
New implementation of OGC Web Processing Service in Python programming language.
PyWPS-4 and issues we are facing with processing of large raster data using OGC WPS

Jáchym Čepický a, Luís Moreira de Sousa b

a OpenGeoLabs s.r.o., Prague, Czech Republic – jachym.cepicky@opengeolabs.cz
b Swiss Federal Institute of Aquatic Science and Technology – EAWAG, Überlandstrasse 133 Postfach 611, 8600 Dübendorf

Switzerland, luis.desousa@eawag.ch

Commission VII, SpS10 - FOSS4G: FOSS4G Session (coorganized with OSGeo)

KEY WORDS: OGC Web Processing Service, OGC WPS, PyWPS, Open Source Software, Free Software, FOSS4G, OSGeo,
Python, Server

ABSTRACT:

The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and
responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the
execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of
geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS
can be delivered across a network or they can be available at a server.
PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language
and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years,
the PyWPS development team has written a new version (called PyWPS-4) completely from scratch.
The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be
defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data
from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system
resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted
within the PyWPS implementation.

1. INTRODUCTION

PyWPS (PyWPS, 2016, Cepicky, Becci 2007) is a server side
implementation of the OGC Web Processing Service standard
(OGC WPS, 2007) in the Python programming language.
PyWPS started in 2006 as a student project supported by
German DBU foundation (DBU, 2016) and it has grown into a
world wide used project providing for WPS implementation.

PyWPS itself does not provide any processing functionality. It
should be understood as an empty envelope, offering WPS
input and output interfaces. A typical user of PyWPS is a
system administrator or scientist who needs/wants to expose
his/her (geospatial) calculations (so called processes) to the
world wide web (either with unlimited access or to a certain
identified group of users).

The server can offer a theoretically unlimited number of
processes. Each process should represent a unique operation on
the input data and provide defined output.

2. OGC WEB PROCESSING SERVICE

The OGC Web Processing service (OGC WPS, 2007) belongs
to the set of so called OGC Open Web Services, together with
Web Mapping Service (WMS), Web Feature Service (WFS)
and WCS (Web Coveradge Service). The standard provides 3
types of requests: GetCapabilities, DescribeProcess and
Execute. The communication between server and client is
based on an XML communication protocol. It is a stateless
communication protocol – each request is unique and should
have no relationship to other requests. The processes on the
server should run as much as possible in separated
environments.

2.1 GetCapabilities request/response

The GetCapabilies request provides metadata about the server
deployment, server provider and contact person. It also gives a
list of processes available on the server – their titles,
parameters and abstracts. The client should be able to choose
the appropriate process with this information.

2.2 DescribeProcess request/response

The DescribeProcess request (and ProcessDescription
response) provides the necessary schema description of the
desired process. Each process should describe itself (using
XML encoding) not only by its title and abstract, but also by
presenting a list of required inputs and resulting outputs. Input
and output data can be of three different types: LiteralValue,
ComplexValue and BoundingBox.

The LiteralValue type represents string data directly sent to the
server. As for metadata, the client can specify units used and
the atomic data type (integer, float, string, date, time, datetime,
boolean and others).

ComplexValue parameters represent large (and possibly binary)
datasets; usually these are geospatial raster or vector datasets.
The server specifies an XML schema and Mimetypes, which it
is able to accept – the client application should follow these
rules. The vector data are usually encoded with GML (OGC
GML, 2012). However, GeoJSON (GeoJSON, 2016) is
growing highly popular; (compressed) ESRI Shapefile (ESRI
Shapefile, 1998) is another option too. Raster data are usually
provided using Base64 encoding.

The BoundingBoxValue is the definition of left-bottom, right-
top corners of an area of interest, using the OGC Web Services
Common specification (OGC WSC, 2007). The bounding box

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-927-2016

927

mailto:luis.desousa@eawag.ch
mailto:jachym.cepicky@opengeolabs.cz

can be specified using some special coordinate reference
system.

