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Monitoring of microbial drinking water quality is a key component for ensuring safety

and understanding risk, but conventional monitoring strategies are typically based on

low sampling frequencies (e.g., quarterly or monthly). This is of concern because many

drinking water sources, such as karstic springs are often subject to changes in bacterial

concentrations on much shorter time scales (e.g., hours to days), for example after

precipitation events. Microbial contamination events are crucial from a risk assessment

perspective and should therefore be targeted by monitoring strategies to establish both

the frequency of their occurrence and the magnitude of bacterial peak concentrations. In

this study we used monitoring data from two specific karstic springs. We assessed the

performance of conventional monitoring based on historical records and tested a number

of alternative strategies based on a high-resolution data set of bacterial concentrations

in spring water collected with online flow cytometry (FCM). We quantified the effect of

increasing sampling frequency and found that for the specific case studied, at least

bi-weekly sampling would be needed to detect precipitation events with a probability of

>90%. We then proposed an optimized monitoring strategy with three targeted samples

per event, triggered by precipitation measurements. This approach is more effective and

efficient than simply increasing overall sampling frequency. It would enable the water

utility to (1) analyze any relevant event and (2) limit median underestimation of peak

concentrations to approximately 10%. We conclude with a generalized perspective on

sampling optimization and argue that the assessment of short-term dynamics causing

microbial peak loads initially requires increased sampling/analysis efforts, but can be

optimized subsequently to account for limited resources. This offers water utilities

and public health authorities systematic ways to evaluate and optimize their current

monitoring strategies.
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INTRODUCTION

Adequate monitoring of drinking water quality is one of the
key components ensuring that safe and clean drinking water
is produced and provided to customers. Short-term microbial
dynamics at the scale of minutes to weeks are to be expected in
drinking water systems. This can result from natural fluctuations
in raw water sources (e.g., precipitation events, snowmelt) as
well as operational changes (e.g., filter backwashing, intermittent
flow) during treatment (Stevenson, 1997; Pronk et al., 2006;
Madrid and Zayas, 2007; Stadler et al., 2008; Bakker et al., 2013).
Short-term dynamics and especially peak concentrations strongly
influence water quality—and the infection risk in the case of
pathogens—especially in raw water but also in treated water
(Gauthier et al., 2001; Kistemann et al., 2002; Vreeburg et al.,
2004; Farnleitner et al., 2005; Signor and Ashbolt, 2006; Astrom
et al., 2007; Pronk et al., 2007; Stadler et al., 2008). Furthermore,
many small water utilities using spring water or groundwater
have either no or very limited water treatment in place and are
thus directly exposed to changes and associated risks in raw water
quality. In spite of this, current monitoring practice is often not
designed to detect short-term dynamics (Stadler et al., 2008).
In fact, it is not uncommon for small utilities to sample on
a quarterly or monthly frequency only. This is due to limited
financial and logistic resources but also due to the limited existing
knowledge on microbial short-term dynamics per se.

The general problem of a low sampling frequency is that
it represents a system’s dynamics insufficiently and especially
does not reflect transient changes in water quality. This was
considered previously for seasonal changes and water quality
violations in river water (Loftis and Ward, 1980; Casey et al.,
1983). More recent studies on chemical water quality monitoring
in surface waters included optimization strategies for quarterly
and monthly sampling (Do et al., 2013; Naddeo et al., 2013;
Liu et al., 2014) and illustrations of the large uncertainties
remaining even with weekly sampling (Skeffington et al., 2015).
Similarly, many dynamics in drinking water production systems
occur at short time scales and can thus be easily missed by
conventional sampling regimes (i.e., infrequent, manual grab
sampling) (Signor and Ashbolt, 2006; Madrid and Zayas, 2007).
For example, systems treating surface water tend to be driven
by diurnal cycles and thus dynamics have a time scale of
hours to days (Besmer et al., 2014). Technical systems that are
influenced by human activity can have dynamics of virtually
any time scale and different dynamics are often superimposed
on each other (Besmer et al., 2016). Many of the dynamics are
diurnal or otherwise periodic (i.e., regular) because technical
systems include defined, regular operational procedures (e.g.,
backwashing of filters) and the typical time scale is minutes to
hours (Besmer and Hammes, 2016). Arguably, both periodic and
even more so aperiodic deviations/peaks in microbial quality can
be viewed as time periods of increased contamination risk and
hence should be investigated in more detail to verify or exclude
contamination. From a practical point of view, it is particularly
relevant to know if/when a contamination event occurs and what
its magnitude is.

