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Abstract

To which extent illicit drugs are transformed during in-sewer transport, depends on a number of
factors: i) substance-specific transformation rates, ii) environmental conditions, iii) point of discharge
(location of drug user) and iv) sewer network properties, primarily hydraulic residence time (HRT)

and the ratio of biofilm contact area to wastewater volume (A/ V).

Assessing associated uncertainties typically requires numerous simulations. Therefore, we propose a
new two-step modeling framework: 1) Quantify hydrodynamic conditions. This computationally
demanding step was performed once in SWMM to derive HRT and A/Veq for each potential point of
discharge (node) in three catchments of different size. 2) Estimate biomarker loss. In this step, Monte
Carlo simulations were performed for defined scenarios. Depending on assumptions about drug user
distribution and prevalence, a number of nodes was sampled. For each node an empirical first-order
transformation model was applied with flow-path-corresponding HRT and A/V,, from step 1. Biotic
and abiotic transformation rates were sampled from distributions combining variability of different

biofilms.

In our modeling study, median losses were > 30% for amphetamine, 6-monoacetylmorphine and 6-
acetylcodeine in all three catchments with high uncertainty (5% to 100% loss), which would imply a
systematic underestimation of consumption when neglecting in-sewer processes. Median losses for 21
other investigated biomarkers were <10% with different uncertainty ranges - “no substantial
transformation” was confirmed for nine substances in a real sewer segment with a two-hour residence
time. Transferability of these results must be tested for other catchments. Our approach allows
efficient testing and, furthermore, can be expanded for many other human biomarkers. To further
reduce uncertainty, mainly additional knowledge on transformation rates, particularly in biofilm, and

their distribution across a sewer network is needed to update model input objectively. Accounting for

page 2



45

50

biomarker stability during in-sewer transport will avoid biased estimates and further improve

wastewater-based epidemiology.

Key words.

Wastewater quality modeling, micropollutant, Monte Carlo, sewage-based epidemiology,

pharmaceuticals.
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Nomenclature

A/Vi [mT] surface area of biofilm (wetted perimeter) to wastewater volume ratio in conduit i
A/Vey [m"] HRT-normalized sum of all A/V;along a flow path from input node to WWTP
HRT [h] Hydraulic residence time of water mass along a flow path
PE [PE] Population equivalents including/excluding industrial discharges
RTD Residence time distribution of a tracer (dirac pulse over 4 min)
travel time; [h] Travel time; within one conduit i
Graphical abstract
Sewer network Variability in hydraulics In-sewer biomarker transformation

residence time

biofilm contact ratio
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1 Introduction

Humans excrete trace amounts of substances such as pharmaceuticals or illicit drugs (subsequently
referred to as biomarkers). Biomarkers in wastewater provide information about the excretion in a
catchment and are an indicator for consumption. The wastewater collection system unintendedly
gathers this information and aggregates it in the inflow of wastewater treatment plants (WWTP). In
wastewater-based epidemiology (WBE) selected biomarkers in this stream are used to estimate drug
consumption at the community level (e.g. Ort et al., 2014). Currently, the unknown extent of in-sewer
transformation in a specific catchment implies high uncertainty for such estimates. In-sewer
transformation is studied in depth for conventional pollutants excreted by every person, e.g.,
ammonium, organic matter (Hvitved-Jacobsen et al, 2013; Nielsen et al., 1992). In contrast, few
studies investigate biomarkers such as illicit drugs that are excreted only by a small percentage of the
population in small amounts (McCall et al., 2016a). Under certain conditions, in-sewer processes can
account for biomarker-specific transformation losses of up to 100% for e.g., 6-monoacetylmorphine
and 6-acetylcodeine, influenced by sewer size, type and topology and environmental conditions (Jelic

et al., 2015; McCall et al., 2016b; Ramin et al., 2016; Thai et al., 2014).

Therefore, to reliably apply WBE, each catchment should be evaluated for potential in-sewer
biomarker losses due to transformation [we do not assess exfiltration and wet weather situations (e.g.
losses via combined sewer overflows)]. Experimentally, this is difficult, since it would require i) spiking
of deuterated-labeled biomarkers and a persistent tracer into one, of potentially thousands of toilets, ii)
measuring biomarker and tracer residuals at the WWTP and iii) repeat this laborious procedure due to
limited transferability of one experiment. Numerous experiments would be required to cover inter-
and intra- catchment differences of environmental and hydraulic conditions, in both space (different

cities, as well as different parts within a city) and time (seasonal and diurnal variability).
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An alternative approach is modeling as done in a previous study (Mathieu et al, 2011). They
quantified the uncertainty of the back-calculation including discharge measurements, chemical
analysis and the applied sampling scheme but did not assess effects of temporal dynamics and spatial
variation within the collection network. Including all sewer processes and degradation pathways with a
stoichiometric matrix, as previously done in integrated urban water modeling of micropollutant fate
(e.g., Snip et al., 2014), can result in a complex and over-parameterized approach in sewer networks
(Vezzaro et al,, 2014). So far, numerous studies modeled biomarker concentrations in sewer systems,
mostly for the purpose to identify priority pollutants for environmental protection (Carballa et al.,
2008; Daouk et al., 2016; Heberer and Feldmann, 2005). These studies described sewer networks as a
homogeneous series of CSTRs or applied a travel time density function as an alternative to complex
hydrodynamic models. To our knowledge, no study so far considered the influence of factors such as
varying flow (e.g., velocity, fill level) on resulting conditions (e.g., HRT) influencing biomarker
transformation processes. Sewer networks vary in size, topological structure and topography;
wastewater composition and environmental conditions can be different. These factors influence the
transformation processes and heavily depend on catchment characteristics so that effects on biomarker
losses can a priori not be generalized. However, to date, an efficient approach to quantify the potential
loss of biomarkers during conveyance in sewer systems considering network-specific characteristics

and boundary conditions is lacking.

