in the environment (see Figure 4 and Table S4). This is supported 369 

by a faster maximal population growth rate (Figure S2), particularly in replete conditions 370 

(Figure S2).  371 

When we compared the full range of phenotypic variation across populations over 372 

time, we found that the genetically diverse population tended to have an equal or greater 373 

multidimensional phenotypic variation than the isoclonal populations, i.e. the cells more fully 374 

covered the multidimensional trait space. This was despite the fact that the clones both 375 

showed greater phenotypic variance along individual trait axes under N-limitation: ANC3 376 

showed greater variance along PC3 and ANC5 along PC2. One explanation is that plasticity 377 

in this system confers the ability to maintain high-fitness-associated phenotypes under stress 378 

(i.e. N-limitation), providing phenotypic buffering, rather than promoting the expression of 379 

phenotypic variance (Reusch, 2014). Accordingly, each clone is able to plastically buffer the 380 

expression of low-fitness, highly stressed, phenotypes in one phenotypic dimension, but not 381 

the other. By contrast, the genetically diverse population, which covers more of the 382 

multidimensional phenotype space, may be phenotypically buffered to the influences of the 383 

N-limitation along both individual phenotypic axes due to genetic compensation, or the 384 
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increase in the abundance of genotypes with high-fitness-associated phenotypes (Grether, 385 

2005). This assumes that the reduced phenotypic variation along individual trait axes, but the 386 

greater coverage of phenotypic space in multiple dimensions in the genetically diverse 387 

population is adaptive. Though we did not measure the fitness of individual phenotypes, this 388 

interpretation is supported by the relatively high population-level growth rate and low 389 

nitrogen requirement of CC1690 compared to the isoclonal populations. Overall, our results 390 

suggest that genetic diversity can produce equal or greater multidimensional phenotypic 391 

variation (trait richness) under nitrogen stress as non-genetic sources, but that it can result in 392 

significantly lower phenotypic variation in response to stress along individual phenotypic 393 

dimensions.  394 

Multidimensional phenotype data from single cells, such as those presented here, are 395 

invaluable in the study of phenotypic adaptation. The key abilities of SC-MS are that (i) 396 

multiple cellular processes can be monitored simultaneously, (ii) high-throughput analysis can 397 

render a cross-section of the phenotypic composition of populations, and (iii) the method can 398 

be applied on multiple time points in an experiment, which reveals information on changes in 399 

the phenotypic composition of populations over time. Our experiments also show the benefit 400 

and need for complementing single-cell mass spectrometric data with other phenotypic data 401 

collected from the same population and the bridging of single-cell information with 402 

population characteristics, which enhances this highly multiparametric experimental 403 

approach. Future applications of the method should also aim to use the method in an 404 

experimental context or include biological replicates for each measurement. The experiments 405 

showed here further underline that SC-MS can detect biologically functional phenotypic 406 

variation in populations, i.e. differences between cells that can make a difference for the 407 

whole population. From this analysis, we learned that non-genetic multidimensional 408 



21 

 

 

phenotypic variation tends to be more limited and synchronous over time than genetically-409 

based phenotypic variation, but the cumulative non-genetic phenotypic variance over time can 410 

be greater along individual phenotypic dimensions than that found in genetically diverse 411 

populations. The consequences of these findings for eco-evolutionary dynamics are beyond 412 

the scope of our study, but would be a fruitful avenue for future investigation.  413 
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Figure 1 Contour plots of the PCA performed on the single-cell mass spectra. PC2 segregates between ‘high chlorophyll’ 420 
and ‘high membrane lipid’ cells corresponding to high and low PC2 values respectively. PC3 additionally segregates ‘high 421 
storage lipid’ cells. There is a general trend of all N-depleted populations from ‘high chlorophyll’ via ‘high membrane lipid’ 422 
towards ‘high storage lipid’.   423 
 424 

Figure 2 A Schematic of the relative phenotypic composition of the populations over time. Each circle represents a 5% 425 
fraction of cells within the population (for more details see also Table S3). Green circles represent the ‘high chlorophyll’, 426 
blue circles the ‘high membrane lipid’ and red circles the ‘high storage lipid’ phenotypes. B Exemplary single cell mass 427 
spectra of the three phenotypes 'high chlorophyll', 'high membrane lipid' and 'high storage lipid'. The spectra were 428 
background subtracted using a proximate empty spot mass spectrum. ’High chlorophyll and ‘high membrane lipid’ cells are 429 
from replete ANC3 culture on day 9. ‘High storage lipid’ cell is from deplete ANC3 culture on day 9. 430 
 431 
Figure 3 Violin plots of the log-transformed ratio of the peak area of DGTS (34:4) and chlorophyll a. Histograms are 432 
smoothed using a kernel density estimation. Red crossed indicate population averages. Replete ANC5 cultures on day 4 and 433 
day 6 showed too few successful measurements (less than 10) to be included in the analysis.    434 
 435 

Figure 4 Chlorophyll fluorescence levels in relation to cell size determined using fluorescence microscopy. 436 
 437 

Table 1 Functional assignment of compounds targeted by single-cell mass spectrometry and the reported population level 438 
responses in literature. The number of carbons and double bonds of lipids are indicated in parentheses, e.g. TAG (52:6). The 439 
detected TAG peaks can represent multiple isomers, e.g. TAG (18:0/18:2/16:4), TAG (18:0/18:4/16:2) and other isomers all 440 
contribute to the peak at TAG (52:6).  441 
 442 

  443 
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Compound class and targeted peaks Functional assignment
Photosynthetic pigments

Thylakoid glycolipids

Extraplastidic membrane lipids

DGTS (34:4), DGTS (34:3), DGTS (34:2), 
DGTS (36:7), DGTS (36:6), DGTS (36:5), 
DGTS (36:4)

Neutral storage lipids 
Energy storage in the form of reduced 
carbon. Accumulating in the form of lipid 
droplets in the cytoplasm.

TAG (50:1), TAG (50:2), TAG (50:3), TAG 
(50:4), TAG (50:5), TAG (50:6), TAG 
(50:7), TAG (52:3), TAG (52:4), TAG 
(52:5), TAG (52:7),TAG (52:8)

Light absorbance in photosynthetic 
complexes. Chlorophyll a, Chlorophyll b

Constituents of the thylakoid membrane 
embedding photosynthetic complexes.MGDG (34:7), DGDG (34:6), DGDG 

(34:5), DGDG (34:3), DGDG (34:2)

Extraplastidic membrane lipid that 
functionally replaces phosphatidylcholine. 
Present e.g. in endoplasmic reticulum, 
Golgi or mitochondria.



Change under N-limitation
decrease
(Juergens et al., 2015)
(Miller et al., 2010)
decrease
(Li et al., 2012)

(Yoon et al., 2012)

increase

(Yang et al., 2015)

increase
(Liu et al., 2013)
(Yang et al., 2015)

(Boyle et al., 2012)
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