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Abstract 18 

1. Understanding the consequences of spatial structure on ecological dynamics is a 19 

central theme in ecology. Recently, research has recognized the relevance of river and 20 

river-analogue network structures, because these systems are not only highly diverse 21 

but also rapidly changing due to habitat modifications or species invasions.  22 

2. Much of the previous work on ecological and evolutionary dynamics in 23 

metapopulations and metacommunities in dendritic river networks has been either 24 

using comparative approaches or was purely theoretical. However, the use of 25 

microcosm experiments provides the unique opportunity to study large-scale questions 26 

in a causal and experimental framework. 27 

2. We conducted replicated microcosm experiments, in which we manipulated the 28 

spatially explicit network configuration of a landscape and addressed how linear versus 29 

dendritic connectivity affects population dynamics, specifically the spatial distribution 30 

of population densities, and movement behavior of the protist model organism 31 

Tetrahymena pyriformis. We tracked population densities and individual-level 32 

movement behavior of thousands of individuals over time. 33 

3. At the end of the experiment, we found more variable population densities between 34 

patches in dendritic networks compared to linear networks, as predicted by theory. 35 

Specifically, in dendritic networks, population densities were higher at nodes that 36 

connected to headwaters compared to the headwaters themselves and to more central 37 

nodes in the network. These differences follow theoretical predictions and emerged 38 

from the different network topologies per se. These differences in population densities 39 

emerged despite weakly density-dependent movement. 40 
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4. We show that differences in network structure alone can cause characteristic spatial 41 

variation in population densities. While such differences have been postulated by 42 

theoretical work and are the underlying precondition for differential dispersal evolution 43 

in heterogeneous networks, our results may be the first experimental demonstration 44 

thereof. Furthermore, these population-level dynamics may affect extinction risks and 45 

can upscale to previously shown metacommunity level diversity dynamics. Given that 46 

many species in natural river systems exhibit strong spatio-temporal patterns in 47 

population densities, our work suggests that abundance patterns should not only be 48 

addressed from a local environmental perspective, but may be the outcome of processes 49 

that are inherently driven by the respective habitat network structure. 50 

 51 

Key words: Dispersal, bacteria-protist metacommunities, microcosm experiment, 52 

river-like networks, protists, ecological theory. 53 

  54 
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Introduction 55 

An extensive part of classic theoretical and empirical ecology has focused on localized 56 

and well-mixed populations or communities. However, in most natural systems, 57 

populations and communities are heterogeneous and spatially structured with dispersal 58 

connecting patches across space. The spatial structure and dynamics across multiple 59 

populations or communities may strongly affect local dynamics, and the study of 60 

spatial dynamics has more recently become a central theme in ecology (Hanski, 1999;  61 

Leibold et al., 2004). 62 

 Spatial dynamics are likely relevant and occurring in all ecosystems and habitat 63 

types, but may be especially prevalent in some ecosystems due to specific intrinsic 64 

geophysical structures. River networks may be the most prominent example thereof 65 

(Grant, Lowe & Fagan, 2007;  Brown & Swan, 2010;  Altermatt, 2013;  Peterson et al., 66 

2013). Rivers and river networks are shaped by very general geological processes 67 

(Rodriguez-Iturbe & Rinaldo, 1997), which result in characteristic and universal spatial 68 

network structures. The significance of spatial dynamics in these fractal, dendritic 69 

networks has received much interest over the last years (e.g., Grant, Lowe & Fagan, 70 

2007;  Muneepeerakul et al., 2008;  Carrara et al., 2012;  Peterson et al., 2013;  Mari et 71 

al., 2014;  Seymour, Fronhofer & Altermatt, 2015) due to the universality of the spatial 72 

network, often defining dispersal pathways, and due to the exceptionally high diversity 73 

found in natural river systems (Dudgeon et al., 2006;  Vorosmarty et al., 2010). 74 

Furthermore, in many natural river systems both the network structure and the 75 

biological communities are currently rapidly changing due to habitat modifications, 76 

building of dams across waterways or species invasions (Vorosmarty et al., 2010;  77 

Lynch et al., 2011). This creates an immediate need for a better understanding of how 78 

river and river-analogue network structures drive population and community dynamics. 79 
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 Extensive previous work addressing ecological and evolutionary dynamics in 80 

dendritic river networks has been either using comparative approaches or was purely 81 

theoretical. Empirical studies have for example documented that local habitat 82 

conditions and network position affect the composition of local communities and 83 

abundances of organisms (e.g., Heino, Muotka & Paavola, 2003;  Altermatt, Seymour 84 

& Martinez, 2013;  Liu et al., 2013;  Tonkin, 2014;  Heino et al., 2015). Theoretical 85 

studies have been extensively addressing how network structure and dispersal along the 86 

specific network configuration drive metacommunity composition and biodiversity 87 

(e.g., Muneepeerakul et al., 2008;  Fagan et al., 2009;  Peterson et al., 2013;  Mari et 88 

al., 2014). More recently, models have incorporated eco-evolutionary dynamics and 89 

feedbacks to investigate if and how river-like network structures are more likely to 90 

result in fluctuations of population densities and subsequent classic metapopulation 91 

dynamics compared to linear landscapes or other types of networks (Fronhofer & 92 

