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Recombination, the process by which DNA strands are broken and repaired,

producing new combinations of alleles, occurs in nearly all multicellular

organisms and has important implications for many evolutionary processes.

The effects of recombination can be good, as it can facilitate adaptation, but

also bad when it breaks apart beneficial combinations of alleles, and recom-

bination is highly variable between taxa, species, individuals and across the

genome. Understanding how and why recombination rate varies is a

major challenge in biology. Most theoretical and empirical work has been

devoted to understanding the role of recombination in the evolution of

sex—comparing between sexual and asexual species or populations. How

recombination rate evolves and what impact this has on evolutionary pro-

cesses within sexually reproducing organisms has received much less

attention. This Theme Issue focusses on how and why recombination rate

varies in sexual species, and aims to coalesce knowledge of the molecular

mechanisms governing recombination with our understanding of the evol-

utionary processes driving variation in recombination within and between

species. By integrating these fields, we can identify important knowledge

gaps and areas for future research, and pave the way for a more comprehen-

sive understanding of how and why recombination rate varies.
1. Introduction
Recombination, the exchange of DNA between maternal and paternal chromo-

somes during meiosis, is a near universal processes occurring in almost all

forms of life and is fundamental for DNA repair andmeiotic cell division. Recom-

bination is good as it can facilitate adaptation through the creation of novel genetic

combinations [1,2], but also bad as it can break apart favourable combinations of

alleles [3], and despite meiosis and recombination being highly regulated, recom-

bination is frequently variable across the genome, across taxa, between the sexes,

populations and individuals [4]. Although ongoing advances inDNA sequencing

technology and methods to estimate recombination from population-based

samples are providing much needed empirical evidence of ‘How’ recombination

varies, our understanding of ‘Why’ it varies is progressing more slowly.

When considering this question: ‘Whydoes recombination rate vary?’, there is

much focus on the evolutionary advantage of sex, butmuch less attention given to

understanding why recombination varies between sexually reproducing
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organisms. For us, as a group of evolutionary biologists who

have observed variation in recombination rate in sexually

reproducing organisms—we considered this an important

knowledge gap. Hence, we proposed this special issue ‘Evol-

utionary causes and consequences of recombination rate

variation in sexual organisms’ with the aim to bring this ques-

tion to the fore and to encourage more researchers to

investigate if and how recombination rate varies, whether it

responds to natural or sexual selection, and how it influences

fundamental evolutionary processes within sexually reprodu-

cing organisms, such as adaptation and speciation.

To understand the evolution of recombination, like any

trait, we need information on the heritability and plasticity

of the trait, on how the trait influences fitness, and on the

molecular mechanisms controlling the trait. In this respect,

we know a lot about recombination—recombination is herita-

ble, many populations harbour additive genetic variation for

it, and it can respond to selection in the laboratory [4].

Recombination is also modified by a range of environmental

stimuli, including temperature [5] and condition [6]. Recom-

bination has well-characterized fitness effects: for example,

in humans, altered rates of recombination can cause chromo-

somal abnormalities, reduced fertility and disease [7].

Enormous progress has been made recently in understanding

the genetic elements that control recombination, and these

include elements that are highly conserved across eukaryotes

(e.g. SPO11), as well as evolutionarily dynamic elements such

as PRDM9 [8]. However, unlike other traits that evolutionary

biologists commonly study, recombination has some very

unusual properties: it can influence the efficacy of selection

[9,10], facilitate adaptation to changing environments [1,11],

it can alter patterns of nucleotide diversity [8] and influence

genetic diversity within populations [12,13]. Thus, variation

in recombination can experience direct and indirect selection,

and this selection can result from short-term (in the next

generation) and long-term (over many generations) benefits.

Addressing the question ‘Why does recombination rate

vary?’ necessitates understanding both direct and indirect

effects of selection. However, most researchers often do not

consider selection operating at these different scales simul-

taneously. For example, population geneticists often view

recombination as a population parameter that is under indirect

and long-term selection,whereas developmental biologists con-

sider the direct, short-term effects that an altered rate of

recombination has on individual traits like fertility. One goal

of this Special Issue is to try to better integrate these different

perspectives. Thus, we sought contributions from the ‘popu-

lation genetics–evolutionary’ perspective [14–16] as well as

the ‘developmental–molecular’ perspective [5,7,8], with

the hope that this will foster greater communication across

these disciplines.

The Special Issue opens with a general review of how and

why recombination rate varies across eukaryotes. It includes

an analysis of data from the largest collection of linkage maps

to date and an overview of the processes that explain vari-

ation in recombination rate—from genome architecture to

evolutionary explanations. The review introduces many of

the concepts and evolutionary theories that are explored in

greater depth in the proceeding articles. Although empirical

data for recombination are growing rapidly, progress in

explaining this variation has been slow. Dapper & Payseur

[17] argue that progress in the field is hampered by a discon-

nect between empirical data and the large body of theory that
has been developed to explain variation in recombination.