The objective of our work was to assess biomarker loss specifically during transport in sewers. Previous
work showed that biofilm plays a role (McCall et al., 2016b). This implies that the wetted biofilm area
must be determined for individual conduits, which requires a detailed hydraulic approach in view of
flows varying over the day. Due to uncertain input, i.e. unknown location and distribution of drug
users and variable transformation rates, there is a need to model several scenarios. Since

computational efforts with existing hydrodynamic sewer modeling software are still considerable, we
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aim at identifying a fit-for-purpose water quality model to allow a quick assessment of an entire
catchment at low computational costs. As inputs, such a model should consider biomarker-specific
transformation rates and catchment-specific hydraulic information, specifically travel time of
biomarkers from entry point to WWTP (hydraulic residence time along flow path, HRT) and the ratio
of biofilm contact area to wastewater (A/V) (McCall et al., 2016b). Spatio-temporal variability of
wastewater flows affect travel time and A/V in each conduit. To identify an efficient, yet suitable

approach to determine realistic biomarker losses, including objective uncertainties, we had to:

(i) evaluate different levels of hydraulic model complexity,

(ii) describe and derive relevant hydraulic parameter distributions (HRT, A/V) considering effects
of temporal (diurnal) and spatial variability (drug user location),

(iii) investigate different catchment scales to make an attempt to generalize results,

(iv) facilitate the evaluation of multiple biomarkers, numerous scenarios, environmental

conditions and levels of prevalence (at low computational costs).
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2 Material and methods

To address the four points above in a modeling study (core of this work), we selected the sewer
catchment of Dresden (Germany) implemented in EPA SWMM (see 2.5). It was thought to be of
appropriate size (sufficiently long HRTs) so that transformation rates were expected to result in
relevant losses for selected biomarkers. Additionally, to provide a plausibility check for observable
losses in a real sewer, we performed a unique full-scale experiment. This was carried out in Zurich

(Switzerland), in a five-kilometer sewer segment (HRT = 2 h) without any lateral inflows (see 2.6).

2.1 Conceptual approach

We use the following transformation model to estimate biomarker loss (McCall et al., 2016b):

dCy; A
bm;;arker == (ka + kww + kbiofilm ;) Chiomarker (D)

where Cpiomarkeris the concentration of the targeted illicit drug biomarker [mol L], k, is the abiotic
transformation rate coefficient [h'], kww is the biotransformation rate coefficient in the bulk liquid [h
'], and ks is the biotransformation rate coefficient for biofilm processes [m h™']. The ratio of the
biofilm surface area A (calculated as the wetted perimeter) and the wastewater volume V (A/V; [m*m’
’]) normalizes kyofim, to consider different fill levels and corresponding biofilm contact ratios (different

cross sections, diurnal variations), assuming A/V;is constant along each conduit i.

In each conduit i, resulting travel time; and A/V; follow a diurnal profile similar to the pattern of the
dry weather inflow. To account for both spatial and temporal variability of hydraulic parameters, a set
of transport and quality simulations needs to be run for each biomarker, each time point and each
location of potential point of discharge. Current modeling approaches - available for both, hydraulic,
as well as water quality modeling in sewers — demand high computational effort for a single run since

they simulate biomarker concentrations in each conduit for each time point. In view of the anticipated
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high number of runs needed to calculate different scenarios for (unknown) drug user locations and
uncertain rate coefficients this would imply enormous computational efforts. Therefore, we decoupled
transport and quality calculations. From the hydraulic calculations (for different levels of detail), we
store velocities and fill levels for each time step and conduit. From this information, we assign each
node (i.e. a potential location of drug users) a flow path with a representative HRT (sum of travel times;
along the flow path). To account for variability of A/V; along the flow path, we calculated A/V., as the

sum of the A/V; of each conduit i weighed with the residence time of conduit i (HRT):

A
LiHRT;,
i HRT;

AfVeq = (2)

Our approach was to stochastically simulate biomarker loss for real-life sewer catchments of varying
scale and different conditions. A Monte Carlo framework was applied to estimate the potential range
of biomarker loss with the following input factors: i) transformation processes in biofilm and
wastewater (Kpioim> ko and kww; see section 2.4) and ii) catchment-specific hydraulic parameters (HRT

and A/V,g; see section 2.2). This procedure was applied for different scenarios S (see section 2.3).

For each scenario 3,000 runs were simulated, to provide stable distributions of results. In each run,
new nodes were sampled with the number of nodes depending on prevalence of drug use (except
scenario S3 and S4, see Table 2). Within one run only one value for each ky, ky., and Ko was sampled
and applied to all flow paths in the entire catchment. This was done due to the following reason. If for
each conduit or flow path a different value was sampled, the effect would be that a transformation rate

close to average would result for the entire catchment in each run.

In a sensitivity analysis we assessed how input variability affected resulting distributions. This was

done by assuming constant values for i) transformation rates, ii) A/V,,. for all runs in a scenario.
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2.2 Representation of hydraulic variability

Instead of implementing the transformation model (equation 1) directly in a hydrodynamic water

quality modeling tool (subsequently considered as approach A), we applied approaches of varying

levels of detail to derive frequency distributions of HRT (see Table 1).