Altermatt, 2017). Such population-level fluctuations may eventually affect extinction 93 

dynamics and are thereby the underlying process shaping (meta)community structure 94 

and diversity. While both comparative and theoretical approaches are highly important, 95 

we currently lack a causal experimental breakdown of local versus regional factors 96 

driving the observed population dynamics. Microcosm experiments may fill this gap, as 97 

they offer a possibility to bridge from theoretical models to comparative field studies.  98 

 Microcosm experiments have a long tradition in ecology, and have been 99 

important in improving our understanding of predator-prey dynamics (Gause, 1934;  100 

Holyoak & Lawler, 1996;  Hiltunen, Ayan & Becks, 2015), competitive interactions 101 

(Cadotte et al., 2006;  Livingston et al., 2012;  Carrara et al., 2015), dispersal ecology 102 

(e.g., Cadotte et al., 2006;  Jacob et al., 2015), or evolutionary dynamics (Bell & 103 

Gonzalez, 2009;  Hiltunen & Becks, 2014;  Fronhofer & Altermatt, 2015;  Van 104 
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Petegem et al., 2016). The goal of these studies is not to give a 1:1 representation of a 105 

real ecosystem, but rather to disentangle individual driving factors in a causal approach, 106 

and to give empirical proof of principles of theoretically postulated processes (Jessup et 107 

al., 2004;  Altermatt et al., 2015). Such microcosm experiments are thought to be 108 

especially advantageous in addressing questions that include otherwise (i.e., in the 109 

natural system) large spatial or temporal scales. It is thus of no surprise that microcosm 110 

experiments have recently been extensively used to address the significance of spatial 111 

dynamics on community composition and biodiversity in riverine ecosystems. Many of 112 

these studies have been giving insights into how dispersal in dendritic network 113 

structures gives rise to characteristic diversity patterns (Carrara et al., 2012;  Carrara et 114 

al., 2014;  Seymour & Altermatt, 2014;  Seymour, Fronhofer & Altermatt, 2015). The 115 

focus of all of these studies was at the metacommunity level and they were looking at 116 

integrative measures of biodiversity (usually number of species/α-diversity). Thereby 117 

they largely neglected the underlying distributions and dynamics of population 118 

densities in the networks. Importantly, the combination of all these population level 119 

demographic processes will eventually shape metacommunity composition and 120 

structure. Yet, such population dynamics in single species systems have hitherto only 121 

been studied in an invasion context in linear landscapes (Giometto et al., 2014;  122 

Fronhofer & Altermatt, 2015;  Fronhofer, Nitsche & Altermatt, 2017;  Giometto, 123 

Altermatt & Rinaldo, 2017).  124 

 Population level dynamics, however, are critical for population viability, 125 

conservation and evolutionary dynamics. For example, recent theoretical work shows 126 

that heterogeneity in spatial connectivity is a crucial component for the evolution of 127 

dispersal (Henriques-Silva et al., 2015), which directly affects (meta)population level 128 

metrics such as indices of genetic population differentiations and extinction likelihoods 129 
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(Fronhofer & Altermatt, 2017), and eventually also metacommunity composition. An 130 

underlying theoretical component of all these dynamics is a dependency of population 131 

sizes on network connectivity. To our knowledge, however, there is hitherto no 132 

experimental work that has assessed the effect of spatial network configurations on 133 

population density distributions and dynamics. 134 

 We used protist microcosm experiments to study the effect of spatial network 135 

configuration, specifically linear versus dendritic connectivity, on population dynamics 136 

and movement behavior of the ciliate model organism Tetrahymena pyriformis kept on 137 

a bacterial resource. Using replicated multi-patch landscapes of different network 138 

configuration (Fig. 1), we could assess abundance dynamics and movement behavior of 139 

thousands of organisms over time. We show that differences in network structure alone 140 

can cause characteristic spatial variation in population densities, as predicted by simple 141 

theoretical considerations (Tab. 1). Our results suggest that the commonly observed 142 

strong spatio-temporal fluctuations in population densities, and eventually 143 

metacommunity structure, of many riverine organisms may not only be driven by local 144 

dynamics, but may be the outcome of processes that are inherently linked to the habitat 145 

network structure. 146 

 147 

Methods 148 

Study system 149 

We use single-species protist microcosms to address the effect of spatial network 150 

structure on population dynamics and density patterns across space and time. Such 151 

protist microcosm experiments have a long history in ecology and evolution (Gause, 152 

1934;  Altermatt et al., 2015), and allow to causally disentangle drivers of ecological 153 
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and/or evolutionary dynamics (e.g., Fjerdingstad et al., 2007;  Giometto et al., 2014;  154 

