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Abstract 

Inter-aquifer leakage through an aquitard can be an important component of groundwater flow and can occur by diffuse leakage 
or via preferential pathways along secondary permeability features. In order to properly characterize inter-aquifer leakage it is 
desirable to use both porewater from the aquitard in conjunction with a regional investigation of groundwater in the aquifers. The 
aim of this study was to characterize inter-aquifer leakage through a regionally extensive aquitard between the Great Artesian 
Basin (GAB) and the deeper Arckaringa Basin of Australia. Chloride concentrations in the aquitard porewater profile indicates 
that transport through the aquitard is dominated by diffusion, but there is evidence at t least one location for increased interaquifer 
leakage due to secondary permeability features. 
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Peer-review under responsibility of the organizing committee of WRI-15.  

Keywords: inter-aquifer leakage; aquitard; environmental tracers 

 
 

                                                           
* Corresponding author. Tel.: +61 8 8201 5302. 

E-mail address: stacey.priestley@flinders.edu.au 

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of WRI-15

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeps.2016.12.106&domain=pdf


421 Stacey C. Priestley et al.  /  Procedia Earth and Planetary Science   17  ( 2017 )  420 – 423 

 

1. Introduction 

Aquitards are very important, yet poorly understood components in groundwater flow systems1. Regionally 
extensive aquitards confine and separate aquifers and play an important role in the physical and chemical evolution 
of groundwater, and can provide water from storage to pumped aquifers1,2. Groundwater movement through an 
aquitard, here referred to as inter-aquifer leakage, can be an important component of groundwater flow, although it is 
orders of magnitude slower than through aquifers3. Quantification of inter-aquifer leakage is important for 
groundwater resource evaluation and extraction industries including unconventional gas and ore extraction. 

Inter-aquifer leakage through a laterally-extensive aquitard can be severely limited but even in the tightest clay or 
shale aquitard there is always a small amount of diffuse leakage2. The inter-aquifer leakage rate through the aquitard 
can increase if there are secondary permeability features through the aquitard2,4-6. 

To quantify inter-aquifer leakage different techniques are available. Chemical profiles through the aquitard can be 
used to investigate the transport mechanisms in the aquitard pore water5,7-10, whereas detection of inter-aquifer 
leakage through secondary permeability features requires a more regional scale study. Inter-aquifer leakage through 
secondary permeability features has been identified in some regional groundwater investigations using hydraulic 
head measurements, environmental tracers and dating tracers in aquifers11-15. 

Several authors3 urged the use of and comparison of methods at different scales within the same formation. The 
aim of this study was to investigate inter-aquifer leakage through a regionally extensive aquitard between the Great 
Artesian Basin (GAB) and the Arckaringa Basin. 

2. Study area  

This study investigated inter-aquifer leakage between the GAB and Arckaringa Basin in the central to far north 
region of South Australia (Fig. 1, inset). The GAB comprises Jurassic to Cretaceous sediments that overly the 
Arckaringa Basin which is a Late Carboniferous to Early Permian sedimentary basin. The main aquifer unit in the 
GAB is the J-K aquifer and in the study area the main aquifer in the Arckaringa Basin is the Boorthanna Formation 
(Figure 1a). The J-K aquifer and Boorthanna Formation are separated by a mudstone, siltstone and shale aquitard, 
known as the Stuart Range Formation (Figure 1b).   

3. Methods  

To investigate inter-aquifer leakage in between the GAB and Arckaringa Basin regional groundwater samples as 
well as samples from the aquitard were collected. A core through the aquitard was drilled and aquitard samples 
collected for environmental tracer analysis10. Regional groundwater samples were analysed for various 
environmental tracers and isotopes including major elements, stable isotopes of water, 14C, 36Cl, 87Sr/86Sr, uranium 
isotopes, as well as noble gases.   

4. Results and discussion  

The chloride concentrations in the aquitard porewater profile are shown in Figure 2. Modelling the profile using 
the one-dimensional advective-dispersive equation showed that the dominant transport through the aquitard is 
diffusion. The regional groundwater samples show evidence of inter-aquifer leakage through secondary permeability 
features in the Stuart Range Formation in the center of the basin. This inter-aquifer leakage has been identified by 
overlap in Sr and stable water isotope values, chloride concentrations as well as other hydrochemical evidence of 
mixing with shallower groundwater with shorter residence times. Further evidence is provided by head data which 
showed a slight draw-down in the upper aquifer during pumping in the lower aquifer.   

The results show that flow through the aquitard is dominated by diffusion; there is at least one location with 
increased inter-aquifer leakage due to secondary permeability features. These results are similar to other studies 
which have found inter-aquifer leakage through preferential pathways through aquitards11,15.  
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5. Conclusions  

These results show that diffusion, although dominant is not the only flow mechanism through regional scale 
aquitards, but secondary permeability features such as fractures and discontinuities can contribute to inter-aquifer 
leakage. Although cross formational flow is not regionally extensive, it may have a disproportionate impact on water 
flow and water quality.  

 

Fig. 1. (a) Map showing upper aquifer extent in green and the density corrected potentiometric surface in green dashed lines. The lower aquifer 
extent is shown in blue with the density corrected potentiometric surface in blue dashed lines. Cross-section through the study area is indicated 

with a solid black line (b) stratigraphy of hydrogeological cross-section.  
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Fig. 2. Chloride concentration through the aquitard.  
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