One obvious solution is online monitoring. For
drinking water, Janke et al. (2006) showed the advantage

of physicochemical online monitoring over conventional
monitoring with sampling frequencies below 24 h in the
context of deliberate sabotage. Emerging online monitoring
tools were further summarized by Storey et al. (2011) and
emerging technologies for measuring microbial variables online
and at high frequency have been demonstrated in various
settings and include flow cytometry (FCM), enzymatic activity,
and optical detection (Besmer et al., 2014; Ryzinska-Paier
et al., 2014; Hojris et al., 2016). While promising, it is highly
unlikely that widespread routine application of microbial online
monitoring will be implemented in the near future, due to
financial constraints and legal limitations. Therefore, we argue
that smarter and more efficient monitoring strategies, based on
available and/or affordable equipment, are needed. To optimize
monitoring strategies, the drivers and relevant time scales of the
dynamic need to be understood (ISO, 2006). To our knowledge,
this has not been done adequately for microbial monitoring in
spring water, partially due to the lack of high-resolution data sets
to date.

The present study focuses on karstic springs, which are used as
drinking water sources throughout Europe (Scheidleder, 1999).
The porous nature of the karstic geology enables microbial
contamination of the spring water with infiltrating surface
water after localized precipitation events (Field and Nash,
1997; Farnleitner et al., 2005). We assessed historical records
of conventional monitoring data of karstic spring water and
compared them with newly collected high-frequency data sets.
The purpose was to systematically assess the temporal variability
of spring water microbial quality, and to evaluate suitable
monitoring strategies to accurately capture those dynamics. The
specific goals of this study were: (1) to assess limitations of
the current monitoring practice of regular but infrequent grab
sampling for microbial water quality control; (2) to illustrate the
effect of sampling frequency on the probabilities of detecting
precipitation-induced microbial events in karstic spring water;
and (3) to suggest a targeted sampling strategy for microbial
water quality changes in karstic spring water after precipitation
events. The novelty of this study is the investigation of the effect
of different monitoring strategies on the information gained
from sampling, based on systematic analysis of temporally highly
resolved measurements of bacterial concentrations.

MATERIALS AND METHODS

Study Sites, Samples, and Data Sets
Data was collected from two springs (A and B) in a karstic
region in the Northeast of Switzerland. The focus was on
raw spring water prior to any treatment. An overview of the
experimental work and data sets is given in Table 1. Auto-
sampler campaigns and subsequent detection with manual FCM
and plating for both heterotrophic plate count (HPC) and
indicator organisms were carried out for this study specifically
in spring A, during two subsequent weeks. Within this period,
two dry-weather periods were sampled every hour for 24 h
each. In addition, a 48-h sampling campaign was carried out
with samples taken every hour on two consecutive days after
a precipitation event. An online FCM data set was generated
for spring B, of which a subset was published in Besmer
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TABLE 1 | Overview table of sampling campaigns and data sets used for the different analyses in this study.

Data sets Spring A Spring B

Auto-sampler campaign

Total cell concentration

Heterotrophic plate count

Indicator organisms

December 2014

3 × 24 h

every 1 h

Figure 1 June 2015

1 × 48 h

every 1 h

Figure S1

Local precipitation 2014/2015

2 years

every 30min

Figure 1 2014/2015

2 years

every 30min

Figure 2, Figures S1–S3

Spring discharge Aug 2014–Jul 2015

1 year

every 30min

Figure 1 March–July 2015

99 days

every 30min

Figure S1

Online flow cytometry

Total cell concentration

– – March–July 2015

99 days

every 15min

Figure 2, Figures S1–S3

Conventional monitoring

Heterotrophic plate count

Indicator organisms

2002–2015

14 years

quarterly/monthly

Figure 1, Table 2 2002–2015

14 years

quarterly/monthly

Figure S1

Regional precipitation 2002–2015

14 years

every 10min

in text 2002–2015

14 years

every 10min

in text

and Hammes (2016). Here, the full 99-day data set is used
and the focus is on systematic analysis. In addition, two
long-term data sets (2002–2015) of conventional monitoring
based on infrequent (i.e. quarterly/monthly) grab sampling
and cultivation-based detection methods were provided by the
Food Safety and Veterinary Office Basel-Landschaft (FSVO
BL) for springs A and B. Precipitation data in parallel to the
intensive microbial measurements (2014–2015) was available
from a temporary meteorological station located close to the
two investigated springs. Additional, long-term precipitation
data (2002–2015) was obtained from the Swiss Federal Office of
Meteorology and Climatology (MeteoSwiss) for the permanent
meteorological station closest to the study region. Spring
discharge measurements were provided by the water utilities.