Fronhofer & Altermatt, 2015).  155 

 For our experiments we used the bacterivorous ciliate species Tetrahymena 156 

pyriformis as a model organism. It has a body length and body volume of about 35 µm 157 

and 1400 µm3 respectively (Giometto et al., 2013), high growth rates (2<r0<4 per day) 158 

and equilibrium densities (6,000<K<15,000 per mL) (Fronhofer, Kropf & Altermatt, 159 

2015), making it an ideal study organism to address population dynamics over short 160 

time periods including many generations. All experiments were conducted using a 161 

standard protist-culturing medium made from protist pellets (0.46 gL–1; Carolina 162 

Biological Supply) and inoculated with three different species of freshwater bacteria 163 

(Serratia fonticola, Bacillus subtilis and Brevibacillus brevis). The nutrient medium 164 

was autoclaved and inoculated with 5% of a dense, about 1-week old culture of these 165 

bacteria. The protists (Tetrahymena) use these bacteria as resources. All organisms 166 

used in the experiment are heterotrophic, but experiments were nevertheless conducted 167 

under constant light at 20 °C to a priori avoid any photoperiodic effects (for further 168 

details see Altermatt et al., 2015). Importantly, the nutrient medium used in the 169 

experiment was added at identical concentration to all patches at the onset of the 170 

experiment, that is, all patches had strictly identical starting conditions and subsequent 171 

differences cannot be attributed to initial differences. Abiotic resources (i.e., nutrients) 172 

were not replenished subsequently during the experiment (contrary to chemostat 173 

experiments). Thus, nutrients were depleted over the experiment by bacteria, which 174 

themselves were fed on by Tetrahymena. 175 

 176 

Experimental design 177 
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We constructed replicated linear and dendritic landscape networks of identical total 178 

patch and landscape volume (i.e., regional habitat capacity) and total length of 179 

connecting corridors, arranged according to the respective network structure (i.e., linear 180 

vs. dendritic, Fig. 1; three replicated landscapes per network type). Networks were 181 

constructed using 20 mL Sarstedt vials (Sarstedt, Nümbrecht, Germany), which were 182 

connected with silicone tubes (silicone tube inner ø = 4 mm; VWR, Radnor, USA). 183 

Stopcocks (Discofix, B. Braun, Sempach, Switzerland) allowed us to control dispersal. 184 

The distance of each connecting tube including the stopcock was 6 cm. During all 185 

handling and sampling of the landscapes, stopcocks were closed such that there was no 186 

exchange of individuals due to the handling. 187 

 We filled the landscapes with 15 ml of medium, and inserted protists at 188 

equilibrium density (approx. 1 week old cultures) at the onset of the experiment. We 189 

then allowed dispersal of protists three times per week (Monday, Wednesday, Friday) 190 

during 4 hours. This dispersal scenario was chosen based on extensive previous 191 

knowledge (Fronhofer & Altermatt, 2015;  Fronhofer, Nitsche & Altermatt, 2017), 192 

showing that with a 4 h dispersal period we have dispersal rates of approximately 5 to 193 

20 percent of the respective population. Thereby, population growth rates, intraspecific 194 

competition and dispersal across the landscapes were interacting and driving population 195 

dynamics and density distribution at the metapopulation scale. As all factors other than 196 

network configuration (linear vs. dendritic) were kept constant, we can causally address 197 

the effect of landscape networks structure on spatio-temporal population dynamics. All 198 

60 microcosms were sampled at day 0, 8 and 15 of the experiment to assess protist 199 

population densities and movement behavior. 200 

 201 

Data collection 202 
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We assessed density as well as movement behavior of protists using microscopy 203 

combined with automated video analysis using the free image analysis software 204 

IMAGEJ (version 1.46a U. S. National Institutes of Health, Bethesda, MD, USA, 205 

http://imagej.nih.gov/ij/) following the protocol by Pennekamp & Schtickzelle (2013). 206 

Specifically, per sampling event, we sampled 0.5 mL of each population replicate, and 207 

placed it in a counting cell chamber (total volume assessed per sample was 19 µL, 208 

height of chamber 0.5 mm) under a Nikon SMZ1500 stereo-microscope (Nikon 209 

Corporation, Kanagawa, Japan) at 30-fold magnification. Using a Hamamatsu Orca 210 

Flash 4 video camera (Hamamatsu Photonics K.K., Hamamatsu city, Japan), we then 211 

recorded 20 s videos (total of 500 frames) per sample. The scripted image analysis 212 

determines in a first step the position of moving particles that fall into the size range of 213 

20 to 200 pixels (correspond to the range of sizes these organisms can have, see also 214 

Fronhofer, Kropf & Altermatt, 2015). This is done by subtracting information on 215 

particles/pixels across all paired, subsequent frames per video, such that the difference 216 

between two subsequent image frames can be extracted (i.e., one gets a “difference 217 

image”). In a second step, the location of all these moving particles are relinked across 218 

all frames to get movement paths of all protists in the video. This linking procedure 219 

was done using the MOSAIC particle tracker plug-in (see also Fronhofer, Kropf & 220 

Altermatt, 2015). Based on the output of these analyses, we extracted population sizes 221 

