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Abstract. We investigated the seasonal trends of OA sources
affecting the air quality of Marseille (France), which is the
largest harbor of the Mediterranean Sea. This was achieved
by measurements of nebulized filter extracts using an aerosol
mass spectrometer (offline-AMS). In total 216 PM2.5 (par-
ticulate matter with an aerodynamic diameter < 2.5 µm) fil-
ter samples were collected over 1 year from August 2011
to July 2012. These filters were used to create 54 compos-
ite samples which were analyzed by offline-AMS. The same
samples were also analyzed for major water-soluble ions,
metals, elemental and organic carbon (EC / OC), and organic
markers, including n-alkanes, hopanes, polycyclic aromatic
hydrocarbons (PAHs), lignin and cellulose pyrolysis prod-
ucts, and nitrocatechols. The application of positive matrix
factorization (PMF) to the water-soluble AMS spectra en-
abled the extraction of five factors, related to hydrocarbon-
like OA (HOA), cooking OA (COA), biomass burning OA
(BBOA), oxygenated OA (OOA), and an industry-related OA
(INDOA). Seasonal trends and relative contributions of OA
sources were compared with the source apportionment of OA
spectra collected from the AMS field deployment at the same
station but in different years and for shorter monitoring pe-
riods (February 2011 and July 2008). Online- and offline-

AMS source apportionment revealed comparable seasonal
contribution of the different OA sources. Results revealed
that BBOA was the dominant source during winter, repre-
senting on average 48 % of the OA, while during summer the
main OA component was OOA (63 % of OA mass on aver-
age). HOA related to traffic emissions contributed on a yearly
average 17 % to the OA mass, while COA was a minor source
contributing 4 %. The contribution of INDOA was enhanced
during winter (17 % during winter and 11 % during sum-
mer), consistent with an increased contribution from light
alkanes, light PAHs (fluoranthene, pyrene, phenanthrene),
and selenium, which is commonly considered as a unique
coal combustion and coke production marker. Online- and
offline-AMS source apportionments revealed evolving lev-
oglucosan : BBOA ratios, which were higher during late au-
tumn and March. A similar seasonality was observed in the
ratios of cellulose combustion markers to lignin combus-
tion markers, highlighting the contribution from cellulose-
rich biomass combustion, possibly related to agricultural ac-
tivities.
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1 Introduction

Outdoor particulate air pollution is estimated to be respon-
sible for approximately 3.3 million premature deaths each
year worldwide, and this number is projected to double by
2050 (Lelieveld et al., 2015). Organic aerosols (OA) can con-
tribute up to 90 % of the PM1 (Jimenez et al., 2009), and
therefore understanding their main emission sources and for-
mation processes is a key prerequisite for the development of
appropriate mitigation policies.

In the Mediterranean basin, sources and trends of OA re-
main scarcely investigated, despite their deleterious impact
in such a densely populated region. The Mediterranean re-
gion is characterized by an intense photochemistry during
summer. Not surprisingly, the majority of the OA source ap-
portionment studies conducted in the region using aerosol
mass spectrometry (AMS, Canagaratna et al., 2007) focused
on the summer period (e.g., El Haddad et al., 2013; Min-
guillón et al., 2011, 2016; Hildebrandt et al., 2011). Through
positive matrix factorization (PMF) techniques, these studies
revealed that during summer the oxygenated organic aerosol
(OOA) fraction formed by oxidation of gaseous precursors,
represented the largest part of OA. Amongst these studies,
the field deployment of the AMS in Marseille, the largest
port in the Mediterranean, has demonstrated that this instru-
ment is well suited for quantifying the contribution of indus-
trial emissions (El Haddad et al., 2013). In that work, the
industrial OA factor was identified by the high correlation
with heavy metals and AMS polycyclic aromatic hydrocar-
bons (AMS-PAHs); moreover strong increments of the in-
dustrial factor concentrations were systematically observed
when winds shifted to the west–southwest, consistent with
back-trajectory analysis highlighting the transport of indus-
trial emissions from an industrial pole. Overall the industry-
related OA contributed on average 7 % of the bulk OA mass
(El Haddad et al., 2011, 2013). However, these results were
limited to 2 weeks of measurements during summer while
the contribution of industrial emissions during the rest of the
year remains unknown.

There is a general paucity of AMS and aerosol chemical
speciation monitor (ACSM) datasets in the Mediterranean
region during winter. Exceptions include AMS campaigns
(Mohr et al., 2012; Hildebrandt et al., 2011) covering a few
weeks during late winter–early spring and studies with an
ACSM (e.g., Minguillón et al., 2015). The measurement of
organic markers and elements (e.g., Salameh et al., 2015;
Reche et al., 2012) at different stations indicate a substan-
tial contribution from biomass burning (BB). However, the
sources and chemical composition of this fraction and its
evolution during the year remain uncertain. Modeling results
within the European Monitoring and Evaluation Programme
(EMEP) have shown that the south of France, together with
Portugal, can be a major hotspot in Europe for OA during
February–March, possibly due to agricultural fires (Denier
van der Gon et al., 2015; Fountoukis et al., 2014). In this re-

gion, biomass burning OA (BBOA) can derive from various
processes such as agricultural land clearing activities, wild-
fires, and domestic heating and therefore may have a variable
chemical composition.

The current study capitalizes on the AMS measurements
of offline samples collected over 1 year (2011–2012) in Mar-
seille, an ideal environment for the characterization of ur-
ban emissions from biomass burning, traffic, and industrial
activities and their transformation under high photochemi-
cal activity. The source apportionment results obtained from
PMF applied to the OA mass spectra are corroborated us-
ing a comprehensive set of offline measurements including
elemental and organic carbon (EC / OC) measurements, as
well as measurements of elements by inductively coupled
plasma mass spectrometry (ICP-MS), of molecular mark-
ers by gas chromatography mass spectrometry (GC-MS) and
ultra-performance liquid chromatography mass spectrometry
(UPLC-MS), and of major ions by ion chromatography (IC).
We mainly focus on the sources and trends of winter OA and
therefore we additionally analyzed an online-AMS dataset
acquired at the same location during the winter of the pre-
vious year. The comparison of online- and offline-AMS data
and organic marker concentrations enables an in-depth char-
acterization of OA sources in Marseille and in particular the
identification of the main processes by which biomass smoke
is emitted and transformed in this region.

2 Methods

2.1 Site description

Marseille is the second largest city in France with more than
1 million inhabitants (2010). It hosts the largest harbor in
France and in the Mediterranean Sea. Many port-related in-
dustries, especially petrochemical companies, are located in
a big cluster. These facilities are situated about 40 km NW
from the city and include steel facilities, coke production
plants, oil storing, refining plants, and several shipyards. The
Marseille commercial harbor is located in the vicinity of this
industrial cluster and represents the third-largest harbor of
the world for crude oil storage and treatment. During sum-
mer, typical wind patterns in the city of Marseille favor the
transport of polluted air masses from the industrial cluster to
the city, including the sea breeze and the light Mistral wind
from the Rhône Valley. At night, the land breeze may trans-
port air masses from an agricultural valley located east of
the sampling site. A more detailed description of wind pat-
terns in Marseille can be found in Drobinski et al. (2007) and
Flaounas et al. (2009). The sampling location is classified
as an urban background station and is situated in the urban
park Cinq Avenue in a traffic-free zone near the city center
(43◦18′20′′ N, 5◦23′40′′ E; 64 m a.s.l.).
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2.2 Yearly cycle dataset

2.2.1 Sample collection

In total, 216 24 h (from midnight-to-midnight) integrated
PM2.5 pre-baked (500 ◦C for 3 h) quartz fiber filters (150 mm
diameter, Tissuquartz) were collected between 30 July 2011
and 20 July 2012 using a high-volume sampler (Digitel
DA80) operated at 500 L min−1 (Batch 1). Filter samples
were subsequently wrapped in aluminum foil, sealed in
polyethylene bags and stored at −18 ◦C.

2.2.2 Offline-AMS analysis

This work discusses the offline-AMS analysis of 55 com-
posite samples (created from the batch of 216 PM2.5 filters
collected) which were analyzed by Salameh et al. (2017)
for major ions, molecular markers and elements (Table S1
in the Supplement). A thorough description of the offline-
AMS analysis can be found in Daellenbach et al. (2016). One
punch per filter sample (from 5 to 25 mm diameter depending
on the filter loading and on the number of punches per com-
posite sample) was prepared for analysis. Punches from the
same composite sample were extracted together in 15 mL of
ultrapure water (18.2 M� cm, total organic carbon < 5 ppb,
25 ◦C) in an ultrasonic bath for 20 min at 30 ◦C. After extrac-
tion, filters were vortexed for 1 min, and the resulting liquids
were filtered with 0.45 µm nylon membrane syringe filters.