Sampling
Grab samples were taken according to the standard procedures of
the FSVO BL, which is an accredited state agency for inspection
in accordance with standard ISO 17020:2012 (ISO, 2012) as
well as an accredited testing laboratory in accordance with
standard ISO 17025:2015 (ISO, 2005). In short, water samples
were collected from disinfected (flame treatment of taps prior
to sampling), flowing taps or directly from the spring outflow. A
portable and programmable auto-sampler (ISCO 6712, Teledyne
ISCO Inc., Lincoln, USA) was used for automated sampling.
Samples (800ml) were drawn every hour into sterilized plastic
bottles [rinsed thoroughly with hypochlorite solution (1% active
chlorine) and 3 times with nanopure water (deionized, 0.22
µm filtered) water before pasteurization at 60◦C for 1 h]. The
sampling tube was automatically rinsed and purged three times
before each sample to avoid stagnation and cross contamination.
All samples were transported and stored at 4◦C and processed
within 24 h.

Manual Detection Methods
Heterotrophic plate count (HPC) plating was done in accordance
with the standard ISO 4833:2003 (ISO, 2003) spread plating
method by an accredited laboratory. In short, 1ml of a water
sample was evenly distributed on an agar plate and then
incubated for 72 h at 30◦C. The number of formed colonies
was subsequently counted. For indicator organism plating, the
standard 9308-1:2000 (ISO, 2000) and 1406.1 (SLMB, 2007)
membrane filtration and plating methods for the enumeration of
Escherichia coli (E. coli) and Enterococcus respectively were used.
In short, 100ml of a water sample were filtered through a 0.45µm
filter, which was then placed on an agar plate and incubated for
24 h at 37◦C. The number of formed colonies was subsequently
counted.

Manual FCMmeasurements of total cell concentration (TCC)
were done based on the reference method 333.1 (SLMB, 2012).
In short, 500 µl of the water samples were pre-warmed for
3min at 37◦C and then stained with the fluorescent stain SYBR
Green I (Life Technologies, Eugene OR, USA; final concentration
1:10,000). After 10min of incubation at 37◦C in the dark, 100 µl
of a sample were measured on an Accuri C6 flow cytometer (BD
Accuri, San Jose CA, USA) at a flow rate of 66 µl min−1 with
a lower threshold on the green fluorescence (FL1-H) channel of
1,000. Fixed gates were applied in the Accuri C6 CFlow software
to separate bacteria from background signals (Prest et al., 2013).

Automated Detection Method: Online Flow
Cytometry
For online FCM, water was sampled directly from a bypass
with continuous flow by an automated sampling, staining, and
incubation module connected to an Accuri C6 flow cytometer
(BD Accuri, San Jose CA, USA) as described previously (Besmer
et al., 2014). In short, water samples were drawn discretely every
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FIGURE 1 | Evaluation of raw spring water quality (Spring A) over different time scales: (A,D) precipitation and spring discharge measurements [hourly measurements;

2 weeks (A) and one year (D) respectdively], (B,C) auto-sampler measurements analyzed with conventional plating methods for the indicator organisms Enterococcus

(purple triangles), E. coli (red circles), and HPC (blue diamonds) as well as flow cytometric total cell concentration (green squares), (E) conventional grab sampling

(quarterly to monthly; 14 years; n = 100) analyzed with conventional plating methods for the indicator organisms Enterococcus (purple triangles), E. coli (red circles),

and HPC (blue diamonds). Short-term drops in spring discharge are due to water being discarded for operational reasons. Maximum spring discharge was 125 m3

h−1 for operational reasons (excessive water was discarded).
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15min and mixed with a fluorescent stain [SYBR Green I (Life
Technologies, Eugene OR, USA); final concentration 1:10,000].
This mixture was incubated for 10min at 37◦C before transfer
to the flow cytometer for measurement at a flow rate of 66 µl
min−1 for 90 s with a lower threshold on the green fluorescence
(FL1-H) channel of 1,000. After each sampling and measurement
cycle, the staining module was rinsed with nanopure water
(deionized, 0.22µm filtered). In addition, an extended cleaning
cycle with hypochlorite and detergent was performed after every
100 samples. For data analysis, files were exported for batch
processing with custom software. Fixed gates were applied to
separate bacteria from background signals (Prest et al., 2013).