(i.e., density) of protists as well as velocities, turning angle distribution, and net 222 

distance travelled as our movement parameters for all individuals measured. 223 

 224 

Statistical analyses 225 

All analyses were done using R version 3.3.3 (R Development Core Team, 2016) and 226 

data can be downloaded from Dryad (DOI: XXXX). We analyzed the data using linear 227 

http://imagej.nih.gov/ij/
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mixed effects models incorporated in the package nlme (version 3.1-131) (Pinheiro et 228 

al., 2016). We ranked all possible models of the respective fixed effects including 229 

interactions based on the Akaike information criterion corrected for small sample sizes 230 

(AICc) and assessed explanatory potential using AICc weights. For model selection we 231 

used maximum likelihood (ML) estimates obtained by simulated annealing (optimizer 232 

of lme function set to “optim” and “SANN”) and the best fitting model was 233 

subsequently refit using REML. For the density analyses we used square-root 234 

transformed density data as the response variable. For the movement analyses we used 235 

log-transformed Euclidean distances as the response variable. We included network 236 

position (central vs. inner vs. outer nodes; see Fig. 1), network type (linear vs. dendritic) 237 

and time (days 0, 8 and 15) as fixed effects. We also included time as a pseudo-238 

replicate within each landscape (unique landscape ID) as random effect, due to the 239 

repeated measures of individual replicate microcosms over time.  240 

The analysis of density-dependent movement included population density in a linear, 241 

squared and cubed term as the relationship between movement, respectively dispersal, 242 

and density is known to be non-linear in T. pyriformis (Fronhofer, Kropf & Altermatt, 243 

2015). In this analysis “network” was also included as a fixed effect and the random 244 

effect structure included “time” nested in “network” and “position”.  245 

As best models identified by the model selection procedure tended to have limited 246 

support if one considered AICc weights (see, e.g., Tab. 2 and 4), we used full model 247 

averaging (R package “MuMIn”, version 1.15.6) to obtain a potentially less biased 248 

model fits. Note that our conclusions are not affected by the specifics of our statistical 249 

analysis, as the main effects we report can be found regardless of model averaging. In 250 

order to keep the analyses of population densities and movement comparable, we used 251 
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population level means of the movement data, which leads to conservative analyses and 252 

makes our findings more robust.  253 

In order to compare variation in population densities between dendritic and linear 254 

landscapes, we used the ratio between interquartile ranges (IQR) and medians of the 255 

respective population densities. This measure is analogous to the coefficient of 256 

variation, but more robust with regards to the distribution of the underlying data. We 257 

analyzed the difference between IQR/median obtained from linear and dendritic 258 

landscapes statistically using resampling (200,000 draws and random assignment to 259 

either linear of dendritic) and a one-sided test, as the theoretical prediction is that 260 

dendritic landscapes should exhibit higher variation in population densities than linear 261 

landscapes (distribution reported in Fig. 4). 262 

 263 

Fitting theoretical expectations to data 264 

In order to fit the theoretical expectations summarized in Tab. 1 to the observed 265 

population density data (only data from day 15) we used the Levenberg-Marquardt 266 

nonlinear least-squares algorithm (R package “minpack.lm”, version 1.2-1). The 267 

function nls.lm minimizes the residuals between predicted and observed data. We 268 

compared two approaches: 1) fitting the models assuming identical d and K values for 269 

dendritic and linear landscapes and 2) allowing for landscape-specific d and K 270 

estimates. These two models were compared using AICc. Population density estimates 271 

were calculated using the fitted d and K values and the relationships shown in Tab. 1. 272 

Confidence intervals were calculated using the standard error estimates provided by the 273 

summary of the nls.lm function and appropriate error propagation using the R package 274 

“propagate” (version 1.0-4). 275 

 276 
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Results 277 

At the end of the experiment (day 15; Fig. 1), we observed differences in population 278 

densities between networks and, for dendritic networks, also within the network 279 

between different patch locations (central vs. inner vs. outer; Fig. 1 and 2). These 280 

differences were captured quantitatively by the statistical models (Tab. 2). While the 281 

full model showed the best fit (ΔAICc = 0), its support was somewhat ambiguous 282 

(WAICc=0.44). The fit of the averaged model (Fig. 2) shows clear differences in 283 

densities between landscapes and within the dendritic landscape at the end of the 284 

experiment (day 15). 285 

The observed differences in densities follow theoretical predictions to a large extent 286 

quantitatively (Tab. 1, Fig. 3). Fitting the theoretical expectations summarized in Tab. 1 287 

to the density data of day 15 allowed us to estimate dispersal rates (d) and carrying 288 

capacities (K) as well as compare data and model expectations. While fitting the 289 

expected densities of Tab. 1 to data from linear and dendritic landscapes assuming 290 

identical dispersal rates and carrying capacities across networks recaptured the 291 

empirical patterns qualitatively, fitting the expectations for linear and dendritic 292 

landscapes assuming network specific d and K values separately yielded a better fit 293 

between data and expectations regardless of the higher number of parameters (ΔAICc = 294 

12.97; Fig. 3). While the joint fitting yielded an estimate of d = 0.30 (± 0.14) and of K = 295 