The generated liquid extracts were atomized in air using
a custom-made two-nozzle nebulizer. The generated aerosol
was dried using a silica gel diffusion drier and then mea-
sured by a high-resolution time-of-flight AMS (HR-ToF-
AMS, running in V-mode). In the AMS, particles are flash
vaporized (600 ◦C) and the resulting gas is then ionized by
electron impact (70 eV), yielding quantitative mass spectra
of the non-refractory submicron aerosol components, includ-
ing OA, NO−

3 , SO2−

4 , NH+

4 , and Cl−. A detailed description
of the AMS operating principles, calibration protocols, and
analysis procedures are provided by DeCarlo et al. (2006).
In total about 10 mass spectra (mass range 12–300 Da, 60 s
averaging time) were collected per composite sample. Be-
tween each sample, a measurement blank was recorded via
nebulization of ultra-pure water to minimize and monitor the
possible memory effects of the system. In total five mass
spectra were collected per each measurement blank. Offline-
AMS data were processed and analyzed using the HR-ToF-
AMS analysis software SQUIRREL (Sequential Igor data
Retrieval) v.1.52L and PIKA (Peak Integration by Key Anal-
ysis) v.1.11L for IGOR Pro software package (Wavemetrics,
Inc., Portland, OR, USA). HR analysis of the mass spectra
was performed in the mass range 12–115 Da and in total 217
ion fragments were fitted.

The interference of NH4NO3 on the CO+

2 signal was cor-
rected according to Pieber et al. (2016) as follows:

CO2,real = CO2,meas −

(
CO2,meas

NO3,meas

)
NH4NO3,pure

· NO3,meas, (1)

where the
(

CO2,meas
NO3,meas

)
NH4NO3,pure

correction factor was 2.5 %

as determined from aqueous NH4NO3 measurements con-
ducted regularly during the measurement period.

2.2.3 Other offline measurements

A complete list of the measurements performed can be found
in Table S1. To summarize, major ions (Ca2+, Mg2+, K+,
Na+, NH+

4 , NO−

3 , SO2−

4 , Cl−, oxalate, malate, succinate, and
malonate) were measured by IC according to the method-
ology described by Jaffrezo et al. (1998). A subset of the
filters was selected for CO2−

3 quantification following the
method described by Karanasiou et al. (2011). The method
encompasses the fumigation of the filter samples with HCl.
The CO2 evolved by this acidification of the carbonates de-
posited on the filters is detected by thermal-optical transmit-
tance determination. The CO2−

3 measurements agreed fairly
well with the CO2−

3 estimate from ion balance calculations
based on IC data (Fig. S1 in the Supplement). In the follow-
ing discussion, ion concentrations from filter samples always
refer to the IC measurements unless otherwise specified.

EC and OC were determined for each filter by thermal-
optical transmittance using a Sunset Lab analyzer (Birch
and Cary, 1996) following the EUSAAR2 protocol (Cavalli
et al., 2010). The CO2−

3 concentration determined from the
IC ion balance was then subtracted from OC concentration.
The water-soluble OC (WSOC) was measured with a total
organic carbon analyzer (TOC) following the methodology
described in Bozzetti et al. (2016) and references therein.
Before the analyses, the liquid extracts were treated with a
2 M HCl solution for 1–30 min to remove the inorganic C
fraction. Total nitrogen was determined using a TOC ana-
lyzer combustion tube. The NO2 generated from the water-
soluble N decomposition was detected by a chemilumines-
cence TNM-1 unit detector. Organic markers were measured
via GC-MS analysis, following the methodology described in
El Haddad et al. (2009, 2011), Favez et al. (2010), and Piot
et al. (2012). In total 15 different PAHs, 19 alkanes (C19–
C36), 8 hopanes, 5 phthalate esters, levoglucosan, 6 lignin
pyrolysis compounds, 6 fatty acids, and 3 sterols were deter-
mined (Table S1). Thirty-three chemical elements (Table S1)
were quantified using ICP-MS according to the procedure
described in Chauvel et al. (2010) and the modifications sug-
gested in El Haddad et al. (2011). A subset of 20 compos-
ite samples was selected for the quantification of methyl-
nitrocatechol isomers (Table S1) via ultra-performance liq-
uid chromatography coupled with an electrospray ionization
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ToF-MS (UPLC-ESI-ToF-MS), following the procedure de-
scribed in Iinuma et al. (2010).

2.3 Intensive winter campaign

A HR-ToF-AMS was deployed at the same station (ur-
ban park Cinq Avenue) between 25 January 2011 and
2 March 2011 to monitor the real-time NR-PM1 aerosol
chemical composition. Although February 2011 is not in-
cluded in the sampling period covered by offline-AMS, these
online measurements provide a good opportunity to com-
pare the separation, relative contributions, and winter sea-
sonal trends of the OA sources retrieved by the offline-
and online-AMS source apportionment procedures. Sum-
mer offline-AMS results were instead compared with online-
AMS source apportionment results reported by El Haddad et
al. (2013). The AMS was operated with an averaging time
of 8 min, and in total 5633 mass spectra were collected dur-
ing the monitoring period. We performed an ionization effi-
ciency (IE) calibration by NH4NO3 nebulization, and the re-
sulting IE value of 1.76 × 10−7 was applied to the dataset.
The standard relative ionization (RIE) efficiency was as-
sumed for organics (1.4), SO2−

4 (1.2), NH+

4 (4), and Cl−

(1.3), while the collection efficiency (CE) was estimated us-
ing the composition-dependent collection efficiency model
(Middlebrook et al., 2012). Total AMS-PAHs were estimated
from AMS data according to Dzepina et al. (2007).

Similarly to offline-AMS, online-AMS data were also pro-
cessed and analyzed using HR-ToF-AMS Analysis software
SQUIRREL v.1.52L and PIKA v.1.11L for IGOR Pro soft-
ware package (Wavemetrics, Inc., Portland, OR, USA). HR
analysis of the mass spectra was performed in the mass range
12–115 Da and in total 215 ion fragments were fitted.

A NOx analyzer was run in parallel to the AMS to monitor
the real-time NOx concentration. A set of pre-baked (500 ◦C
for 3 h) 24 h integrated PM2.5 filter samples was also col-
lected during this campaign (Batch 2) following the same
sampling and storage procedure described in Sect. 2.2. Filters
were analyzed for major ions, metals, EC / OC, and organic
markers, including n-alkanes, hopanes, PAHs, and lignin and
cellulose pyrolysis products, using the techniques previously
described in Sect. 2.2 (Table S1).

2.4 Source apportionment

2.4.1 Implementation

The online- and offline-AMS source apportionment results
discussed in this work were obtained from PMF analysis
(Paatero and Tapper, 1994) of AMS spectra using the Mul-
tilinear Engine (ME-2; Paatero, 1999). The Source Finder
toolkit (SoFi; Canonaco et al., 2013, v.5.1) for Igor Pro
(Wavemetrics, Inc., Portland, OR, USA) served as interface
for data input and result evaluation. PMF is a multilinear sta-
tistical tool used to describe the variability of a multivari-

Table 1. Monitoring periods.

Online-AMS Offline-AMS

28 Jan 2011–2 Mar 2011 30 Jul 2011–20 Jul 2012

ate dataset as the linear combination of static factor profiles
times their corresponding time series, as described in Eq. (2):

xi,j =

p∑
z=1

gi,z · fz,j + ei,j . (2)

Here xi,j ,gi,z,fz,j , and ei,j represent, respectively, elements
of the data matrix, factor time series matrix, factor profile
matrix, and residual matrix, while subscripts i,j , and z de-
note time elements, variables (in our case AMS fragments),
and discrete factor numbers, respectively. p represents the
total number of factors selected by the user for current given
PMF solution. The PMF algorithm returns only gi,z and fz,j

values ≥ 0 and solves Eq. (2) by minimizing the object func-
tion Q, defined as

Q =

∑
i

∑
j

(
ei,j

si,j

)2

. (3)

Here si,j is an element of the error input matrix. PMF is sub-
ject to rotational ambiguity, i.e., different G · F combinations
characterized by the same Q can exist. The ME-2 implemen-
tation of the PMF algorithm offers an efficient exploration
of the solution space by directing the solution toward envi-
ronmentally meaningful rotations by constraining the factor
profile elements fz,j for one or more z factors. In the a value
implementation of ME-2, the elements of the factor profile
matrix F (in our case AMS fragments) are forced to prede-
fined values fz,j , allowing a certain variability defined by the
a value, such that the modeled element f ′

z,j satisfies Eq. (4):

(1 − a)fz,n

(1 + a)fz,m

≤
f ′

z,n

f ′
z,m

≤
(1 + a)fz,n

(1 − a)fz,m

, (4)

where n and m represent any two arbitrary variables in the
normalized F matrix. A complete description of the a-value
approach can be found elsewhere (Canonaco et al., 2013).

For the offline-AMS source apportionment, the PMF input
data matrix was constructed as follows: each composite sam-
ple is represented by approximately 10 time points i, corre-
sponding to the ∼ 10 mass spectra collected per filter sample
(Sect. 2.4). Each point of the data matrix is subtracted by the
average corresponding measurement blank.