Table 1. Conceptual overview of different approaches taken to investigate different levels of detail in sewer catchment

modeling.
A B - HRTg, C-HRT,y D
Transport and quality Transport simulation Hydraullc simulation Expert Estimate (local
simulation (without tracer) sewer operator)
Hydraulic software (e.g., experience (e.g.,
Processes SWMM) . . . . qualified guess, tracer
. Advection, dispersion, Advection . .
considered experiment, hydraulic

Advection, dispersion,
reaction (quality)

simulation)

For these approaches B, C and D we modeled each flow path as a single plug flow reactor in which we

applied biomarker transformation kinetics adapted from eq. 1:

M = MO exp [—HRT (ka + kWW + kbiofilm éeq)] (3)

where the change in biomarker mass from entry point (M) to WWTP (M) is obtained from the rate

coefficients and the path-specific HRT and A/ V.

In approach B, the frequency distributions of HRTs were generated with a transport simulation. At
each node a different tracer was added in the SWMM model at different times of the day (2 am, 8 am,
2 pm, 8 pm) to assess temporal variability of HRT due to the diurnal variation of wastewater flows.
Then the normalized mass load at the WWTP was calculated to obtain a residence time distribution
(RTD). The mean values of the RTDs are used as node- and time-specific HRTs. This method

accounted for both dispersion and advection of the tracer (inert biomarker) along the flow path.

In approach C, the spatial distributions of HRT was calculated from velocities and water levels in each

conduit along the flow path, thus neglecting dispersion phenomena. The flow path from each node
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through the relevant conduits to the WWTP was identified with the Dijkstra algorithm on a directed
graph extrapolated from the sewer model (Csardi and Nepusz, 2006). Distributions for the A/V,, for all

nodes (all flow paths) were calculated based on approach C.

In approach D, the best estimate for the average HRT relied on an informed expert guess. The accuracy
of this information can vary highly and is difficult to assess. We assumed that spatial variation of HRT
follows a normal distribution using the expert guess as mean and assuming a relative standard

deviation of 25%.

2.3 Uncertainties due to prevalence and environmental conditions

In five scenarios we assessed the effect on predicted biomarker loss caused by different assumptions on
i) distributions of drug user locations, ii) levels of prevalence of drug use and iii) wastewater
temperature (Table 2). In scenario S1 and S2, drug users were assumed to be randomly distributed in

the catchment (weighted with population per node).
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Table 2. Selected scenarios to evaluated effect of biomarker loss. Please note: in our modeling study, each drug user
discharges the same amount of drug (transformation rates are expected to be independent within a reasonable concentration
range). Prevalence defines the number of drug users and hence the number of nodes to be selected (see also 2.1).

Scenarios S1y, S20.01% S2temp S3hortHRT S4ygngHrT
o - .
Prevalence ( A).of population consuming 1% 0.01%
drug on a particular day)
closest flow lqngest flow
distance to distance
Drug user location randomly distributed in the catchment . from
sampling samplin
location ping
location
Rates halved
Transformation rates Temperature 22°C (temperature Temperature 22°C
10°C)

In two extreme scenarios we assumed, we would know that all drug users discharged close to the
WWTP (S3gormrr) Or far away (S4ingurr). We selected two representative nodes and calculated the
biomarker loss with corresponding HRT and A/V,,. To account for varying prevalence of drug use and
investigate the effect on uncertainty we tested a scenario with low prevalence (0.01% of total
population are drug users on a particular day, S2), and high prevalence (1%, S1). The effect of
temperature on transformation rates was also considered (S2emp). In the absence of reliable
information on redox conditions for both, spatial distribution in the catchments and effect on
transformation rates, we assumed aerobic conditions in the bulk liquid and biofilm surface (dissolved

oxygen > 2 mg L") for all pipes in the gravity sewer.

2.4 In-sewer transformation rates

Transformation of biomarkers through biofilms can vary from conduit to conduit (McCall et al., 2016).
Since we had no information about transformation rates for biofilms in Dresden, we used literature
data. Applying Bayesian inference, transformation rate coefficients for Ky (and kww) were estimated
from previously conducted batch experiments with biofilms from four different gravity sewers in
Switzerland (McCall et al., 2016b; tested under aerobic conditions, 22°C, pH 7-8; see Supporting

Information SI2 for detailed information). The resulting rate coefficient Ko provides a measure of

page 12




225

230

235

240

the natural variability in transformations for biofilms in different sewer stretches and from different
locations. To quantify this variability the model was extended by the assumption that the distribution
of all biofilm rate coefficients are gamma distributed. This model provides the advantage that it can

easily be updated when new experimental data becomes available.

2.5 Sewer catchment and hydraulic model implementation

The SWMM model of the sewer network of the city of Dresden (Germany) was used to exemplary
assess biomarker transformations. It was validated for dry weather flow conditions using continuous
flow data collected at several locations (see SI3 and Karpf and Krebs, 2011 for more details). We
investigated a small, medium and large catchment (see Figure 1). The large one is a substantial part of
the entire Dresden sewer catchment (population 370,000 p, longest flow path 24 km). The Dresden
sewer catchment can be physically separated into two main sub-catchments, both discharging into the
same central large WWTP. The smaller of the two sub-catchments was investigated as our medium
catchment (90,000 p, 16 km). As the small catchment we considered a small sub-catchment (14,000 p,
9 km; with a virtual sampling point/WWTP). The a priori estimated average HRT in the large
catchment is about 6 h based on the diurnal inflow regime at the central WWTP and day-to-day
observations of the sewer network operator (qualified guess). For the medium and small catchments
we assumed values of 4 h and 2 h, respectively. The HRT distributions were obtained by assuming a

normal distribution (mean = expert guess; sd = 25%).
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O  WWTP (for large and
medium catchment)

/\ outlet of small catchment

Figure 1. Representation of Dresden’s sewer network with conduits implemented in SWMM, boundaries of three
245 (sub)catchments and virtual sampling points (most downstream point in each catchments).