3589 (± 346; estimate ± std. error), the landscape specific fits estimate higher dispersal 296 

rates and carrying capacities in the dendritic compared to the linear landscapes: ddendritic 297 

= 0.25 (±0.10), Kdendritic = 4896 (± 429), dlinear = 0.0005 (± 0.59), Klinear = 2282 (±429). 298 

Besides predicting a specific spatial distribution of densities in the different networks, 299 

our simplified theoretical expectations (Tab. 1) as well as current theoretical work 300 

(Fronhofer & Altermatt, 2017) predict higher variation in population densities within 301 
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dendritic networks compared to linear landscapes. Our experimental data support these 302 

model predictions, as a conservative measure of variation (the interquartile range, IQR) 303 

standardized with the median of population densities showed a non-random deviation 304 

towards larger values in dendritic compared to linear landscapes (Fig. 4). 305 

While we did not find differences in movement between patches or landscapes (Fig. 5, 306 

Tab. 3), we did find an overall positive density dependence of movement (Fig. 6, Tab. 307 

4). 308 

 309 

Discussion 310 

We experimentally demonstrated that differing network configurations, specifically 311 

dendritic vs. linear networks, can result in different spatial density distributions of 312 

single-species populations in otherwise completely homogeneous environments (Figs. 1 313 

to 4) both across these networks (dendritic vs. linear) as well as within these networks 314 

(central vs. outer vs. inner nodes). Thereby, the dendritic network structure and 315 

dispersal therein have a direct effect on the population dynamics and structure of the 316 

spatially structured population (metapopulation sensu lato). This ecological 317 

consequence of dispersal in differently structured networks, that is, the dependence of 318 

density on network position and connectivity, is the precondition for subsequent 319 

evolutionary dynamics predicted to occur in networks of differing connectivity 320 

(Henriques-Silva et al., 2015;  Fronhofer & Altermatt, 2017). Remarkably, we observe 321 

these differences despite (weakly) density-dependent movement (Fig. 6), which is 322 

supposed to homogenize population densities across a landscape. 323 

 The effect of network structure on community dynamics and occurrence of 324 

organisms has been extensively studied, with a strong recent focus on particular 325 

network types, such as dendritic riverine networks (e.g., Grant, Lowe & Fagan, 2007;  326 
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Muneepeerakul et al., 2008;  Carrara et al., 2012;  Peterson et al., 2013;  Mari et al., 327 

2014;  Seymour, Fronhofer & Altermatt, 2015). In all of these studies, the occurrence 328 

of organisms in individual patches/nodes within the network has been linked to 329 

network position, and a dependency of genetic structure and evolutionary dynamics due 330 

to network structure has been theoretically predicted (e.g., Labonne et al., 2008;  331 

Henriques-Silva et al., 2015;  Paz-Vinas & Blanchet, 2015;  Paz-Vinas et al., 2015;  332 

Fronhofer & Altermatt, 2017). While these studies include population dynamics, which 333 

subsequently affect extinction risks (Fagan, 2002;  Fronhofer & Altermatt, 2017), the 334 

direct effect of network connectivity and network topology on population dynamics has 335 

been largely ignored experimentally. To our knowledge, our study is the first 336 

experimental demonstration of a direct effect of network structure and position on 337 

population densities. Specifically, we find more variable population densities in 338 

dendritic compared to linear networks (Fig. 4), with inner nodes of these dendritic 339 

networks exhibiting increased population sizes (Figs. 1 & 2) as predicted by theory 340 

(Tab. 1 and Fig. 3). Our landscapes were of identical overall environmental conditions, 341 

and local patches only differed in their connectivity. Thus, the difference in population 342 

densities is a direct and inherent consequence of active dispersal across different 343 

connectivity driving ecological population dynamics of our study organism 344 

Tetrahymena.  345 

 Although all patches had the same initial resource availability, subsequent 346 

decreases in resources due to consumption by bacteria and protists, may lead to 347 

emergent variation in resource availability. While we do observe a general decrease of 348 

population densities over time (Fig. 2, Tab. 2; likely as a consequence of resource 349 

depletion), importantly, the difference in population densities we observed is still 350 

ultimately driven by the different network configuration. 351 
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 Interestingly, our results suggest that dispersal rates and carrying capacities 352 

differ at the end of the experiment in dendritic vs. linear networks (Fig. 3). Most likely 353 

only overall densities differ, as the errors of the dispersal rate estimates are rather large 354 

and clearly overlap. Our movement data also suggest no differences in movement 355 

between landscapes (Fig. 5, Tab. 2). We can only speculate about the underlying 356 

mechanisms, but one possibility would be weak density regulation above K (convex 357 

population regulation function). Our theoretical predictions only consider one time 358 

step, respectively that density regulation always resets population sizes to K. If this is 359 

not the case, differences in densities could potentially accumulate over time and lead to 360 

an increase in population densities. 361 

 The ecological and evolutionary consequences of the observed effect of 362 

connectivity on density are manifold. First, these observed differences in densities are 363 

the basis of subsequent evolutionary changes, such as evolutionary differences in 364 

dispersal rates in networks of different connectivities (Henriques-Silva et al., 2015;  365 