The error matrices were instead constructed as follows.
For online-AMS source apportionment, the error matrix el-
ements si,j were calculated according to Allan et al. (2003)
and Ulbrich et al. (2009) and included the uncertainty deriv-
ing from electronic noise, ion-to-ion variability at the detec-
tor, and ion counting statistics. si,j included also a minimum
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error which was applied according to Ulbrich et al. (2009).
For the offline-AMS source apportionment, the error term
δi,j was calculated in the same way, but a further term (σi,j )

including the blank subtraction uncertainty was propagated
according to Eq. (5):

si,j =

√
δ2
i,j + σ 2

i,j . (5)

Finally for both online- and offline-AMS we applied a down-
weighing factor of 3 to all variables with an average signal to
an average error ratio lower than 2 (Ulbrich et al., 2009). No
variable with an average signal to error value lower than 0.2
was detected.

Dust and ash can contain significant amount of inorganic
CO2−

3 . Both the IC balance and the CO2−

3 measurements re-
vealed non-negligible contributions from CO2−

3 in the PM2.5
fraction (Fig. S1). Preliminary PMF results also resolved a
factor correlating with Ca2+ (Supplement), which was char-
acterized by high f CO+

2 , suggesting a possible solubiliza-
tion of CO2−

3 from dust which could affect the OA mass
spectral fingerprint. Overall, as discussed in the Supplement,
we could not achieve a clear inorganic dust separation us-
ing PMF, and thus we opted for a correction of the PMF
input matrices. The measured pH of our filter extracts was
never > 8, and therefore we can exclude the presence of
CO2−

3 in the extracts and assume all solubilized CO2−

3 to
exist as HCO−

3 . Direct measurements of nebulized standard
NaHCO3 aqueous solutions revealed that thermal decompo-
sition of HCO−

3 on the AMS vaporizer (600 ◦C) releases CO2

(Fig. S2). Currently no HCO−

3 correction for the OA spec-
tra is implemented in the standard AMS fragmentation ta-
ble (Aiken et al., 2008); therefore the measured CO+

2 signal
needs to be subtracted from the OA AMS spectra. Offline-
AMS PMF input matrices were corrected for HCO−

3 and
rescaled for WSOMi (= WSOCTOC · (OM : OC)offline-AMS)i
according to the procedure described in the Supplement.

2.4.2 Online-AMS source apportionment optimization

In the following we describe the optimization of the online-
AMS source apportionment results. In order to optimize
the source separation we performed sensitivity analyses on
PMF solutions. We adopted different optimization strategies
for online- and offline-AMS source apportionments (Supple-
ment) as we encountered dissimilar mixing between sources.
This is not surprising as the two methods are characterized
by different time resolution and different monitoring time ex-
tension (1 year for offline-AMS, 1 month for online-AMS),
which in turn results in different variabilities apportioned by
the PMF algorithm (daily for online-AMS vs. seasonal for
offline-AMS). In order to optimize the source separation, we
performed sensitivity analyses on PMF solutions according
to the following scheme:

i. Number of factors are selected based on residual analy-
sis.

ii. Qualitative evaluation of the unconstrained PMF solu-
tion in comparison with the constrained PMF solutions
is performed (a-value approach: cooking OA (COA)
and/or hydrocarbon-like OA (HOA) constraints)

iii. Both the HOA and COA factors profiles are constrained
by adopting an a-value approach. An a-value sensitiv-
ity analysis was performed (121 PMF runs performed
scanning all the COA and HOA a-value combinations,
a-value scanning steps: 0.1).

iv. The 121 PMF runs are classified based on the cluster
analysis of the COA diurnal cycles; the best clusters,
and corresponding PMF solutions, are selected.

v. PMF rotational ambiguity exploration. 100 bootstrap
(Davison and Hinkley, 1997; Brown et al., 2015) PMF
runs were performed by simultaneously varying the
COA and HOA a-value combinations (using only the
optimal a-value combinations identified from step iv).
The average of the 200 bootstrap runs represented the
online-AMS source apportionment average solution.
The corresponding standard deviation represents the
source apportionment uncertainty.

For online-AMS we selected a four-factor solution based
on residual analysis. We investigated the time-dependent
Q(t)/Qexp(t) evolution when increasing the number of fac-
tors. Q/Qexp is defined as the ratio between Q (as de-
fined in Eq. 3) and the remaining degrees of freedom of the
model solution (Qexp) calculated as i ·j−(j+i)p (Canonaco
et al., 2013). A decrease of the Q/Qexp, from lower- to
higher-order solutions indicates an improvement in the vari-
ation explained by the model. In particular we calculated
the 1(Q/Qexp(t)) obtained as the difference between the
Q/Qexp(t) for a factor solution minus the Q/Qexp(t) value
obtained from the (z − 1)-factor solutions, where z indicates
the number of factors. We observed a large reduction of
1(Q/Qexp(t)) until four factors (Fig. S4). Higher-order so-
lutions provided only minor contributions to the explained
variability and, in terms of solution interpretability, resulted
in a splitting of primary sources which could not be unam-
biguously associated with specific aerosol sources or pro-
cesses.

Using an a-value approach, we constrained HOA and
COA profiles from Mohr et al. (2012) and Crippa et
al. (2013), respectively. Leaving COA and/or HOA uncon-
strained enabled resolving COA only by increasing the num-
ber of factors (> five-factor solutions) while in the four-
factor solutions we observed a splitting of an OOA fac-
tor which could not be attributed to specific processes. Un-
constrained PMF yielded HOA and COA time series cor-
related well with the constrained solutions; however in the
unconstrained case, HOA and COA factor profiles showed
higher f CO+

2 in comparison to literature studies (Crippa
et al., 2013; Mohr et al., 2009, 2012; Bruns et al., 2015;

www.atmos-chem-phys.net/17/8247/2017/ Atmos. Chem. Phys., 17, 8247–8268, 2017
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Docherty et al., 2011; Setyan et al., 2012; He et al., 2010)
and in comparison to the constrained PMF runs. This in
turn resulted in higher HOA and COA concentrations, with
background night concentrations 2–3 times higher than in
the constrained solutions, possibly indicative of mixing with
oxidized aerosols (Fig. S5). Similar differences between
constrained and unconstrained PMF runs were also ob-
served in Elser et al. (2016). Also the HOA : NOx ratio
(µg m−3 / µg m−3) matched typical literature values reported
for France (0.02; Favez et al., 2010) in the constrained PMF
case (0.023), while for the unconstrained approach it showed
higher values (0.033).

For both offline- and online-AMS the constrained HOA
profiles were from Mohr et al. (2012), while the COA pro-
files were from Crippa et al. (2013). The HOA profile from
Mohr et al. (2012) was selected for offline-AMS consistently
with Daellenbach et al. (2016), since the same factor recov-
ery distributions were applied in this work. The same profile
was applied to online-AMS for consistency. Overall, as dis-
cussed in the Supplement, the HOA profiles from literature
showed high cosine similarities with each other, indicating
that the AMS mass spectral fingerprints from traffic exhaust
are relatively stable from station to station and consistent also
with direct emission studies, making the selection of the con-
strained factor profiles not crucial. More variability instead
is observed among COA literature profiles. For COA we se-
lected the profile from Crippa et al. (2013), which showed
the lowest f C2H4O+

2 value among the considered ambient
literature spectra (Crippa et al., 2013; Mohr et al., 2012).
This guaranteed a better separation of COA from BBOA, as
C2H4O+

2 is strongly related to levoglucosan fragmentation
(Alfarra et al., 2007).

An a-value sensitivity analysis was performed by scanning
all possible a-value combinations for HOA and COA given
by an a-value range 0–1 with a step size of 0.1. In order to op-
timize the source apportionment results, we retained only the
PMF solutions satisfying an acceptance criterion described
hereafter.

PMF factors were associated with specific aerosol emis-
sions/processes based on mass spectral features, diurnal cy-
cles, and time series correlations with tracers. The identified
factors were associated with traffic (HOA), cooking (COA),
biomass burning (BBOA), and OOA. A thorough interpreta-
tion of the PMF factors will be discussed in Sect. 3.1. Given
the absence of widely accepted tracers for COA emissions,
the optimization of the COA contributions was based on the
analysis of the COA diurnal cycles. From the HOA and COA
a-value sensitivity analysis we obtained a set of 121 PMF
solutions, each one including both factor profiles and factor
time series. PMF solutions obtained in this way were catego-
rized according to a cluster analysis of the normalized COA
diurnal cycles (Elser et al., 2016, and references therein). The
k-means clustering approach enables classifying the PMF so-

lutions into k clusters by minimizing a cost function (C):

C = 6i,z((xi − µz,i)
2), (6)

where C represents the sum of the Euclidian distances be-
tween each observation (xi) and its respective cluster center
(µzi), according to Eq. (6).