A special case for the Complex and Literal input values is the
so called Reference type of input: instead of providing the data
directly as part of the Execute request, the client sends just an
URL reference to the data and the server is responsible for
automatically downloading it from the target server. This
enables the usage of WFS or WCS services as inputs to WPS
process.

Based on the DescribeProcess response, the client application
is usually able to construct a final Execute request and prepare
for its outputs.

2.3 Execute request/response

The Execute request commands a particular process to be
executed, sending the input data to the server (or their
reference), along with the process identifier. The Server is then
able to accept the process and send the response to the client.

There are two modes in which a process can be executed:
synchronous and asynchronous. In the synchronous mode, the
server accepts the requesting XML with the input data, passes
the input data to the required process, and waits until all
calculations are performed; in the end it sends the resulting
ProcessExecuted XML response.

In the asynchronous mode, the server provides the client with
the ProcessAccepted response, immediately after the request
arrives and closes the connection to the client. The client must
then check the process status on a specified URL, while the
server is running the process in the background. When this is
done, the final response is constructed and stored on the
specified URL and the next time the client checks the process
state it detects, that the execution finished successfully its
calculations and can download the resulting outputs.

3. PYWPS IMPLEMENTATION OF OGC WPS

As already stated, PyWPS does not contain any processes in it's
distribution. The user is prompted to add his/her own code that
is deployed on the PyWPS server instance and the server then
takes care of getting the data, evaluate them and call the
process execute method (function).

The essential functions of PyWPS are:
1. Providing the WPS communication bridge.
2. Getting input data, send in the execute request.
3. Preparing a container for the process instance.
4. Calling the execute function of the process,

communicating with the process during its
calculation, providing progress reports and logging
various process states.

5. Storing the data to the target location and deleting
the created container when the process is finished.

6. Creating and communicating the resulting report to
the client (either directly or via predefined way).

From the user's perspective, the focus is on the input and
output definition and the execute function, that takes already
validated inputs, performs the calculation and sets the
outputs. The rest is done by PyWPS.

While no process are distributed with PyWPS, the
development has focused on providing the best support for
external tools, which can be used with geospatial operations.
GRASS GIS (GRASS Development Team, 2015) has always
been one of the most important external tools supported by
PyWPS, as well as R (R Development Core Team, 2016).
Beyond these, more common modules from Python, like JSON,
SQLconnections, NumPy and other modules are encouraged to
be used.

4. NEW VERSION OF PYWPS – PYWPS-4

PyWPS-4 is a completely new version of PyWPS. The PyWPS
development team decided to rewrite the code from scratch
based on new the knowledge we gained during the years of
development.

4.1 MotivationPyWPS is now almost a decade old and the
world of the Python programming language and its
geospatial bindings has changed in the meantime. The
main technical reasons are: the new Python version 3 ,
native Python bindings to existing projects (like GRASS
GIS), new popular input/output formats (GeoJSON, KML,
TopoJSON, …).

We have also decided to change the licence from GNU/GPL
(Free Software Foundation, 2007) to MIT (MIT License,
2016). The reason for this is to have less restrictive rules for
the processes. With the PyWPS-3 version, all code used for the
process had to be released under terms of GNU/GPL. With
PyWPS-4, the conditions are less viral.

4.2 Implementation

4.2.1 Fundaments

PyWPS-4 is implemented using the Flask microframework
(Flask, 2016). We also apply test-driven development (TDD)
and since beginning, are using OGC Cite tests (OGC
Compliance Program, 2007) in order to make sure PyWPS will
be certified by the OGC once a first stable version is released.

PyWPS-4 being is developed using Python version 3, with
backwards support for Python 2.7.