Fronhofer & Altermatt, 2017). These evolutionary differences may even feed back on 366 

the ecological dynamics of the entire spatially structured population and alter 367 

metapopulation dynamics (Fronhofer & Altermatt, 2017). Second, our single-species 368 

metapopulation study also shows an underlying mechanism of the observed lower 369 

species richness values in isolated headwaters both in real river networks (e.g., 370 

Altermatt, Seymour & Martinez, 2013;  Liu et al., 2013;  Heino et al., 2015;  but see 371 

Besemer et al., 2013) as well as in experimental river-like networks (Carrara et al., 372 

2012;  Carrara et al., 2014;  Seymour & Altermatt, 2014;  Seymour, Fronhofer & 373 

Altermatt, 2015): the lower connectivity and thus reduced immigration have direct 374 

negative effects on local population densities, which eventually makes these 375 

populations more prone to extinction purely based on demographic stochasticity. 376 
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 Our findings from a single-species metapopulation model system are also 377 

informative for multi-species metacommunities and the observed direct effect of 378 

network structure and position on population densities has important implications for 379 

the coexistence of multiple species. For example, the increased population densities in 380 

inner nodes of dendritic networks will reduce local population extinctions due to drift, 381 

and can thus be an underlying cause of a larger number of coexisting species at these 382 

nodes in dendritic metacommunities. However, this scenario assumes that species are 383 

not directly competing for the same resources and that densities of multiple species are 384 

not negatively correlated with each other. In the case of direct competition, the effect of 385 

dispersal and network position on higher local population persistence may be 386 

counteracted by increased competition of multiple species for the same resources. Thus, 387 

while we show for a single species how dispersal and network position affects 388 

population sizes, the subsequent community consequences will depend on the interplay 389 

between drift, species-specific dispersal and competition between the species (Vellend, 390 

2010). Furthermore, dynamics in multi-species metacommunities will also be affected 391 

by a higher biological heterogeneity, as different species have different dispersal rates 392 

and dispersal distances, and may differently adjust their dispersal with respect to intra- 393 

and interspecific densities (Fronhofer, Kropf & Altermatt, 2015;  Fronhofer et al., 394 

2015;  Cote et al., 2017). 395 

 In our experiments we also observed a dependency of movement (as a proxy of 396 

dispersal) on population density (Fig. 6, Tab. 4) as in previous studies (Pennekamp et 397 

al., 2014;  Fronhofer, Kropf & Altermatt, 2015). However, this effect was rather weak, 398 

as we did not find it space (Fig. 5, Tab. 3). It is remarkable that we find the expected 399 

differences in population densities despite density-dependent movement, as density-400 

dependent movement is supposed to homogenize densities across space. This 401 
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underlines the strength of the effect of network structure on generating heterogeneity in 402 

population densities.  403 

 Our microcosm experiments were not designed to mimic a natural system in 404 

detail, but rather to test the significance of network structure in a causal way. 405 

Nevertheless, the observed patterns may guide our understanding of population 406 

dynamics in real river systems, as the studied network topologies can be seen as simple 407 

but realistic descriptions of real river networks (Altermatt, 2013). For example, it is a 408 

common phenomenon to find strong temporal but also spatial dynamics in population 409 

densities for many types of organisms in riverine ecosystems. These dynamics may also 410 

seen in classic “bloom” phenomena of mass-emergences of certain aquatic 411 

invertebrates (e.g., mayflies) that can be found in some riverine ecosystems. In the past, 412 

many of these spatio-temporal dynamics have been linked to local environmental 413 

conditions (for two recent examples, e.g., Heino et al., 2015;  Kaelin & Altermatt, 414 

2016). Our work shows that the specific position within a river network, and the 415 

dependency of local population dynamics shaped by spatially explicit topologies of 416 

neighboring populations may be an additional mechanism generating variation in 417 

population abundances. Thus, tributaries may enhance the abundance of organisms at 418 

confluences and, as previously documented, also richness (Fernandes, Podos & 419 

Lundberg, 2004). As a consequence, fluctuations in population abundances due to the 420 

spatial position and connectivity of the respective population in the river network may 421 

be affecting species interactions and community dynamics, and influence higher level 422 

diversity metrics and metacommunity dynamics. Thus, our findings identify network 423 

topology as a possible additional mechanisms generating dynamics in population and 424 

community fluctuations in riverine organisms. The experimentally observed patterns 425 

are not only matching empirically observed patterns in real systems (Morrissey & de 426 
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Kerckhove, 2009;  Grant, Lowe & Fagan, 2007), but are also substantiating theoretical 427 

predictions. We thus think that the patterns are robust and of general significance. Our 428 

results highlight the importance of taking into account the explicit spatial structure of 429 

metapopulations and metacommunities for understanding population dynamics and 430 

dispersal strategies. While these findings do not preclude the significance of other 431 

environmental drivers on both the occurrence as well as the abundance of organisms in 432 

riverine networks, they indicate that some of the observed patterns, or at least some of 433 

the unexplained variation therein, may be driven by inherent characteristics of the 434 

dendritic networks themselves. 435 
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Tables 622 