For hydraulic simulations in approach B and C, we used the open source software EPA-SWMM v.
5.1.011 (Rossman, 2010). SWMM calculates the mixing and transport in each conduit, modeling each
as a continuously stirred tank reactor and solves the full dynamic Saint Venant differential equations
to estimate mass transport. Each hydrodynamic simulation is run with a 20-second routing step time.

250  Data preparation and visualization were performed with R (R-Core-Team, 2015).

Any other sewer network of similar size could have been used to illustrate the application of the
proposed method. The Dresden case was primarily selected because of i) size (sufficiently long HRT's)

and ii) the availability of a validated sewer model. While the Dresden sewer model was implemented in
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SWMM, any other software that allows retrieving the relevant hydraulic characteristics (see 3.2) can be

used.

2.6 Experimental full-scale study on in-sewer transformation

It is very laborious to monitor biomarkers in a real sewer over a sufficiently long distance (HRT) to
quantify biomarker transformation reliably. This is mainly for two reasons: i) either large quantities of
labeled biomarkers would have to be spiked into a sewer at an upstream location (including an inert
tracer to quantify losses due to unknown leakage and compensate for potential flow measurement
errors) with subsequent analysis of a representative downstream sample or ii) a transport sewer
segment with no lateral confluents and sufficiently long HRT must be available to observe losses of

biomarkers naturally present in the wastewater in a conceptually simple input-output comparison.

In Zurich (Switzerland) we had the opportunity to assess in-sewer transformation in the five-kilometer
long transport sewer “Glattstollen”. It consists of two parallel sewer pipes with no lateral confluents
and with neither in- nor exfiltration. Dry weather flow fluctuates between 200 and 800 L s resulting in
variable residence times. The intermittent operation of the two pipes, switching flow every 24 h,
implies that there is only wastewater in one of the two pipes during dry weather and the biofilm never

dries out (for more information see Kaegi et al., 2013).

Sampling locations to collect 24-h composite samples were installed at 200 m (L1) and 5300 m (L3)
and environmental conditions (pH, dissolved oxygen, temperature) were monitored at L1, L3 and L2
(at 2400 m). For our experiment we diverted a constant flow of 30 L s into the empty pipe, in which a
relevant residence time of 2 h resulted between L1 and L3 with an A/V ratio of 11 m™'. The constant
flow allowed collecting representative samples at L1 and L3 in a time-proportional manner (no flow
signal needed). An additional unique feature of this sewer is that it is cleaned every five years, which

allowed the evaluation of transformation with and without biofilm in full scale, which is quite seldom.
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Five years after the last cleaning of the sewer pipes, our first sampling campaign was on 8 January 2015
with thick, mature biofilm covering the usually submerged parts of the sewer walls. The second
sampling campaign started on 19 March 2015. This was three days after several weeks of high-pressure
cleaning the smooth stonewear pipe surface with a specialized machine and near-complete removal of
the biofilm. In the first sampling campaign a small, continuous side-stream was diverted into 10 L
Schott bottles in an insulated container with dry ice (<4°C; peristaltic pump Heidolph Pumpdrive
5001, 10 rpm; hose bore tube 3.2mm). Due to unexpected, repeated clogging of sample hoses in the
second campaign, two autosampler were installed at L1 and L3 to collect back-up samples (Sigma 900,
PE bottles, sampling frequency dt=2min). Triplicates were analyzed with a previously validated

method (McCall et. al, 2016b).

3 Results

We first present biomarker transformation rates as half-lives (3.1). For three catchments of different
size, we then compared hydraulic characteristics (HRT) obtained with different approaches, i.e. levels
of detail (3.2), and combined results to estimate biomarker losses including uncertainty assessment

and sensitivity analysis (3.3).

3.1 Transformation rates

To illustrate the biomarker-specific, individual influences of ks, kww and keiefim on the overall in-sewer
process rate, the rate coefficients were expressed individually as half-lives (f,5). Based on equation 1,
the combined effects (as #ys) of all rate coefficients were demonstrate, using a range of realistic A/V,,
ratios of 17 m™, 33 m™, and 66 m™" (Table 3, rate coefficients with 10%- and 90%-quantiles can be
found in SI4). The half-lives show how abiotic (k,), wastewater (k) and biofilm processes (Kkpiofim)

affect the stability of biomarkers under aerobic conditions (22°C, pH 7-8).
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Table 3. Mean half-life (tos) for biomarkers based on abiotic-, wastewater- and biofilm-induced in-sewer transformations

(gravity sewer conditions: aerobic, 22°C, pH 7-8). koveran is the tos aggregating the three individual mean rate coefficients with

different surface area biofilm to wastewater ratios (A/V [m]). Red: half-lives < 12 h [mean HRT of many large catchments is
<12 h, see SI of Ort et al., 2014 (n=32 cities; min=1 h, max=12 h, mean=>5.5 h)]. Green (italic): names of biomarkers that
showed < 20% loss over 24 h with A/Vs up to 66 m™ in previous batch experiments for all tested biofilms (McCall et al.,