The number of clusters (k) that best represents the data is
a critical choice in order to perform a proper cluster analysis.
The addition of a cluster (k+1) on one hand adds complexity
to the solution but on the other hand decreases the cost func-
tion. A typical strategy to select the right number of clusters
is to explicitly penalize the addition of new clusters by us-
ing Bayesian information criteria. This approach consists in
adding a penalty term to Eq. (6) proportional to the number
of clusters (k):

C′
= 6i,z((xi − µz,i)

2) + k · ln(D), (7)

where D denotes the dimensionality of the clusters (24 in our
case, as we consider diurnal cycles with hourly time resolu-
tion). In this study the C′ function showed the minimum at
five clusters (Fig. S6). The absence of convexity properties
(i.e., several local minima can exist and the solution strongly
depends on the initialization) represents a possible drawback
of the k-means algorithm; therefore 100 random initializa-
tions of the k-means algorithm were conducted.

The best clusters were selected based on a novel statisti-
cal analysis of the HOA, COA, and BBOA average cluster
spectra (Supplement). Briefly, a cluster was retained when
the HOA, COA, and BBOA average cluster spectra were not
statistically different from the average reference HOA, COA,
and BBOA spectra from literature (Crippa et al., 2013; Mohr
et al., 2009, 2012; Bruns et al., 2015; Docherty et al., 2011;
Setyan et al., 2012; He et al., 2010, Table S3). A complete de-
scription of the best clusters selection is reported in the Sup-
plement (Figs. S6–S10). Overall, three clusters were retained
and two were rejected. Finally, we retained only the PMF so-
lutions that were attributed to the three best clusters in more
than 95 % of the k-means random initializations (Fig. S9).

In order to explore the rotational ambiguity of our PMF
model we performed 200 PMF runs by initiating the PMF
algorithm using different input matrices. The 200 different
input matrices were generated using a bootstrap approach
(Davison and Hinkley, 1997; Brown et al., 2015). In short,
the bootstrap approach creates new input matrices by ran-
domly resampling mass spectra (i elements) from the origi-
nal input matrices. Note that some mass spectra are resam-
pled multiple times, while others are not represented at all.
On average we randomly resampled 63 ± 1 % of the original
spectra per bootstrap PMF run. Finally, each bootstrap PMF
run was initiated by randomly varying the HOA and COA
a values using the {a-value HOA; a-value COA } combina-
tions previously selected as optimal from the cluster analy-
sis (Fig. S10). Only solutions showing a higher COA diur-
nal correlation with the three selected clusters than with the
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two rejected clusters were retained. In this way we rejected
3.7 % of the solutions. In the following we present the av-
erage bootstrap solution. The source apportionment uncer-
tainty was calculated as the variability of the retained boot-
strap PMF runs.

2.4.3 Offline-AMS source apportionment optimization

In this section we discuss the optimization of the offline-
AMS source apportionment. The PMF input matrices in-
cluded 217 ions and 538 time elements deriving from about
10 AMS mass spectral repetitions collected for each of the
54 composite samples.

In order to optimize the source separation, we performed
sensitivity analyses on PMF solutions according to the fol-
lowing scheme:

i. The number of factors are selected based on residual
analysis.

ii. The unconstrained PMF solution is qualitatively evalu-
ated in comparison with the constrained PMF solutions
(a-value approach: COA and/or HOA constraints)

iii. We explored the PMF rotational ambiguity exploration
by performing 1080 bootstrap (Davison and Hinkley,
1997; Brown et al., 2015) PMF runs while simultane-
ously varying the COA and HOA a-value combinations.
PMF solutions were retained based on the correlation of
the PMF factors with external tracers. The PMF solu-
tions retrieved from this step are relative to the water-
soluble fraction. The corresponding water-soluble OC
factor concentrations were determined by dividing the
water-soluble OM factor concentrations (PMF output)
by the OM : OC ratio determined from the correspond-
ing factor mass spectra.

iv. Retained water-soluble OC PMF solutions from step
(iii) were rescaled to the total OC concentrations by
applying factor recoveries. Factor recoveries were fit-
ted (using a priori information) to match total OC.
Only PMF solutions and factor recoveries fitting OC
with yearly and seasonally homogenous residuals were
retained. The average of the retained PMF solutions
represented the average source apportionment results.
The corresponding standard deviation represented the
source apportionment uncertainty.

Based on analysis of the PMF residuals, we selected a
five-factor solution to explain the variability of our dataset
(Fig. S11). Similar to online-AMS, we monitored the de-
crease in Q/Qexp when increasing the number of factors (z).
In this study, a large Q/Qexp decrease was observed until
five factors. We also observed a clear 1Q/Qexp structure
removal until five factors, with higher-order solutions lead-
ing to additional factors that were not attributable to specific

aerosol sources or processes. The five separated factors in-
cluded HOA, COA, BBOA, OOA, and industry-related OA
(INDOA). The complete validation of the PMF factors will
be discussed in Sect. 3.2.

As already mentioned, the HOA and COA profiles were
constrained using an a-value approach. Consistently with
online-AMS we constrained the profiles according to Mohr
et al. (2012) and Crippa et al. (2013), respectively. Uncon-
strained PMF runs for offline-AMS did not resolve HOA and
COA factors. To explore the rotational ambiguity of our PMF
model we performed 1080 bootstrapped PMF runs. In this
case we performed a higher number of bootstrap runs than
online-AMS because the COA and HOA a-value combina-
tions could not be separately optimized because the offline-
AMS method cannot resolve diurnal patterns. Each PMF run
was also initiated using different input matrices. As pre-
viously mentioned the input matrices contained about 10
mass spectral repetitions per filter sample, and therefore the
bootstrap algorithm was implemented to randomly resample
54 filters samples, each one with all the corresponding mass
spectral repetitions. The final generated matrices included
54 samples; note that some filter samples could be resam-
pled more times, while others were not resampled at all. On
average 63 ± 5 % of the original samples were resampled. Fi-
nally, each of the PMF runs was initiated by randomly vary-
ing the HOA and COA a values. The optimal PMF solutions
were selected based on six acceptance criteria including

1. significantly (p = 0.05) positive Pearson correlation co-
efficient R between BBOA and levoglucosan;

2. significantly positive R between HOA and NOx ;

3. significantly positive R between INDOA and Se;

4. BBOA correlation with levoglucosan (R) significantly
higher than the correlation between COA and levoglu-
cosan;

5. HOA correlation with NOx significantly higher than the
correlation between COA and NOx ;

6. INDOA correlation with Se significantly higher than the
correlation between COA and Se.

Criteria 1–3 analyze the correlation between factor and
marker time series. The significance of a correlation was de-
termined by calculating the Fisher transformed correlation
coefficient l (Garcia, 2011):

l = 0.5 · ln
(

1 + R

1 − R

)
= arctan(R), (8)

where R is the Pearson correlation coefficient between factor
and marker time series. Subsequently we conducted a t test
to verify the significance (α = 0.95) of the correlation:

t =
R√
1−R2

N−2

. (9)
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Here, N represents the number of samples (54). For a con-
fidence interval of 95 % the minimum significant correla-
tion was R = 0.23. For criteria 4–6, in order to evaluate
whether HOA, BBOA, and INDOA correlated significantly
better than COA with their corresponding markers, we com-
pared the l values obtained between each factor and its corre-
sponding tracer (e.g., BBOA and levoglucosan) and between
COA and the same tracer (e.g., levoglucosan), using a stan-
dard error on the l distribution of 1/

√
N − 3 (Zar, 1999).

In total, we retained 1.5 % of the PMF runs. The crite-
ria that discarded the largest number of solutions were the
ones based on the COA (4–6) correlation with tracers of
other sources. This suggests that for this dataset the COA
separation from other sources was particularly difficult due
to the absence of data with high temporal resolution, which
aid the separation of a distinct COA diurnal cycle. Moreover,
this separation is also complicated by the small COA con-
tribution estimated by both online- and offline-AMS source
apportionments (on average 0.4 µg m−3 as discussed in the
following sections). Furthermore, the relatively small COA
factor recovery (RCOA median 0.54) hampers the COA ap-
portionment by offline-AMS.

The PMF performed on offline-AMS mass spectra re-
turned water-soluble OA factor concentrations, WSKOAi . To
rescale the water-soluble OA concentration to the total OA,
KOAi , we used the factor recoveries (Rk) reported by Dael-
lenbach et al. (2016) for the HOA, COA, BBOA, and OOA
factors (RHOA, RCOA, RBBOA, ROOA).