For example, much theory has been developed to explain

the evolutionary advantage of recombination, but this

theory does not address quantitative differences among indi-

viduals or variation at different genomic scales [17]. Likewise,

empirical data are often not collected to directly test current

theories and to address this Dapper & Payseur [17] provide

a useful table that lists the main hypotheses proposed to

explain the evolution of recombination, along with their key

requirements and testable predictions relating to each.

Variation in recombination may be explained by variation

in the sexual system and the evolutionary consequences of

different reproductive modes. For example, selfing and

inbreeding species may benefit from high rates of recombina-

tion because it can increase genetic diversity and allelic

shuffling, and there is some evidence to support this [4].

However, the transition to obligate asexuality may result in

suppression of recombination, because asexuals often have

modified meiosis and because recombination can erode

heterozygosity in asexuals [18]. To investigate how recombi-

nation rate varies between sexual and asexual species, Haag

et al. [18] build a new linkage map for an undescribed species

of brine shrimp whose closest relative is an obligate asexual.

In their focal sexual species, they report one of the shortest

linkage maps known, and propose that the observed low

recombination rates in some sexual species may favour

sex–asex transitions or, alternatively, may be a consequence

of it. The generality of this finding has yet to be tested and

Haag et al. [18] acknowledge that counter examples in other

groups exist. One notable counter example is observed in

Daphnia, a genus that contains both sexual and asexual

parthenogenetic species. In cyclically parthenogenic species

for which linkage maps have been made, we observe a very

high recombination rate per megabase compared to other

crustaceans [4]. These apparent contradictory results demon-

strate that we need more recombination data in a greater

ranges of species in order to begin to address long-standing

theories on the evolution of recombination.

A notable pattern to emerge from empirical data is the obser-

vation that the distribution of recombination events is distinctly

non-random across the genome. Variation is observed at many

genomic scales: between chromosomes, between megabase

regions within chromosomes and across regions spanning only

a few kilobases. Between closely related species, there is often

more variation in the distribution of recombination events com-

pared to the total frequency of these events, suggesting that the

rate at which recombination evolves is likely to depend on the

genomic scale [4,17]. Variable rates of recombination between

chromosomes have long been recognized, with sex chromo-

somes representing the most well-known example of this

phenomenon as non-recombining sex chromosomes have

evolved multiple times across taxa. The repeatability with

which sex chromosomes have evolved suppressed recombina-

tion makes them excellent models to investigate how selection

drives regional suppression of recombination and to identify

proximate mechanisms [16]. In her contribution, Charlesworth

[16] reviews the proximate and ultimate mechanisms driving

suppression of recombination in sex chromosomes and provides

recommendations of how to study this in divergent systems that

differ in the age of their sex-linked regions.

Estimates of recombination at the fine genomic scale canpro-

vide information about how recombination influences or is

influenced by genetic elements and neighbouring DNA

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20170279

3

 on November 7, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
sequence. Recombination is often higher in sequence regions

with high gene density and GC content and lower in sequence

regions that are enriched for simple repeats and transposable

elements (TE). Although these patterns are known from a

wide range of eukaryotes, the proximate and ultimate mechan-

isms driving these correlations are poorly understood. To begin

to address this problem,Kent et al. [19] provide a comprehensive

reviewof howandwhy recombination rate is correlatedwith TE

density. In their review, they strive to address the problem of

‘cause and effect’ in this relationship, which is challenging

because TE density can be modified by local recombination

rate (i.e. TEs accumulate in regions of low recombination), but

TEs can also modify the local recombination rate when the

host genomes epigenetically silence TEs, and this often results

in suppressed recombination [19]. Kent et al. [19] propose that

the relationship between TEs and recombination may be better

understood as ‘coevolution’, which involves positive feedback

between recombination suppression and TE accumulation.

Another commonly observed pattern in sequence data is a

positive correlation between recombination rate andnucleotide

diversity. This relationship can be driven by the mutagenic

effects of recombination [8], but it can also be the result of pur-

ifying selection acting on a deleterious mutation, and in doing

so reducing genetic diversity at neighbouring, genetically liked

loci (a process referred to as background selection (BGS)) [12].

This size of the region that experiences a loss in diversity is

determined by the strength of selection (increasing with

increasing selection) and the local recombination rate (larger

in regions of low recombination). Comeron [12] reviews the

concepts behind BGS, and argues that studies that attempt to

investigate evidence for selection in the genome using patterns

of nucleotide diversity should use a null model that incorpor-

ates BGS. With this approach, we can better determine

baseline levels of diversity across the genome and identify

the regions experiencing different forms of selection [12].

A pervasive pattern to emerge from accumulating fine-scale

recombination data is that in many species, recombination is

localized to small genomic regions referred to as hotspots.

Hotspots are present in a wide range of species, but absent

from some well-known model species such as Caenorhabditis
elegans [20] and Drosophila [21]. Progress in understanding the

molecular mechanisms controlling hotspot position and

activity has fuelled exciting empirical and theoretical work.