Table 1: Theoretical expectation of the distribution of densities in dendritic and linear 623 

networks (Fig. 1) based solely on the assumption of active dispersal and the network`s 624 

connectivity pattern. Initially, patches are assumed to have K individuals. Patches lose 625 

all their emigrants (𝑑𝑑 𝐾𝐾; d being the dispersal rate), which are distributed equally to 626 

connecting patches. Patches will receive a fraction of the emigrants from connecting 627 

patches. For example, due to an edge effect, an outer patch in a dendritic landscape will 628 

loose 𝑑𝑑 𝐾𝐾 emigrants and only receive 1
3
𝑑𝑑 𝐾𝐾 immigrants from a connecting inner patch, 629 

as inner patches distribute their emigrants over 3 vertices. Note that we here neglect the 630 

effect of dispersal mortality (Bonte et al., 2012), as dispersal related mortality is likely 631 

very low in our experimental systems. 632 

  633 

 Linear Dendritic 

Outer �1 −
1
2
𝑑𝑑�𝐾𝐾 �1 −

2
3
𝑑𝑑�𝐾𝐾 
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1
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𝑑𝑑�𝐾𝐾 �1 +

4
3
𝑑𝑑�𝐾𝐾 
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Table 2. Linear mixed model selection and averaging based on ΔAICc and AICc 636 

weights (WAICc) for square-root transformed density data and models fitted using 637 

maximum likelihood (see Fig. 2 for a visualization). “Time” is a continuous variable 638 

and includes measurements on day 0, 8 and 15; “position” is a factor capturing whether 639 

densities were measured in central, inner or outer patches (see Fig. 1) ; “network” is a 640 

factor capturing whether densities were measured in linear or dendritic landscapes. The 641 

random effect structure is “time” nested in “landscape ID”.  Model components and 642 

corresponding codes are: time (1), network (2), position (3), time:network (4), 643 

time:position (5), network:position (6), time:network:position (7). 644 

Model components df ΔAICc WAICc 

1, 2, 3, 4, 5, 6, 7 16 0 0.44 

1, 2, 3, 4, 6 12 0.78 0.30 

1, 2, 3, 4, 5, 6 14 2.40 0.13 

1, 2, 3, 6 11 3.54 0.07 

1, 2, 3, 5, 6 13 4.92 0.04 

2, 3, 6 10 7.05 0.01 

1, 2, 3, 4 10 9.28 0 

1, 2, 3, 4, 5 12 10.78 0 

1, 2, 3 9 12.08 0 

1, 2, 3, 5 11 13.36 0 

2, 3 8 15.65 0 

1, 2, 4 8 15.90 0 

1, 2 7 18.76 0 

1, 3 8 22.19 0 

2 6 22.38 0 
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1, 3, 5 10 23.53 0 

3 7 25.68 0 

1 6 28.45 0 

null model 5 32.00 0 

 645 
 646 
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Table 3. Linear mixed model selection and averaging based on ΔAICc and AICc 647 

weights (WAICc) for log transformed movement data (Euclidean distance moved) and 648 

model fitted using maximum likelihood (for a visualization see Fig. 5). “Time” is a 649 

continuous variable and includes measurements on day 0, 8 and 15; “position” is a 650 

factor capturing whether movement was measured in central, inner or outer patches 651 

(see Fig. 1); “network” is a factor capturing whether movement was measured in linear 652 

or dendritic landscapes. The random effect structure is “time” nested in “landscape ID”.  653 

Model components and corresponding codes are: time (1), network (2), position (3), 654 

time:network (4), time:position (5), network:position (6), time:network:position (7). 655 

Model components df ΔAICc WAICc 

1 6 0 0.96 

1, 2 7 7 0.03 

1, 3 8 9.45 0.01 

1, 2 , 3 9 16.80 0 

1, 2, 4 8 17.16 0 

null model 5 18.82 0 

1, 2, 3, 6 11 19.26 0 

2 6 24.24 0 

1, 2, 3, 4 10 26.97 0 

3 7 27.53 0 

1, 3, 5 10 28.67 0 

1, 2, 3, 4, 6 12 29.06 0 

2, 3 8 33.99 0 

1, 2, 3, 5 11 35.71 0 

2, 3, 6 10 36.15 0 

1, 2, 3, 5, 6 13 38.09 0 
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1, 2, 3, 4, 5 12 46.78 0 

1, 2, 3, 4, 5, 6 14 49.11 0 

1, 2, 3, 4, 5, 6, 7 16 68.29 0 

  656 
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Table 4. Linear mixed model selection and averaging based on ΔAICc and AICc 657 

weights (WAICc) for log transformed movement data (Euclidean distance moved) as a 658 

function of density. Models were fitted using maximum likelihood (for a visualization 659 

see Fig. 6). “network” is a factor capturing whether movement was measured in linear 660 

or dendritic landscapes. “Density” is a continuous variable capturing the local 661 

population density in which movement was measured. The random effect structure is 662 