KOAi = WSKOAi/RKOA (10)

This is the first offline-AMS study where an INDOA factor
was identified. Therefore, we determined the INDOA recov-
ery (RINDOA) in this study by performing a single parameter
fit according to Eq. (11):

OCi =
WSHOAi

OM
OC HOA · RHOA

+
WSCOAi

OM
OC COA · RCOA

+
WSBBOAi

OM
OC BBOA · RBBOA

+
WSOOAi

OM
OC OOA · ROOA

+
WSINDOAi

OM
OC INDOA · RINDOA

. (11)

Five hundred different fits were performed for each of the
retained PMF solutions. Moreover each fit was initiated us-
ing different RKOA combinations randomly selected from the
RKOA combinations determined by Daellenbach et al. (2016)
and reported in Bozzetti et al. (2016). In order to account
for possible WSOC and OC systematic measurement bi-
ases, each fit was initiated by also perturbing the OCi ,
WSKOAi / (OM : OC)WSKOC, and RKOA inputs, assuming
for each parameter a possible bias of 5 %, corresponding
to the WSOC and OC measurement accuracy (we note that
the sum of the WSKOCi / (OM : OC)WSKOC terms equals

WSOCi , neglecting the PMF residuals). Finally the input
OCi was randomly perturbed within its measurement uncer-
tainty assuming a normal distribution of the errors. Among
the performed fits we retained the recovery combinations
and factor time series associated with OCi unbiased resid-
uals (residual distribution centered on 0 within the first and
third quartiles) for all seasons together and for summer and
winter separately (Fig. S12). Accordingly, we retained 13 %
of the solutions. All the retained factor recovery combina-
tions can be found at https://doi.org/10.5905/ethz-1007-75.
The median INDOA recoveries were estimated as 0.69 (first
quartile 0.65, third quartile 0.73; Fig. S13), while the re-
tained RKOA for the other sources were consistent within the
quartiles with the RKOA values reported by Daellenbach et
al. (2016) despite their input value being perturbed as de-
scribed above. The variability of the retained solutions is con-
sidered our best estimate of the source apportionment uncer-
tainty, which accounts for offline-AMS repeatability, RKOA
uncertainties, model rotational uncertainty (explored boot-
strapping the input matrices and scanning the HOA and COA
a values), and RKOA uncertainties. Overall, for a generic fac-
tor KOA, we estimated the corresponding average relative
uncertainty as follows: we calculated the campaign averages
of the KOA concentrations for each of the v retained PMF
solutions (KOAv). The relative uncertainty of the KOA con-
centration was calculated as the standard deviation of KOAv

divided by its average.
We also explored a four-factor solution without constrain-

ing the COA profile. In this case we performed 100 bootstrap
PMF runs by randomly varying the HOA a value. Results re-
vealed that the COA separation (in the five-factor solution
with COA constrained) affected the HOA separation more
than the other factors (BBOA, OOA, INDOA). Overall, when
comparing the four- and five-factor solutions (without and
with COA constrained, respectively). HOA showed not sta-
tistically different concentrations within our estimated source
apportionment uncertainty for 85 % of the samples, BBOA
and OOA for 96 %, and INDOA for 94 %. This is probably
due to the high similarity between COA and HOA spectra
(Supplement), which are both characterized by high contri-
butions from hydrocarbons.

3 Source apportionment validation

Figure 1 displays the stacked seasonal average concentra-
tions of the measured PM2.5 components (ions measured by
IC, elements measured by ICP-MS, EC by the EUSAAR
method, and OM estimated as the sum of the offline-AMS
PMF factors). Higher concentrations were observed during
winter than in summer due to the enhanced contributions of
NO−

3 and OM. NO−

3 increased during winter and autumn due
to NH4NO3 partitioning into the particle phase at low tem-
peratures. OM concentrations were higher during winter due
to the strong BBOA contributions.

Atmos. Chem. Phys., 17, 8247–8268, 2017 www.atmos-chem-phys.net/17/8247/2017/

https://doi.org/10.5905/ethz-1007-75


C. Bozzetti et al.: Organic aerosol source apportionment by offline-AMS 8255

Figure 1. PM2.5 composition: stacked average seasonal concentrations. Measured PM2.5 error bars represent the seasonal standard deviation.
OM was estimated as the sum of the offline-AMS source apportionment factors.

Figure 2. Online-AMS: average PMF factor mass spectra.

Overall OM was the dominant PM2.5 component over
the whole year, highlighting the importance of studying its
sources. OM represented 46 % of the total mass with higher
relative contributions during winter (51 %) than in sum-
mer (37 %). SO2−

4 represented the second-most-abundant
PM2.5 component, contributing on average 12 % of the mass.
Among the other components, EC contributed 9 % of the
mass, NO−

3 9 % (13 %avg during winter and 3 %avg during
summer), NH+

4 8 %, the sum of the elements 7 % (3 % dur-
ing winter and 13 % during summer, possibly because of dust

resuspension), CO2−

3 6 %, and Ca2+ 2 %. K+, Cl−, Na+, and
Mg2+ individually did not exceed 1 % of the mass. In the fol-
lowing, subscripts avg and med denote average and median
values, respectively.

3.1 Online-AMS source apportionment validation

PMF factors were associated with aerosol sources/processes
based on mass spectral features (Fig. 2), correlation with
tracers (Fig. 3), and diurnal cycles (Fig. 4). In the follow-
ing all the reported times are UTC + 2 local times. The HOA
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Figure 3. Online-AMS: (a) PMF factors relative contributions. (b) Time series of PMF factors and corresponding tracers. Shaded areas
denote the model uncertainties.

Figure 4. Online-AMS: average diurnal cycles of PMF factors and
corresponding tracers.

correlated well with NOx (R = 0.86), with peaks during rush
hours (centered on 08:00 and 19:00) and higher concen-
trations during the first half of the campaign. The average
HOA : NOx ratio (µg m−3 / µg m−3) was 0.023, consistent
with Favez et al. (2010). The COA diurnal variation showed
two peaks at lunch and dinner time (12:00 and 21:00), as ob-
served in other cities (Elser et al., 2016; Mohr et al., 2012).
The BBOA factor profile showed the highest f C2H4O+

2
and f C3H5O+

2 contributions among the apportioned fac-
tors. Previous studies (Alfarra et al., 2007) associated the
high f C2H4O+

2 and f C3H5O+

2 contributions in BBOA AMS

spectra to the fragmentation of anhydrous sugars from cellu-
lose pyrolysis. The BBOA time series correlated well with
levoglucosan (R = 0.74) and AMS-PAHs (R = 0.88). Note
that AMS-PAHs are not unique BBOA tracers, but in gen-
eral they derive from combustion sources (see Supplement
for the comparison between AMS-PAHs and GC-MS PAHs).
In this specific dataset they could partially derive from traf-
fic, although from the AMS-PAHs multilinear regression we
estimated that 79 % of the AMS-PAHs are related to BBOA
and 21 % to HOA, indicating that BBOA dominates the PAH
emissions. The AMS-PAHs : HOA ratio was 0.0020, while
the AMS-PAHs : BBOA was 0.0028.

In general, industrial emissions can be an important source
of PAHs at this location as discussed in El Haddad et
al. (2013). In presence of an industrial contribution, the
BBOA vs. AMS-PAHs correlation would decrease. In this
work the correlation between AMS-PAHs and the C2H4O+

2
fragment, typically related to levoglucosan fragmentation
(Alfarra et al., 2007), was high (R = 0.87) and no AMS-
PAHs spike was observed without a simultaneous increase
of C2H4O+

2 (Fig. S15). Moreover the industrial-related OA
factor resolved by El Haddad et al. (2013) was clearly asso-
ciated with wind directions from W–SW (225–270◦), while
in this work wind directions were oriented from W–SW only
for 7 % of the monitoring time, furthermore without being
associated with any significant increase in the AMS-PAHs
concentration (Fig. S16), indicating the absence of clear in-
dustrial episodes.
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Figure 5. Offline-AMS: water-soluble average mass spectra.

The BBOA diurnal cycle, similarly to AMS-PAHs,
showed higher values at night than during the day (Fig. 4).
In addition, the BBOA highest concentrations were detected
at night and associated with slow wind speeds from the E–
NE which is consistent with the night land breeze direction.
Moreover, strong enhancements of the BBOA factor concen-
trations were perceived when the wind direction shifted to
the E–NE (typically around 18:00 during the monitoring pe-
riod), suggesting that BBOA could be transported from the
valleys near to Marseille (Fig. S18).

We calculated the biomass burning OC (BBOC) time
series by dividing the BBOA concentrations by the
OM : OCBBOA ratio calculated from the average BBOA HR
spectrum (1.60). The average levoglucosan : BBOC ratio
[µg m−3 / µg m−3] was 0.15, comparable to other European
studies (Zotter et al., 2014; Herich et al., 2014; Minguillón et
al., 2011).

The OOA profile showed the most oxidized mass spectral
fingerprint with an O : C ratio of 0.67 in comparison to the
values of 0.35 retrieved for BBOA, 0.12 for COA, and 0.03
for HOA. The OOA time series correlated well with the NH+

4
time series (R = 0.86), suggesting a probable secondary ori-
gin of the OOA factor (Lanz et al., 2008). The OOA diurnal
cycle was flat, suggesting OOA to be representative of re-
gionally transported oxygenated aerosols, consistent with the
conclusions of El Haddad et al. (2013).