Tiemann-Boege et al. [8] provide a comprehensive review of

recombination hotspots and the processes governing double-

strand breaks (DSBs), which precede recombination. Repair of

DSBs often introduces changes into the sequence—either via

mutations or via biased gene conversion, and in many cases,

the allele that initiates the DSB (active allele) is converted to

an inactive allele—turning hotspots cold [8,15]. One mechan-

ism controlling hotspot activity in several mammals is

PRDM9, a zinc-finger binding protein that recognizes and

binds to sequence motifs, initiating a DSB. Investigation of

this trans-acting factor has provided a great deal of insight

into how and why hotspot activity varies between species

[22]. The rapid turnover of hotspots controlled by PRDM9

can also drive reproductive isolation between mouse strains

[8] and PRDM9 was originally described as a speciation gene

[7]. The self-destructive nature of PRDM9-directed hotspots

creates rapid evolutionary dynamics—when an active allele

is converted to an inactive allele and recombination rate

declines, selection will favour new PRDM9 alleles in order to

restore the optimal level of recombination for the species [15].
To model these rapid dynamics, Latrille et al. [15] develop a

population-genetic Red Queen model, explore the behaviour

of their model over a range of conditions via simulations,

and finally support their model with analytical and numerical

approximations [15]. Importantly, their analyses demonstrate

that for low-scaled mutation rates (i.e. the mutation rate multi-

plied by the effective population size), there tends to be only

one PRDM9 allele that dominates, which is then replaced

through hard sweeps as the recombination targets in the

genome are eroded. By contrast, at higher scaled mutation

rates, a population of PRDM9 alleles can exist, each binding

unique motifs in the genome [15].

Variation in recombination is not solely due to genetic fac-

tors: a multitude of environmental factors both extrinsic and

intrinsic have been found to alter recombination frequency

and distribution. Experimental work in Drosophila melanoga-
ster has been instrumental in the development of this field

and Stevison et al. [6] review this body of work and explore

the possible molecular mechanisms governing plasticity.

The authors also reflect on the lessons learnt and provide rec-

ommendations for future empirical research, which they

successfully implement in a related species D. pseudoobscura
as a proof of concept and to provide new data in less charac-

terized species [6]. Alves et al. [7] explore the vulnerabilities

of human meiosis, one of which is maternal age, an intrinsic

factor that is often associated with a greater frequency of

chromosomal abnormalities and altered recombination. One

hypothesis proposed to explain increased aneuploidy in

older females is that recombination frequency or distribution

changes with age; however, Alves and coauthors argue that

this is unlikely because the effects of maternal age on recom-

bination are not consistent or strong enough to drive the

patterns of aneuploidy observed [7].

While there are many environmental cues known to influ-

ence recombination, temperature and condition are perhaps

themost well known.Morgan et al. [5] provide a comprehensive

review of how temperature can influence meiosis and thus

recombination through changes in the axes, which unite sister

chromatids, and the synaptonemal complex, the protein struc-

ture that forms between these chromatids during meiosis. As

proteins responsible for the formation of those structures

duringmeiosis are in general (across eukaryotes) prone to aggre-

gation and hence are particularly temperature-sensitive, this

could explain why temperature often has a relatively consistent

effect on recombination across taxa [5]. The second important

environmental cue to influence recombination is condition.

An organism in poor condition or in a poor environment may

benefit from shuffling its genome, as its haplotype is poorly

matched to the current environment, and there is someempirical

evidence to support this [14]. Previous theoreticalwork suggests

that condition-dependent recombination seems to emerge most

readily in models of haploid rather than diploid selection, and

that recombination rate plasticity is unlikely unless, for example,

maternal effects are assumed. Rybnikov et al. [14] construct
a simulation model to test the emergence of condition-

dependent recombination rate. Their model demonstrates

that in the case where recombination rates within a group of

selected loci are determined by an unlinked locus, alleles at

the locus conferring condition-dependent recombination can

readily invade a population with a fixed recombination rate.

These modelling results agree with theoretical studies that

indicate that in diploids, direct effects—where the locus

determining recombination influences recombination between

http://rstb.royalsocietypublishing.org/
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itself and the group of selected loci—are unlikely to lead to

plasticity in recombination rate. Interestingly, the simulations

in the paper also demonstrate that plasticity in recombination

rate requires that the population spends relatively equal

time in different selective environments—if the majority of

time is spent in a single environment, a single, fixed rate

of recombination is favoured [4].

In conclusion, in spite of exciting recent results, under-

standing how and why recombination rate varies across the

genome and across taxa remains a major challenge in biology.

For this reason, we present a series of contributions that

critically evaluate theoretical and empirical developments

on variation in recombination rate between taxa [4,17,18]

and across the genome [7,8,12,16,19], and outline some tenta-

tive explanations, both mechanistic [5] and evolutionary

[6,14,15], for this variation. This Special Issue includes work

from scholars who differ in their perspective, but whose

approaches and study systems are complementary. Such
integration has not been attempted before and it is our

hope that this theme issue will contribute to a comprehensive

conceptual framework that will inspire a wider range of

theoretical and empirical tests for the evolution of recombina-

tion rate—covering the good, the bad and the variable.
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