“time” nested in “network” and “position” (central, inner, outer; see Fig. 1).  Model 663 

components and corresponding codes are: density (1), network (2), squared density (3), 664 

cubed density (4), density:network (5), squared density:network (6), cubed 665 

density:network (7). 666 

Model components df ΔAICc WAICc 

1 9 0 0.42 

1, 2 10 2.07 0.15 

3 10 2.19 0.14 

4 11 3.34 0.08 

1, 2, 5 11 3.84 0.06 

2, 3 11 4.27 0.05 

null model 8 4.28 0.05 

2, 4 12 5.51 0.03 

2 9 6.21 0.02 

2, 3, 6 13 6.64 0.02 

2, 4, 7 15 11.31 0 

 667 
  668 
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Figure legends 669 

 670 

 671 

Fig. 1: Median population densities (in thousands of individuals) of Tetrahymena in 672 

corresponding dendritic (A) and linear (B) landscapes at the end of the experiment (day 673 

15) and across the three replicate landscapes. In these landscapes, outer nodes are 674 

labeled “O”, inner and central nodes are labeled “I” and “C” respectively. 675 

  676 
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 677 

 678 

Fig. 2: Distribution of Tetrahymena population densities depending on network type 679 

(linear vs. dendritic networks), network position (central vs. inner vs. outer nodes) and 680 

time (days 0, 8, and 15). Violin plots show the overall distribution of the data, the white 681 

point gives the median, and the solid black line the 25% and 75% percentiles 682 

respectively. Given the network structure (Fig. 1) and the 3 replicates per landscape, 683 

distributions include N=18 (9, 3) measurements for outer (inner, central) nodes of 684 

dendritic networks and N=6 (6, 18) measurements for outer (inner, central) nodes of 685 

linear landscapes. Horizontal lines visualize back-transformed parameter estimates of 686 

the averaged linear mixed effects model and shaded areas show 95% confidence 687 

intervals (see Tab. 1 for model selection results). 688 

  689 
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 690 

Fig. 3: Fit of theoretical expectations to the distribution of Tetrahymena population 691 

densities depending on network type (linear vs. dendritic networks), network position 692 

(central vs. inner vs. outer nodes) for day 15. Violin plots show the overall distribution 693 

of the data, the white point gives the median, and the solid black line the 25% and 75% 694 

percentiles respectively. Given the network structure (Fig. 1) and the 3 replicates per 695 

landscape, distributions include N=18 (9, 3) measurements for outer (inner, central) 696 

nodes of dendritic networks and N=6 (6, 18) measurements for outer (inner, central) 697 

nodes of linear landscapes. Horizontal red and blue lines visualize fits of the 698 

theoretically expected distribution of population densities to data from the dendritic and 699 

linear networks assuming network specific dispersal rates (d) and carrying capacities 700 

(K). White squares show fits of the theoretically expected distribution of population 701 

densities assuming the same d and K values for both network types. 702 

Shaded areas, respectively error bars, show 95% confidence intervals of the fits. 703 

  704 
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 705 

 706 

Fig. 4: Comparison of variation in population densities between linear and dendritic 707 

networks at day 15 of the experiment. The solid line represents the difference between 708 

inter-quartile range (IQR) over median population densities of linear and dendritic 709 

landscapes. The distribution (grey) represents the distribution of the differences 710 

between IQR over median population densities of 200,000 random re-samplings for our 711 

data. As we theoretically expect the dendritic landscapes to be more variable we can 712 

perform a one-sided test which gives a probability of p=0.047 of our observed 713 

difference between IQR to median ratios to be larger than zero. 714 

  715 
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 716 

 717 

Fig. 5. Euclidean distances moved by Tetrahymena individuals depending on network 718 

type (linear vs. dendritic networks), network position (central vs. inner vs. outer nodes) 719 

and time (days 0, 8, and 15). Violin plots show the overall distribution of the data, the 720 

white point gives the median, and the solid black line the 25% and 75% percentiles 721 

respectively. Given the network structure (Fig. 1) and the 3 replicates per landscape 722 

distributions include N=18 (9, 3) measurements for outer (inner, central) nodes of 723 

dendritic networks and N=6 (6, 18) measurements for outer (inner, central) nodes of 724 

linear landscapes. Horizontal lines visualize back-transformed parameter estimates of 725 

the averaged linear mixed effects model and shaded areas show 95% confidence 726 

intervals (see Tab. 2 for model selection results). 727 

  728 
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 729 
 730 
Fig. 6: Euclidean distances moved by Tetrahymena individuals depending on densities 731 

in our entire dataset. Across all replicates of all landscapes (patches from different 732 

landscapes types highlighted by different symbols; see legend) we find positively 733 

density-dependent movement. The solid lines represent fits of the averaged linear 734 

mixed model (red: dendritic landscapes; blue: linear landscapes) and the shaded area 735 

shows 95% confidence intervals (see Tab. 3 for model selection results). 736 
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