3.2 Offline-AMS source apportionment validation

PMF factors from the offline-AMS dataset were related to
aerosol sources/processes based on mass spectral features
(Fig. 5), seasonal trends, and correlation with tracers (Fig. 6).
A comparison of the online-AMS and offline-AMS factor
profiles is reported in the Supplement. In the following, for a
generic k factor, we calculated the corresponding KOCi time

series by dividing KOAi by the OM : OC ratio determined
from the average HR-AMS factor profile.

During summer, when biomass burning contribu-
tions to EC are low, HOA correlated well with EC
(R = 0.76) and yielded an HOC : EC (hydrocarbon-like
OC = HOA / (OM : OC)HOA) ratio of 0.64, similar to other
European studies (El Haddad et al., 2009, and references
therein). Over the whole year, the retained PMF solutions
showed an HOA correlation with NOx (R) spanning be-
tween 0.23 and 0.49. These low correlations are comparable
to the ones found by El Haddad et al. (2013) at the same
station by online-AMS. In this case, the relatively low
HOA correlation with NOx is probably due to the low RHOA
(median 0.11) that, together with the low HOA concentration
(1.5 µg m−3

avg, Sect. 4.1), results in small water-soluble HOA
concentrations, leading to an uncertain HOA apportionment.
This was already reported in previous offline-AMS studies
(Daellenbach et al., 2016; Bozzetti et al., 2017). Although
the HOA variability could not be well captured, the esti-
mated HOA concentration was corroborated by the average
HOA / NOx (0.02 µg m−3 / µg m−3), which was found to be
consistent with El Haddad et al. (2013) for the same station
and with Favez et al. (2010) for an alpine location in France.

BBOA was identified from its mass spectral features, with
the highest f C2H4O+

2 and f C3H5O+

2 contributions among
the apportioned factors, consistent with the findings of Al-
farra et al. (2007). BBOA correlated well with biomass
combustion tracers measured by GC-MS, such as levoglu-
cosan (R = 0.76), acetosyringone (R = 0.71), and vanillic
acid (R = 0.84). The winter average levoglucosan : BBOC
[µg m−3 / µg m−3] ratio was equal to 0.12, consistent with
other studies in Europe (Zotter et al., 2014; Herich et al.,
2014; Minguillón et al., 2011).

The fourth factor (INDOA) was related to industrial emis-
sions due to the high correlation with light alkanes (C19–
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Figure 6. offline-AMS: (a) PMF factors relative contributions. (b) Time series of PMF factors and corresponding tracers. Bars denote the
model uncertainties.

C22, 0.77≤ R ≤ 0.86), Se (R = 0.54), Pb (R = 0.44), and
some PAHs such as pyrene (R = 0.74), fluoranthene (R =

0.77), and phenanthrene (R = 0.74). Among the measured
PAHs, pyrene, fluoranthene and phenanthrene showed the
lowest correlations with levoglucosan (Table S1, R = 0.31,
0.29, and 0.27, respectively), suggesting that these particular
PAHs were overwhelmingly emitted by INDOA rather than
BBOA. We note that phenanthrene, pyrene, and fluoranthene
together represent 9.6 %avg of the PAHs mass quantified by
GC-MS, indicating that in total PAHs are overwhelmingly
emitted by BBOA. While Se is considered to be a unique
coal marker in the literature (Weitkamp et al., 2005; Park et
al., 2014), in Marseille this source is likely related to coke
and steel production facilities (El Haddad et al., 2011). The
average INDOA OM : OC (1.60) was intermediate between
the OM : OC ratios of HOA (1.23) and COA (1.28) and those
of BBOA (1.85) and OOA (1.82). El Haddad et al. (2013) re-
solved an industrial OA factor at the same station by online-
AMS PMF. In that work the authors suggested a probable
contribution of OOA to the resolved industrial factor, prob-
ably deriving from (photo)chemical aging during the trans-
port from the industrial facilities to the receptor site occa-
sionally accompanied by new particle formation processes
within the industrial plume (as observed by the increased ul-
trafine particle number concentration associated with W–SW
wind directions). Considering the average wind speed from
W–SW (0.8 km h−1), and the distance between the receptor
site and the Marseille commercial harbor (∼ 40 km), we es-
timate an aging time of several hours, which could lead to
a more oxidized fingerprint in comparison to the fresh pri-

mary emissions (Huang et al., 2014). Overall this factor ex-
plained the largest fraction of the variability of S- and Cl-
containing organic fragments such as C2HSO+, CH2SO+,
CH3Cl+2 , CH4SO+

3 , C3H3SO+

2 , and C7H+

16.
The last factor was defined as OOA as it showed a highly

oxygenated fingerprint with the largest CO+

2 fractional con-
tributions (f CO+

2 ) among the apportioned factors (14 %, in
comparison with 11 % for BBOA, 2 % for HOA, and 1 %
for COA and INDOA). This factor showed on average the
largest contributions over the year. Overall, the OOA : NH+

4
ratio was 2.3avg, in line with the values reported by Crippa et
al. (2014) for 25 different European sites (2.0avg; minimum
value 0.3; maximum 7.3).

Previous offline-AMS (Bozzetti et al., 2016, 2017; Dael-
lenbach et al., 2016) and online-ACSM studies (e.g.,
Canonaco et al., 2015) conducted in Switzerland and Lithua-
nia reported the separation of two OOA factors characterized
by different seasonal trends and different C2H3O+ : CO+

2
ratios. In particular, the OOA factor characterized by the
highest C2H3O+ : CO+

2 ratio contributed mostly during sum-
mer and was linked to secondary OA from biogenic emis-
sions. Here we calculated a (C2H3O+ : CO+

2 )OOA ratio by
subtracting the C2H3O+ and CO+

2 contributions deriving
from primary sources, from the measured C2H3O+ and CO+

2
(Canonaco et al., 2015):

C2H3O+

CO+

2 OOA,i

=(
C2H3O+

meas,i − HOAi · f C2H3O+
HOA − BBOAi
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· f C2H3O+
BBOA − INDOAi · f C2H3O+

INDOA

− COAi · f C2H3O+
COA

)/(
CO+

2 meas,i − HOAi

· f CO+

2 HOA − BBOAi · f CO+

2 BBOA − INDOAi

· f CO+

2 INDOA − COAi · f CO+

2 COA

)
. (12)

Overall, C2H3O+

OOA and CO+

2 OOA did not show a clear sea-
sonality (Fig. S19), which hampered the separation of two
OOA sources. Even though another OOA factor was not sep-
arated, El Haddad et al. (2013) estimated for the same loca-
tion during summer a substantial contribution of secondary
biogenic aerosol using 14C measurements (no measurements
conducted in other seasons). As a consequence the OOA fac-
tor resolved in this work explains both secondary biogenic
and aged/secondary anthropogenic sources. The absence of a
clear increase in the (C2H3O+ : CO+

2 )OOA ratio in Marseille
during summer could be explained by the large emissions of
anthropogenic secondary OA (SOA) precursors during win-
ter, leading to a different (C2H3O+ : CO+

2 )OOA seasonality in
comparison with previous offline-AMS studies (Daellenbach
et al., 2016; Bozzetti et al., 2016), which were conducted ei-
ther at rural sites characterized by different types of vegeta-
tion or in smaller urban areas. In general, several parameters
affect the biogenic SOA concentrations and their separation,
e.g., intensity of the biogenic precursor sources, air masses
photochemical age, and NOx concentrations. All those pa-
rameters were different in Marseille from previous offline-
AMS studies which were conducted in central and northern
Europe.

4 Results and discussion

4.1 OA source apportionment results and uncertainties

In this study, we present one of the first OA source ap-
portionments conducted over an entire year in the Mediter-
ranean region. This work also represents the first compari-
son between HR online-AMS and HR offline-AMS source
apportionments conducted at the same location, although
in two different periods. Previous studies (Daellenbach et
al., 2016) reported a comparison between offline-AMS and
online-ACSM results.

Although related to different years and size fractions (PM1
online-AMS, PM2.5 offline-AMS), the offline-AMS source
apportionment returned average seasonal factor concentra-
tions not statistically different to online-AMS for both win-
ter (Fig. 7) and summer (comparison with El Haddad et al.,
2013, Fig. 8). We note that the total OC concentration quan-
tified by online-AMS for PM1 and by the thermal–optical
procedure used for the offline-AMS source apportionment
of PM2.5 was not different on a seasonal scale considering
our uncertainty, which includes time variability and measure-
ments uncertainties.