2016b).
considered process Overall transformation
Half-lives to5 [hour] K. kww | Keoiofim | Kioim | Kbiofim | Kovera | Kovera | Koveran
AV 17 m AV33m AV 66 m AV17Tm' | AV33m' | AVEEm
AC 6-acetylcodeine 85 54 0.5 0.3 0.1 0.5 0.3 0.1
AMP amphetamine 150 113 9 5 2.3 8 4 2.2
BE benzoylecgonine 1185 | 1567 72 37 19 65 35 18
CBz carbamazepine 1821 3801 610 314 157 408 250 139
cocC cocaine 20 101 58 30 15 13 11 8
COE cocaethylene 35 181 45 23 12 18 13 8
DCF diclofenac 1443 | 3417 330 170 85 249 146 78
EDDP B oot 251 | 756 | 351 181 920 123 92 61
HMMA 4-hydroxy-3-methoxymethamphetamine 393 21 77 40 20 16 13 10
KET ketamine 695 1553 374 193 96 210 137 80
MAM 6-monoacetylmorphine 72 70 8 1.5 0.8 & 1.4 0.7
MDMA (+)-3,4-methylenedioxymethamphetamine 1029 | 1754 156 80 40 126 71 38
MDPV methylenedioxypyrovalerone 270 703 260 134 67 111 79 50
MEPH mephedrone 18 392 307 158 79 16 16 14
METH methamphetamine 745 663 236 122 61 141 90 52
MPA methiopropamine 1296 | 2381 156 80 40 131 73 38
MTO methoxetamine 830 | 2212 943 486 243 368 269 173
NorCOC norcocaine 14 25 106 54 27 8 8 7
NorKET norketamine 1113 32 945 487 243 31 30 28
ODMT O-desmethyltramadol 473 34 1108 571 285 31 30 28
PMA 4-methoxyamphetamine 167 220 102 53 26 49 34 21
PMMA methoxymethamphetamine 835 1367 176 91 45 131 77 42
TRA tramadol 1326 | 2918 751 387 193 412 272 160
Z0L zolpidem 513 805 310 160 80 156 106 64
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3.2 Hydraulic catchment characterization

Results from the SWMM simulations for the approaches to describe hydraulic properties with
different levels of detail (Table 1) are presented as frequency distributions. Spatial variability of HR T4,
was calculated as daily average of all flow conditions (Figure 2). Although, temporal variability in
individual conduits can be considerable, the effect for biomarker loss calculations over an entire flow
path seems small (see discussion in 4.2.1). The mean HRTuy and HRT.4 differ < 4% for all three
catchment scales except the 10%-quantile for the small and medium catchment (12% and -45%) (Table
4; Figure S5 in SI6). Frequency distributions for A/V,, were similar for the medium and large
catchments with average values around 30 m™ while the mean value for the small network was 98 m

(Figure 3).
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Figure 2. A: Frequency distributions for spatial variability of HRTaa. B: Temporal variability of HRT as ratio of extreme daily
320 minimum and maximum conditions divided by daily average conditions HRTmin/HRTmean and HRTmax/HR Tmean for the large
catchment. A+B: Each flow path once, i.e. not weighted with population; vertical lines represent distribution means.
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Figure 3. Frequency distributions for spatial variability of A/Ve,. B: Temporal variability of HRT as ratio of extreme daily
minimum and maximum conditions divided by daily average conditions A/Veqmin/ A/Veqmean and A/Vegmax/ A/Vegmean for the

large catchment. A+B: Each flow path once, i.e. not weighted with population; vertical lines represent distribution means.

Table 4. Summary statistics of the spatial frequency distributions of the small, medium and large catchments.

Catchment small medium large

q10% mean median q90% q10% | mean | median | q90% | gq10% : mean : median | q90%
AV [m'1] 44.52 98.92 81.60 173.95 9.45 | 30.87 26.25 55.07 | 8.31 29.60 23.67 56.84
HRT.qy [h] 0.41 1.89 1.58 3.89 1.90 3.80 3.37 6.77 2.1 4.88 4.19 8.57
HRTaisp [N] 0.46 1.91 1.67 3.85 1.96 3.94 3.52 6.83 2.19 4.97 4.36 8.64
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330  The spatial variability of HRT.4, for the large catchment increased with increasing distance of the

nodes to the WWTP. On the contrary, the outer nodes had often a higher A/V,, (irrespective of

distance to WWTP; Figure 4).

Catchments

[ JEEE
5000 10000 15000

Flow Path Lenght [m] m Medium

|:| Small

5000 10000 15000 20000
Flow Path Lenght [m]

0z 0.3 04 0s
Water depth [m]

335 Figure 4. Spatial variability of HRT.av (A) and A/Vq (B) for the large catchment. C: Flow-path-specific HRTuav vs. total path
length from node to wastewater treatment plant. D: Flow-path-specific A/Veq vs. total path length. E: Water depth in a
conduit and resulting A/V. - All calculations were based on daily mean flow conditions (neglecting temporal variability and
dispersion; approach C).
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3.3 Biomarker loss calculations

For three biomarkers with high abiotic rates k, (COC, NorCOC, MEPH) a mass loss between 10% and
25% (median) was observed in all catchments for scenario S2 with 0.01% prevalence of drug use in the
population (Figure 5; Figure 6; Figure S8 in the SI7). Although, loss was higher for these three
biomarkers in the large catchment (Figure 6), biomarkers with comparably high kiisim (AMP, MAM,
AC) had transformation losses ranging from 30% to 90% (median) with higher median losses in the
small catchment. All other biomarkers showed < 10% loss in all catchments and tested scenarios. The
effects of prevalence, temperature, uncertainty of transformation rates, location of users, and expert

estimate are shown in Figure 7 for AMP and MEPH, two substances with different stability.