To handle XML files, the lxml library is used (Lxml, 2016).
This is a C-based XML parser, which provides great flexibility
and speed regarding serialization and deserialization of XML
files; on the other hand, we are now limited to the official
Python interpreter and can not use some of the advantages of
PyPy (PyPy, 2016) or Jython (Jython, 2016). We hope, this will
be possible in the future.

For some data types, especially the bounding box type,
OWSLib structures (Tom Kralidis, 2016) are used.

4.2.2 Validating data inputs
While previous version of PyWPS did not validate any types of
inputs, it just took care about the input file size, PyWPS-4 can
have up to 4-level (modes) based input data validation.

Validation of ComplexData (raster and vector files) is based on
4 steps:

1. None validation - the data are always considered
valid.

2. Simple validation -uses just the mimeType for
validation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-927-2016

928

3. Strict validation - tries to open the file using the
GDAL (GDAL, 2016) library and compare used
driver to declared mimeType file type.

4. Very strict validation - validates input data against a
given XML schema.

For LiteralData (strings, numbers, list of allowed values etc.)
only two modes are available:

1. None validation - only the data type is checked
(input string is converted to integer and so on).

2. Simple validation - a stack of conditions is applied to
make sure the input data are really what they declare
to be.

Users of PyWPS can set custom validating functions, to be
applied on each allowed input data formats. PyWPS is
distributed with detailed validating functions for ESRI
Shapefile, GeoJSON, GML and GeoTIFF formats, as well as
most common literal data types.

This makes PyWPS-4 saferwhen dealing with various input
data from unknown sources.

4.2.3 Containerising of processes

A WPS server should be able to run multiple concurrent
processes in parallel. They are not allowed to share any
resources or data with each other. The WPS standard itself
provides the possibility to reject incoming Execute requests, if
all available resources are consumed by previously running
processes.

PyWPS creates a temporary directory for every Execute request
where process calculations take place. When the calculation is
finished, resulting the data are moved to the publishing
directory and the temporary directory (container) is deleted.

This procedure is to be modified in following versions of
PyWPS, so that a safer approach is employed (probably using
Docker, vagrant or other more insulated environment).

4.2.4 Asynchronous execution of processes
PyWPS can run up to a determined number of processes in
parallel and save another number (both are configurable) of
processes in a queue, to later start their execution once new
slots are available.
For processes running in the background, the Python
multiprocessing module is used – this makes it possible to use
PyWPS on the Windows operating system too. In previous
versions, where the os.fork() method was used, this was not
possible..
To facilitate the management of concurrent processes , process
metadata are stored into a local database. This database is used
for logging , saving waiting Execute requests in the queue and
invoking them later on.
This database will also enable the implementation of pausing,
releasing and deleting running process These features will
allow PyWPS to comply with WPS version 2.0.0.

4.3 Future work

Future work will be focused ion the implementation of WPS
2.0.0 features, support for non-English languages, better
process containerising, an administrative web interface, and
the implementation of external services for output data
publishing.

We are also focusing on non-technical aspects of project
development, such as setting up a documentation environment

(user and developed oriented). A Project Steering Committe
was also formed around PyWPS – a decision making body
required to pass the incubation process of the Open Source
Geospatial Foundation (OSGeo). This also makes the project
more mature and sustainable for the future.

5. CONCLUSION

The paper introduced a new version of PyWPS – PyWPS-4 –
and technical details regarding its development. PyWPS-4
should be more secure, thanks to input data validation, more
robust, thanks to the usage of asynchronous process
paralellisation. More flexible, thanks to the third party
libraries used. Yet, it should remain easy to set up, as it was in
previous versions of PyWPS. Thanks to a new MIT license, it
should be easy to plug-in to third party systems, with no major
legal restrictions.

Future work will bring more security thanks to advanced
containerising of running processes, a simple web interface and
support for the WPS 2.0.0 standard. Some features of WPS
2.0.0 are getting to PyWPS-4 soon, thanks to current work.