Both online- and offline-AMS source apportionment re-
vealed that BBOA was the largest OA source during win-
ter. Offline-AMS source apportionment estimated an av-
erage BBOA concentration during winter 2011–2012 of
5.2 µg m−3

avg, representing 43 %avg of the OA. Similarly,
online-AMS source apportionment revealed a BBOA con-
centration of 4.4 µg m−3

avg (corresponding to 42 % of OA) dur-
ing February 2011. During summer, the offline-AMS BBOA
concentration dropped to an average of 0.3 µg m−3

avg, repre-
senting 5 % of the OA. Not surprisingly, such low BBOA
contributions were not resolved by online-AMS source ap-
portionment during summer (El Haddad et al., 2013). On av-
erage the offline-AMS BBOA relative uncertainty was 9 %.
As a comparison, the online-AMS BBOA average relative
uncertainty was 6 %. Overall for both online- and offline-
AMS, the BBOA contributions were the least uncertain
among the primary sources, possibly because of the high
loadings and the distinct seasonal and diurnal BBOA vari-
ability in comparison with the other separated factors. A
comparison between the offline- and online-AMS source ap-
portionment uncertainties can be carried out with the caveat
that the online-AMS source apportionment uncertainties esti-
mated in this work should be considered as a low estimate as
they do not account for the AMS mass error deriving mostly
from CE, and particle transmission. This source of uncer-
tainty affects the total OA mass but not the relative contribu-
tion of the factors. By contrast, the OA mass uncertainty was
accounted for in the offline-AMS source apportionment as
the OA mass was rescaled to external measurements (WSOC
and OC), the uncertainty of which was propagated in the final
source apportionment error (Sect. 2.4).

On a yearly scale, the offline-AMS source apportionment
revealed that OOA was the largest OA source, with the high-
est relative contributions during summer due to the reduced
BBOA emissions. The OOA concentration during summer
was estimated from offline-AMS at 3.0 µg m−3

avg, correspond-
ing to 55 % of the OA mass. El Haddad et al. (2013) also
reported OOA to be the dominant OA fraction during sum-
mer with a similar average concentration of 2.9 µg m−3. Dur-
ing winter, the OOA concentration was estimated by online-
AMS to be 3.9 µg m−3

avg corresponding to 38 % of the OA,
while the OOA relative uncertainty was 4 %. As a com-
parison, the OOA relative uncertainty from offline-AMS
was 6 %avg. The offline-AMS source apportionment revealed
similar OOA concentrations during winter (3.4 µg m−3

avg cor-
responding to 27 %avg of the OA). Even though during winter
the OOA concentration was higher than in summer, possibly
due to partitioning and to the shallower boundary layer, the
relative contribution decreased because of the strong BBOA
contributions.

HOA is one of the most uncertain factors, with an av-
erage relative uncertainty of 39 % estimated from offline-
AMS and 10 % from online-AMS analysis, where the larger
uncertainty observed for offline-AMS derives mostly from
the low RHOA and from the lower time resolution, which
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Figure 7. Online- (PM1) and offline-AMS (PM2.5) comparison for winter. Bars represent the error including temporal variability and model
uncertainty.

Figure 8. Online- (PM1; El Haddad et al., 2013) and offline-AMS (PM2.5) comparison for summer. For offline-AMS bars represent the error
including temporal variability and model uncertainty. For online-AMS bars represents only the temporal variability.

does not capture the traffic diurnal variability. On aver-
age, the HOA concentration predicted by offline-AMS was
1.5 µg m−3, corresponding to 17 % of the OA. The estimated
HOA concentration by online-AMS during February 2011
was 1.6 µg m−3

avg (16 % of OA). These values are higher than
the ones of El Haddad et al. (2013), who estimated a traffic
contribution of 0.8 µg m−3

avg during July 2008.
The COA contributions were only minor (average of

0.3 µg m−3), representing on average 4 % of the OA mass
according to the offline-AMS source apportionment. The
online-AMS winter source apportionment returned similar
concentrations with 0.4 µg m−3

avg, equivalent to 4 %avg of the
OA. Overall, due to the low concentrations, the COA contri-
butions were uncertain in both source apportionments (6 %
for online-AMS, 73 % for offline-AMS). Similarly to HOA,
the larger uncertainty observed for offline-AMS was most
possibly due to the low RCOA and the low time resolution,
which did not enable the COA separation based on the di-
urnal variability. The summer COA contribution was not re-
solved from HOA by El Haddad et al. (2013), possibly be-
cause the COA reference mass spectrum was not constrained

and because of the lack of HR data which typically aid the
separation of the two sources.

Finally, the INDOA factor concentration estimated from
offline-AMS was on average 2.1 µg m−3 during winter and
0.6 µg m−3

avg during summer, where this seasonal trend was
driven by a strong episode that occurred during early Febru-
ary. The offline-AMS relative uncertainty was estimated as
17 %. As previously discussed (Sect. 3.1), this factor was
not separated by online-AMS analysis (February 2011) be-
cause of the absence of clear events, which in the offline-
AMS dataset were observed only over a short period during
January–February 2012. An industrial factor was instead re-
solved by El Haddad et al. (2013) during summer 2008, with
an average concentration of 0.3 µg m−3

avg. In that study, the
industrial OA factor was also characterized by a low back-
ground intercepted by 10-fold spiking episodes.

From the sum of the offline-AMS factor concentrations we
estimated the total OM mass. Using this OM and the mea-
sured OC we calculated the OM : OC ratio to be 1.40 on av-
erage. Specifically, during winter this ratio was 1.55, which
is consistent with the online-AMS values determined from
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Figure 9. Correlation between the sum of nitrocatechols (Table S1)
with levoglucosan and BBOC.

the HR-AMS spectra (median 1.52, first quartile 1.46, third
quartile 1.59). The bulk OM : OC variability was driven by
the source variabilities. Indeed the relative contribution of
the most oxidized source (OOA) was higher during summer
(mostly due to the absence of BBOA), but also the relative
contributions of the less oxidized sources (such as HOA and
COA) were higher during summer mostly due to low BBOA
contributions. The BBOA mass spectrum instead was asso-
ciated with intermediate OM : OC ratios comprised between
the values of COA and OOA, and therefore influenced less
strongly the bulk OM : OC ratio. Overall the combination of
these effects led to a higher bulk OM : OC during winter.

4.2 Insights into the BBOA origin during winter

Methyl-nitrocatechols measurements showed high correla-
tions with BBOA (Fig. 9, R = 0.95) and no correlation with
OOA (R = 0.06, offline-AMS source apportionment). Simi-
larly high correlations were already observed in other stud-
ies (e.g., Poulain et al., 2011). This large correlation differ-
ence suggests that the variability of the methyl-nitrocatechols
is likely explained by the BBOA source. However, methyl-
nitrocatechols are secondary compounds deriving from the
nitration of catechols, which can be either directly emitted
by wood combustion (Schauer et al., 2001) or generated by
OH q oxidation of cresols directly released by wood com-
bustion (Iinuma et al., 2010). m-cresol/NOx photooxidation
experiments (Iinuma et al., 2010) revealed a total contribu-
tion of all methyl-nitrocatechol isomers to the catechol SOA
of approximately 10 %. Assuming methyl-nitrocatechols to
be entirely apportioned to the BBOA factor, we estimate a
methyl-nitrocatechol–SOA contribution to BBOA on the or-
der of 8 %, indicating that part of the BBOA factor is of sec-
ondary origin. Previous studies (Atkinson and Arey, 2003)

revealed an o-cresol lifetime in the atmosphere of 2.4 min
towards NO3 and 3.4 h towards OH (at 298 K, dark con-
ditions). This would suggest that such fast SOA formation
can be better traced by the high-time-resolution online-AMS
source apportionment (8 min) than by the offline-AMS with
24 h time resolution, and in any case only in the BB plume
or in the vicinity of the emission source. Nevertheless we
did not observe statistically different ratios (within 1σ , error
calculated as the time variability) of OOA : NH+

4 (1.5avg and
1.25avg for the offline-AMS and online-AMS source appor-
tionments, respectively), OOA : BBOA (0.65avg and 0.89avg,
respectively), and levoglucosan : BBOC (0.12avg and 0.12avg,
respectively, Fig. 10) during winter, suggesting that despite
the different time resolutions, the online and offline methods
provide a comparable BBOA-SOA separation. Overall these
findings suggest that rapid SOA formation is not well cap-
tured by PMF and rapidly formed SOA compounds (such as
nitrocatechols) can be systematically attributed by PMF to
factors commonly considered as “primary” (BBOA in this
case). Both the online- and offline-AMS source apportion-
ment revealed for the two different winter seasons a com-
parable temporal evolution of the levoglucosan : BBOC ratio
(Figs. 10 and 11). This ratio showed typical literature val-
ues for domestic wood combustion in Europe during Jan-
uary and early February (0.05–0.2; Zotter et al., 2014; Herich
et al., 2014; Minguillón et al., 2011), while during late au-
tumn and March (Fig. 11) it increased up to 0.3, highlight-
ing an evolution of the BBOA chemical composition. A sim-
ilar seasonal trend was observed for the ratios of levoglu-
cosan : vanillic acid, levoglucosan : syringic acid, and lev-
oglucosan : non-sea-salt K+ (nss-K+; calculated according
to Seinfeld and Pandis, 2006) ratios (Fig. 11). Although the
online dataset was limited to 1 month of measurements, the
levoglucosan : vanillic acid ratio also showed a statistically
significant increasing trend from early February to the begin-
ning of March (confidence interval of 95 %, Mann–Kendall
test). These results suggest the occurrence of different types
of biomass combustions during low-temperature winter days
compared to late autumn and early spring: levoglucosan de-
rives from cellulose pyrolysis (> 300 ◦C), while vanillic and
syringic acids result from lignin combustion (Simoneit et al.,
1998; Sullivan et al., 2008). Different reactivities/volatilities
of BBOA markers may complicate this analysis. For this rea-
son we discuss in the following the levoglucosan stability and
propose that the major driver of the observed seasonal trends
is the occurrence of different BBOA combustions.