A previous study showed that temperature is inversely proportional to the biotransformation rate
coefficient and rate coefficients (Sudrez et al., 2012). The rate coefficients we applied in our study were
determined from experiments conducted at 22 °C. Therefore, in scenario S2mp, rate coefficients were
halved assuming lower wastewater temperatures around 10°C. As a consequence, median biomarker

loss was approx. 5% to 20% lower (Figure 7).
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Figure 5. In-sewer transformation losses in the large catchment (scenario S2) calculated for daily mean flow conditions
(neglecting temporal variability and dispersion; approach C). Dashed horizontal line indicates 10% loss.
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Figure 7. Comparison of biomarker loss for amphetamine (AMP), and mephedrone (MEPH), as boxplots for the small,
medium, and large catchments. If not otherwise indicated, results are shown for approach C for scenarios S1-S4. In the
sensitivity analysis the effect of constant, mean rate coefficients (constant rates) and constant A/Veq ratios of 98 m™', 31 m’,
and 30 m (constant A/V) are illustrated for the small, medium and large catchment, respectively. Dashed horizontal line

indicates 10% loss.
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3.4 Experimental evidence from full-scale study “Glattstollen”

Temperature and pH were surprisingly constant over time and similar on both monitoring days over

the entire distance (Table 5). Due to a vortex shaft at the beginning of the “Glattstollen”, oxygen

concentrations are high at L1 and showed high variation at L1 and L3 throughout the 24-h monitoring

period (see SI5 for temporal profiles). As expected, oxygen concentrations diminished to a larger

extent between L1 and L3 in the presence of biofilm.

Fourteen biomarkers with concentrations >LOQ at both locations (L1 and L3) are plotted in Figure 8.

Nine biomarkers showed transformation of <10%. The results are compared to model predictions and

discussed in section 4.3.4 in more detail.

Table 5. Environmental conditions in the “Glattstollen” during the two sampling campaigns [24-h means and relative
standard deviations (RSD)]. Monitoring locations were at L1 (200 m), L2 (2400 m) and L3 (5300 m).

. Dissolved oxygen Temperature pH
Location
[mg L] (RSD) [°C] (RSD) [-] (RSD)

with biofilm L1 6.9 (19%) 13.9 (5%) 8.0 (2%)
08.01.2015 L2 1.8 (72%) 14.2 (3%) 7.7 (3%)
11am for 24h L3 1.5 (75%) 14.0 (2%) 7.6 (6%)
without biofilm L1 4.6 (39%) 15.3 (6%) 8.0 (2%)
19.03.2015 L2 5.3 (41%) 15.3 (4%) 7.7 (4%)
11am for 23h L3 3.8 (47%) 14.8 (2%) 7.8 (2%)
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Figure 8. Results from the case study “Glattstollen” (Ziirich, Switzerland). Concentrations of biomarkers in 24-h composite
samples collected at locations L1 (200 m, t = 0 h) and L3 (5300 m, t = 2 h). See 2.6 for more details.
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4 Discussion

Most sewer catchments exhibit high temporal (diurnal) and spatial (population distribution, sewer
topology) variability for most hydraulic parameters (e.g., flow rate, fill level, A/V). It requires increased
efforts to explicitly extract and quantify this variability in high resolution. Therefore, extent and
magnitude are often unknown. We characterized the relevant hydraulics at catchment-scale by
deriving distributions for HRT and A/V., and separated temporal and spatial variability (4.2). Using
these distributions in subsequent water quality modeling, implies low computational cost, when
assuming different scenarios for many different biomarkers to quantify potential losses (4.3). To
facilitate comparison of simulation results’ overall variability, we first discuss variability of

transformation rates alone (4.1).

4.1 Variability in transformation rates

The variability in biomarker loss can be as high as 40%, considering the performance of only one
biofilm (McCall et al., 2016b). When inferring rate coefficients based on four different gravity sewer
biofilms (McCall et al., 2016b), the variability of biomarker transformation rate coefficients increases
to 80%. The predicative uncertainty became larger due to the environmental variability of the different

biofilms.

As expected, biomarkers that transformed mainly due to abiotic processes were unaffected by varying
A/V. Biomarkers with overall half-lives below 12 hours were the main target of in-sewer simulations

(Table 3).

4.2 Hydraulic conditions

We determined catchment-representative HRT frequency distributions for the daily mean hydraulic
conditions based on different approaches with varying level of hydraulic complexity (Table 1).

Modeling hydraulics with and without considering effects of dispersion resulted in similar HRT
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frequency distributions for the three catchment scales (HRTquq, approach C vs. HRTys, approach B)
(Table 4 and Figure S5 in SI6). With growing catchment size, dispersion becomes more important and
the difference between the two approaches increased. However, effect of dispersion on overall
biomarker loss is negligible. Consequently, it was sufficient to account for advective mass transport
only to characterize relevant, realistic HRT distributions (HRT,s). To correctly include biofilm-
induced biodegradation processes in the transformation model, catchment-specific A/V,, for each flow

path were derived using the same approach. Subsequently, we used HRT,4, (approach C).

4.2.1 Temporal variability

During 24 hours, the dry weather flow conditions in all conduits of a catchment can vary, mostly due
to diurnal patterns of using domestic household appliances. In upper reaches of the network these
water packets (flows) enter peripheral pipes over short durations resulting in non-steady, intermittent
flow. In transport/trunk sewers of the lower parts of a catchment, flows can still vary, but are
substantially higher of continuous nature (Butler and Graham, 1995). Furthermore, a water packet
entering the sewer at 1 am, travelling for several hours, experiences different conditions along the flow
path than a water packet entering at 8 am. It is difficult to separate the effects of these intertwined
temporal and spatial variables. Therefore, we used the daily mean of the variable hydraulic conditions
(A/V, velocity, fill level) to calculate HRT,4, (and A/V,,) from each node to the WWTP. The neglected
temporal variability was separately quantified by finding the minimum and maximum velocity and fill
level at highest temporal resolution (20 s) in each conduit. From those extreme flow conditions for all
flow paths, HRTax, HRTyin and A/Vegmaxs A/Vegmin Were calculated and compared with the mean
conditions. Even though, it is unlikely that a water packet would experience all minima or maxima
conditions chronologically along the flow path, these results provide an estimate of the maximal range

of diurnal variability. The resulting ranges for the large catchment were +20% to -10% for HRT and
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+35% to -20% for A/V., (Figure 2; Figure 3). This was a worst-case scenario and real differences are

certainly not deviating more than this from our presented mean.