REFERENCES

Cepicky, Becchi, 2007. OSGeo Journal, may 2007. Geospatial
Processing via Internet on Remote Servers – PyWPS
PyWPS, 2016. PyWPS project web page, http://pywps.org,
(2016-04-16)

OGC WPS, 2007. OpenGIS® Web Processing Service, Open
Geospatial Consortium Inc., version 1.0.0, OGC 05-007r7,
2007-06-08, http://opengeospatial.org/standards/wps, 2016-05-
16

DBU 2016, Deutsche Bundesstiftung Umwelt, http://dbu.de,
2016-05-16

OGC GML, 2012, OGC® Geography Markup Language
(GML), Open Geospatial Consortium Inc., version 3.3.0, OGC
10-129r1, 2012-02-07,
http://opengeospatial.org/standards/gml, 2016-05-16

GeoJSON, 2016, GeoJSON data format (web page),
http://geojson.org/, 2016-05-16

ESRI Shapefile, 1998, ESRI Shapefile Technical Description,
An ESRI White Paper, ESRI,
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf,
2016-05-16

OGC WPS, 2007, OGC Web Services Common Specification,
Open Geospatial Consortium Inc., OGC 06-121r3, Version:
1.1.0 with Corrigendum 1, 2007-02-09,
http://www.opengeospatial.org/standards/common, 2016-05-16

GRASS Development Team, 2015. Geographic Resources
Analysis Support System (GRASS) Software, Version 7.0.
Open Source Geospatial Foundation. http://grass.osgeo.org,
2016-05-17

R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2008, http://r-project.org, 2016-
04-17

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-927-2016

929

http://r-project.org/
http://grass.osgeo.org/
http://www.opengeospatial.org/standards/common
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://geojson.org/
http://opengeospatial.org/standards/gml
http://dbu.de/
http://opengeospatial.org/standards/wps
http://pywps.org/

Free Software Foundation, Inc. 2007, GNU GENERAL
PUBLIC LICENSE, Version 3, 29 June 2007,
http://www.gnu.org/licenses/gpl-3.0.en.html, 2016-04-17.

MIT License, 2016, https://opensource.org/licenses/MIT, 2016-
04-17

Flask microframework, 2016, http://flask.pocoo.org, 2016-04-
17

OGC Compliance Program, 2007, Open Geospatial
Consoritum, http://cite.opengeospatial.org/, 2016-04-17)

Lxml, 2016, lxml - XML and HTML with Python,
http://lxml.de, 2016-04-17

PyPy 2016, http://pypy.org/, 2016-04-17

Jython 2016, http://jython.org, 2016-04-17

Tom Kralidis 2016, OWSLib, release 0.11.0,
https://geopython.github.io/OWSLib/, 2016-04-17

GDAL 2016, GDAL - Geospatial Data Abstraction Library,
http://gdal.org, 2016-04-17

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B7-927-2016

930

http://gdal.org/
https://geopython.github.io/OWSLib/
http://jython.org/
http://pypy.org/
http://lxml.de/
http://cite.opengeospatial.org/
http://flask.pocoo.org/
https://opensource.org/licenses/MIT
http://www.gnu.org/licenses/gpl-3.0.en.html

	1. Introduction
	2. OGC Web Processing Service
	2.1 GetCapabilities request/response
	2.2 DescribeProcess request/response
	2.3 Execute request/response

	3. PyWPS implementation of OGC WPS
	4. New version of PYWPS – PyWPS-4
	4.1 MotivationPyWPS is now almost a decade old and the world of the Python programming language and its geospatial bindings has changed in the meantime. The main technical reasons are: the new Python version 3 , native Python bindings to existing projects (like GRASS GIS), new popular input/output formats (GeoJSON, KML, TopoJSON, …).
	4.2 Implementation
	4.2.1 Fundaments
	4.2.2 Validating data inputs
	4.2.3 Containerising of processes
	4.2.4 Asynchronous execution of processes

	4.3 Future work

	5. Conclusion
	References