Previous studies revealed the levoglucosan reactivity to-
ward OH q radical oxidation (Hennigan et al., 2010) both in
gas and aqueous phase (Hoffmann et al., 2010). In the fol-
lowing we analyze the levoglucosan and nss-K+ time se-
ries in order to investigate the possible effects of levoglu-
cosan chemical stability and different types of biomass com-
bustions on the seasonal evolution of the levoglucosan : nss-
K+ ratio. During summer nss-K+ derives mostly from dust,
while levoglucosan is depleted by both photochemistry (Hen-
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Figure 10. Offline-AMS (February 2012) and online-AMS (February 2011) smoothed time-dependent levoglucosan : BBOC ratios. We note
that the levoglucosan : BBOC comparison should not be considered on a day-to-day basis, where the levoglucosan : BBOC ratio in the 2
different years can be coincidentally equal or different, but rather on a monthly timescale where, as discussed in the paper, we observed a
statistically significant (p = 0.05) evolution of the levoglucosan : BBOC ratio which is similarly captured by the two models.

Figure 11. Online- and offline-AMS time-dependent levoglucosan : BBOC, levoglucosan : vanillic acid, levoglucosan : syringic acid, and
levoglucosan : K+ ratios. The plant wax concentrations were determined from GC-MS measurements of alkanes with an odd number of
carbons (Li et al., 2010). As discussed in the main text the spike observed in late autumn could be related to incomplete green waste
combustion.

nigan et al., 2010) and low BBOA emissions. Not surpris-
ingly the levoglucosan : nss-K+ ratio showed lower average
values in summer (0.23) than in winter (3.14). During win-
ter nss-K+ is considered to be mostly emitted by BBOA, and
consistently in our dataset it shows a good correlation with
BBOA tracers (R = 0.66 with syringic acid). Overall, the
levoglucosan : nss-K+ ratio during the cold season manifests
a behavior that is opposite to the photochemical activity (with

temperature considered as a proxy) as it shows higher values
during March and late autumn (up to 7.11) and lower in Jan-
uary and February (minimum = 2.79; Fig. 11) when temper-
ature is lower and photochemistry is less intense. For these
reasons we relate the winter levoglucosan : nss-K+ variabil-
ity to different types of combustion rather than to a levoglu-
cosan depletion due to photochemistry. Furthermore we ob-
served the highest levoglucosan concentrations (late autumn)
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simultaneously with the highest relative humidity (89 %) val-
ues, suggesting the depletion of levoglucosan by OH q radical
oxidation in aqueous phase to be insignificant (Hoffmann et
al., 2010).

A similar winter seasonal behavior was observed also for
plant waxes. Plant wax concentrations were estimated from
high-molecular-weight n-alkanes (C24–C35) according to
the methodology described by Li et al. (2010). This method-
ology is based on the observation that alkanes from epicutic-
ular waxes preferentially contain an odd number of carbon
atoms (Aceves and Grimalt, 1993; Simoneit et al., 1991).
This was observed for a large variety of plants including
broad leaf trees, conifers, palms, shrubs, grasses, and ground-
cover (Hildemann et al., 1996, and references therein).
Waxes showed the highest concentrations during late au-
tumn (up to 0.16 µg m−3) and in May (up to 0.17 µg m−3),
while the minima were observed during winter (minimum
0.007 µg m−3). In general, high-molecular-weight n-alkanes
are typically detected in atmospheric aerosol in significant
amounts during the growing season. In a similar way, Hilde-
mann et al. (1996) estimated the highest plant wax concen-
trations in April–May in Los Angeles and Pasadena, where
the climate is similar to Marseille. Similarly we observed
the highest concentrations during May. However, compara-
ble plant wax concentrations were observed also in late au-
tumn during the period characterized by the highest levoglu-
cosan : lignin combustion tracers (Fig. 11), suggesting a pos-
sible emission from open combustion of green wastes.

Taken together the above observations suggest the occur-
rence of combustion of cellulose-rich material during March
and late autumn, compared to lignin-rich biomass burn-
ing for residential heating during January. The combustion
of cellulose-rich material is possibly related to agricultural
waste burning at the beginning and at the end of the agricul-
tural cycle. The occurrence of emission of biomass plumes
due to land clearing episodes during March has already been
reported in other parts of Europe (Ulevicius et al., 2016) and
has been previously modeled for southern France (Denier
van der Gon et al., 2015; Fountoukis et al., 2014).

In this study we related the evolution of the BBOA com-
position over the cold season to the combustion of cellulose-
rich and lignin-rich fuels, considering that lignin end cellu-
lose are contained in different ratios in different biomass fu-
els. This designation should not be considered as an oversim-
plification of the combustion processes or of the fuel com-
plexity but rather as a classification of the BBOA based on
our observations of increasing lignin pyrolysis products over
cellulose pyrolysis products during the coldest days.

We note that BBOA is described in our PMF models by
only one factor which therefore potentially represents a com-
bination of several types of biomass burning sources. In-
creasing the number of factors did not lead to an unambigu-
ous separation of different BBOA sources, but the compari-
son with source-specific markers revealed a real BBOA com-
position evolution over the winter season with higher cellu-

lose to lignin combustion tracer ratios observed during late
autumn and early spring in comparison to January/February.
This hypothesis of at least two types of BB sources (one
linked to domestic heating, another to agricultural activities)
is also supported by the direct PMF analysis of the organic
and inorganic markers measured for Batch 1 (Salameh et al.,
2017).

5 Conclusions

PM2.5 filter samples were collected during an entire year
(August 2011 to July 2012) at an urban site in Marseille,
France. Filter samples were analyzed by water extraction fol-
lowed by nebulization of the liquid extracts and subsequent
measurement of the generated aerosol with an HR-ToF-AMS
(Daellenbach et al., 2016).

PMF analysis was conducted on the offline-AMS mass
spectra and on online-AMS data collected at the same station
during February 2011. Offline-AMS source apportionment
results were also compared with a previous online-AMS
source apportionment study of 2 weeks during July 2008
at the same location (El Haddad et al., 2013). The methods
returned statistically similar seasonal factor concentrations,
although different years and size fractions were considered
(PM1 for online-AMS, PM2.5 for offline-AMS). OOA was
the major source of OA during summer representing on aver-
age 55 % of the OA mass, while BBOA was the dominant OA
source during winter contributing on average 43 % of the OA.
Smaller contributions were estimated for HOA, INDOA, and
COA, representing 17, 12, and 4 % of the OA mass, respec-
tively. The contribution of primary anthropogenic sources
(HOA + BBOA + COA + INDOA) was substantial over the
year (62 %avg of OA), with larger absolute and relative con-
tributions during winter (73 % of OAavg) associated with an
intense biomass burning activity.

Coupling offline- and online-AMS data with molecular
markers showed increasing levoglucosan : BBOC ratios dur-
ing the late winter–early spring period in both 2011 and 2012.
This trend was also observed for the ratios between cellulose
and lignin combustion markers (e.g., levoglucosan : vanillic
acid), with ratios approaching more typical domestic wood
combustion European values during January/early Febru-
ary, and values characterized by higher values of cellulose-
combustion markers during late autumn and March indica-
tive of the influence of different types of fuels, possibly re-
lated to agricultural-related activities.

From the offline-AMS source apportionment, we observed
a high BBOA correlation with nitrocatechols deriving from
the nitration of catechols directly emitted by biomass com-
bustion. These secondary components are rapidly formed
in the atmosphere in the presence of NO3

q (lifetime of
a few minutes). Overall, despite the different time resolu-
tion, online- and offline-AMS provided a comparable SOA–
BBOA separation during winter. Nevertheless, in case of fast
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SOA formation (relative to the timescale of the online-AMS
time resolution or relative to the transport time to the recep-
tor site) this separation can be hindered, and further efforts
are needed to improve the SOA separation from BBOA.

Data availability. All the retained factor recovery combinations
can be found at https://doi.org/10.5905/ethz-1007-75 (Bozzetti,
2017).
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