4.2.2 Spatial variability

In all catchments HRT.4 increased with path length and distance from the WWTP (Figure 4C).
Similarly, A/V,, increased with path length for the medium and large catchment but the trend was
more random and mean values were significantly higher in the small catchment (Figure 4D). The
medium and large catchments had similar A/V., distributions with mean values of 31 m™ and 30 m",
respectively. However, the mean A/V,, for the small catchment was 98 m™ with a much wider range

(Table 4).

In the small catchment, mean A/V., were considerably higher compared to the other catchments, due
to several peripheral conduits that had very high A/V;(up to 1000 m™), irrespective of their distance
from the WWTP (Figure 4D). Smaller catchments (low mean HRTs - including peripheral upper sub-
catchments in large networks) can have many conduits with small diameters and lower (often
intermittent) diurnal flows and, therefore, fill levels. Since A/V; exponentially increases with decreasing
fill level, this may have led to the high A/V,, values for the small catchment. This is because we
assumed a continuous wastewater production per PE per day following a bimodal, diurnal profile
(with flows at any time > 0) and averaged flow to daily mean conditions. This seems appropriate for
conduits with continuous, yet variable, flow. In peripheral conduits with intermittent flows, averaging
over a 24-h period leads to unrealistic low mean flows (and consequently unrealistic high A/V) (see SI8
for further discussion). Further research should i) implement more realistic (intermittent) flow
conditions for the upper conduits and, ii) more catchments should be characterized in A/V., (and
HRT) distributions, to confirm the spatio-temporal trends that we identified in the three catchments

investigated.
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4.3 Biomarker loss in different scenarios

AMP, MAM and AC were found to be unstable with median losses above 40% and a high variability
ranging from 5% to 100% losses (Figure 5; Figure 6). Less than 10% loss in all catchments occurred for
MEPH, MDMA, MPA, PMMA, TRA, ZOL, KET, CBZ, DCF, MDPV, MTO, METH, PMA and EDDP.
In most scenarios the median loss of COC, COE, NorCOC, HMMA, BE, NorKET and ODMT was

below 30% with varying ranges of variability.

4.3.1 Influence of catchment scale, prevalence and location

The catchment scale influenced biomarker loss. As expected, with increasing catchment size, for
biomarkers with high abiotic rate coefficients the loss increased, due to the higher HRT,. In contrast,
for biomarkers with high Keiem, the median loss in the small catchment was equally high, and higher
compared to the large catchment (Figure 6). This counter-intuitive high loss was caused by the higher
mean A/V,, despite a small mean HRT,4, in the small catchment (4.1.2). Furthermore, the median
biomarker loss was unaffected by prevalence, however, the predicted range of loss increased with lower
numbers of drug users in a catchment (see e.g., AMP in Figure 7, S1 (1% drug users) vs. S2 (0.01% drug

users).

If the drug users were located close to the WWTP (S3) biomarker loss was negligible in all catchments,
while the opposite was true for the scenario assuming all drug users to be located far away from the
WWTP (Figure 7 - S4). These extreme scenarios seem very unlikely if such drug user distributions are

not supported by detailed epidemiological studies available in the catchment under investigation.

4.3.2 Influence of variability of A/V.,, and transformation rates

A sensitivity analysis showed that results from simulations with constant mean values for A/V,, in the
entire catchment (mean of the A/V,, distribution) increased biomarker loss (Figure 7) but the
predicted variation remained about the same (Q3 minus Q1). This is due to the positively skewed

A/V distribution (mean higher than mode).
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In contrast, assuming constant transformation rate coefficients substantially reduced biomarker loss
uncertainty [similar to constant A/V,, medians increased partly but variation was reduced (Q3 minus
Q1)]. This indicates that reducing variability of transformation rate coefficients could significantly
decrease uncertainty of biomarker loss estimates. However, this remains a challenge since the spatio-
temporal dynamic nature of prevailing conditions in sewers (environmental and hydraulic) is often
unknown, making the implementation of space-dependent transformation rate coefficients based on

sewer conditions speculative (see 4.3.3).

Using HRT based on expert guesses (see section 2.5) resulted in estimates comparable with results
based on hydrodynamic simulations using “the true” HRT,4 distribution of the catchments. This is
obviously only appropriate, if the estimate is accurate. Using the HRT from the local sewer network
operator resulted in an overestimation of median biomarker loss in the large catchment and using our

HRT estimates for the small, and medium networks resulted in an underestimation of loss (Figure 7).

4.3.3 Influence of environmental conditions

Biomarker loss depends on i) environmental conditions and ii) type and performance of biofilm in

sewer networks (Hvitved-Jacobsen et al., 2013; McCall et al., 2016b; Thai et al., 2014).

Prevailing environmental factors within a sewer network - e.g. temperature, pH, redox conditions,
wastewater composition (e.g, toxic chemicals), accumulation of sediments, etc. - influence

transformation rates and vary over space at different time scales (minutes to months).

Spatial differences of environmental factors likely imply also spatial differences of biofilm composition,
thickness - e.g. due to varying shear stress, sloughing due to previous rain events - and performance.
Previously, we observed that individual biofilms from peripheral, upper conduits expressed lower
transformation potential compared to biofilms from trunk sewers further downstream (McCall et al.,

2016b). However, more studies would be needed to generalize this observation. Therefore, and in the
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absence of knowledge on the spatio-temporal distribution of environmental factors, the biofilm
performance (kuiofim) was assumed to be equal across the entire catchment in each of the 3000
simulation runs. To cover the currently known range of biofilm performance, kyiom was sampled for

each run from the predicted performance distribution (see section 2.4).

It remains a challenge to overcome efforts and uncertainties related to systematically assess the spatial
distribution of prevailing sewer conditions for entire catchments. Possible solutions to consider
transformation rates in an informed, space-dependent manner encompass: i) coupling sewer process
modeling concepts (e.g. WATS as in Vollertsen et al., 2015) with our approach, or ii) measuring
relevant wastewater parameters in sewers at sufficiently high spatial resolution. The latter is currently
not possible at reasonable expenditure and requires developing new surveying technologies. Until
successful implementation, our proposed sewer modeling framework including environmental
variability in the form of aggregated transformation rates, provides an appropriate approach to

efficiently estimate realistic biomarker losses including objective ranges of uncertainty.

4.3.4 Full-scale study “Glattstollen”

Transformation of the following nine biomarkers was <10% (or smaller than rsd from triplicate
analyses at L1 or L3) over the two-hour HRT for both experiments, with and without biofilm: BE, CBZ
(increase in the presence of biofilm likely due to back-transformation of a CBZ metabolite), COC,
COE, DCF, MDMA, METH, TRA, and ZOL. This was expected from model results for the
“Glattstollen” (applying eq. 3, HRT = 2 h, A/V = 11 m’, rates from SI4, Table S3). For MAM a loss of
20% was observed in the presence of biofilm, which is within the expected range of model predictions
(median loss of 29%, q10=6%, q90=48%). In the experiment without biofilm a loss of only 7% was
observed (model prediction with no biofilm activity: median loss 4%, q10=2%, q90=6%). For EDDP
itself no transformation would have been expected with the model, but experimentally we found an

increase in the presence of biofilm. In the absence of quantifiable methadone concentrations, it
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remains speculative if this is due to transformation of another methadone metabolite. Similarly, an
increase of ODMT was observed in the experiment, while TRA concentrations (parent of ODMT)
were similar in L1 and L3 samples. The model predicted a decrease for AMP concentrations in both
experiments, while it was stable in the presence of biofilm and even increased in the absence of biofilm
in our full-scale experiment. It seems unlikely that AMP was formed as a metabolite of METH, since
METH concentrations remained constant. For KET no transformation would have been expected
from model results over the 2 h period. For AMP and KET we currently have no explanation why they

deviated from model predictions, warranting further research.

5 Conclusion

The study’s objectives were to predict biomarker loss during transport in sewers, to estimate related
uncertainty and to perform a transformation experiment in a real sewer. We developed a simulation
approach that accounts for catchment and flow-path specific hydraulic properties influencing
biomarker transformation processes (HRT and A/V.;). With this approach we were able to separate
computationally demanding hydraulic modeling and biomarker transformation calculations. This
facilitates efficient testing of different scenarios (prevalence, environmental conditions) by sampling
from transformation rate coefficients, HRT and A/V,, distributions to accurately estimate in-sewer
losses and uncertainty for various biomarkers and different catchment scale. The obtained results led

to the following main conclusions:

Urban water management

o The biofilm surface area to wastewater volume ratio (A/V) that can vary from conduit to conduit
was summarized in an A/V equivalent (A/V,,) for individual flow paths from nodes to the
wastewater treatment plant (normalized with the travel time in each conduit along the

corresponding flow path). This allowed assigning a representative, realistic value to each node for
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both A/V,, value and hydraulic residence time (HRT) of the corresponding flow path for

subsequent quality simulations.

e Representative HRT and A/V,, distributions can be generated from hydraulic simulations
550 considering advection only. This approach allowed an adequate quantification of spatial and
temporal variability. In a large catchment the temporal variability of HRT and A/V,, differed from

the daily mean by +20% to -10% and +35% to -20%, respectively.

e The resulting spatial distributions, summarizing HRTs and A/V,, for individual flow paths, show a
higher mean HRT for the large catchment compared to the small catchment, while for the mean
555 A/V,, it was the opposite with much higher A/V,, for the small than for the large catchment. Overall,
effects of unknown spatial variability, were much higher (0-100% predicted loss) than effects of

temporal variability.

e Topography and network topology affect HRT and A/V,, distributions and environmental

conditions in sewers. This should be assessed for other locations in future studies.

560 e Transformation experiments in real sewers are laborious to perform. While observed losses are
valuable as plausibility checks, transferability of results to predict transformation rates and range of

loss in other catchments is limited.

Wastewater-based epidemiology

e Median biomarker losses were equally affected by A/V,; and HRT for the small catchment (small
565 mean HRT and high mean A/V,,) and large catchment (high mean HRT and small mean A/V,,).
Losses for biomarkers with high abiotic rate coefficients had higher losses in the large catchment. In
this study, high rate coefficients (kpiofim > 0.005 m d™') of biofilm resulted in higher median losses of

amphetamine, monoacetylmorphine, and acetylcodeine, surprisingly, for the small catchment.

page 34



570

575

580

585

590

However, for many biomarkers (methamphetamine, ketamine, MDPV, MDMA, benzoylecgonine)

in-sewer losses were negligible in e.g., the back-calculation of illicit drug use.

e Simulation results showed that the uncertainty due variability in transformation rate coefficients is
typically higher (or about equal, depending on catchment characteristics) than uncertainty due to
unknown drug user location. The latter cannot be reduced easily, which implies that future work
should focus on i) improving the knowledge about variability of biomarker transformation rates
under different in-sewer conditions and ii) developing a method to efficiently quantify these

conditions in real networks at high spatio-temporal resolution.
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