Systematic Analysis of Monitoring
Strategies
Event Definition
A preliminary analysis of high resolution TCC and precipitation
data in spring B indicated substantial TCC increases after
precipitation events with total volumes exceeding 10mm within
24 h. Due to the time scale of the system response (i.e.,
TCC increase/decrease after precipitation), we added a second
criterion that no new precipitation event should start within 48 h.

Evaluation of Different Monitoring Strategies
We tested three different monitoring strategies to assess their
efficacy in TCC event detection and TCC peak concentration
estimation: (1) sampling at pre-defined, constant time intervals,
(2) random grab samples taken during working hours only
(Skeffington et al., 2015), and (3) targeted sampling (triggered
by precipitation events). The analysis was performed by
subsampling the high-resolution TCC data set, which was
assumed to represent the “true” temporal evolution of bacterial
concentration. Based on the definition of relevant precipitation
events above, the TCC data set was divided into separate TCC
events to be evaluated. Then, strategies 1 and 2 were tested for five
different sampling frequencies over the entire 99-day monitoring
period to detect these defined TCC events (with different total
numbers of samples): quarterly (1 sample), monthly (3 samples),
weekly (14 samples), bi-weekly (28 samples) and daily [99
(all days, strategy 1) and 70 (all working days, strategy 2)].
For strategy 1, the maximum number of possible realizations
(resulting from sampling interval and TCC event duration)
was evaluated. For strategy 2, 10,000 random realizations were
evaluated. For strategy 3, three (sub-)samples were taken, 24, 48,
and 72 h after the criterion for the precipitation volume was met.

Statistical Analysis
Two criteria were assessed for the evaluation of the different
monitoring strategies for each of the 11 events defined above:
(1) The efficacy in detecting a TCC event. This was quantified
for each event by the probability of taking a sample during an
event. (2) The accuracy in estimating the TCC peak concentration.
This was quantified for each event by the ratio (R) of the sampled
maximum divided by the true maximum. Subsequently, for the
comparison of monitoring strategies the 25%, 50% (median), and
75% quartiles were used. The three quartiles of all realizations
were calculated for each individual event for each sampling

frequency and both sampling strategies 1 and 2. In the case
of the targeted monitoring strategy (3), the second step was
performed with the highest measurement (i.e., closest to the true
maximum) of the three samples per individual event. The second
step was additionally performed excluding events 7 and 8, which
showed no substantial/relevant TCC increase despite fulfilling
the sampling trigger criterion (10mm within 24 h).

Software
All data analysis was carried out in R (R Development Core
Team, 2008) using standard packages (the full code is available
in the Supplementary Information).

RESULTS AND DISCUSSION

The overall goal of this study was to systematically assess the
temporal variability of karstic spring water microbial quality and
suitable monitoring strategies to accurately capture the prevalent
dynamics. To this end, we investigated two karstic springs from
the same geographical area based on the availability of a large
historical data set (Spring A) and the opportunity to install new
online monitoring equipment (Spring B). The investigations in
Spring A (section Precipitation-Induced Dynamics and Current
Grab Sampling Practice) cover the effect of precipitation events
and the implications resulting from infrequent grab sampling
practices by (1) illustrating the link between precipitation events,
increased spring discharge, and microbial contamination, (2)
establishing the suitability of flow cytometric TCC as a useful
parameter to follow bacterial dynamics in these springs, and
(3) estimating how many precipitation-induced contamination
events are missed by conventional monitoring. A detailed
analysis of online FCM data from Spring B (section Increased
Sampling Frequency Improves Contamination Event Detection)
illustrates how increasing the sampling frequency increases the
probability of detecting microbial contamination events. From
this data, we argue for an optimized, targetedmonitoring strategy
with event-based triggering and appropriate sampling intervals
(section Optimizing Contamination Event Detection Through
Targeted Sampling).

Precipitation-Induced Dynamics and
Current Grab Sampling Practice (Spring A)
Time-resolved data from Spring A shows that localized
precipitation in excess of 10mm in 24 h causes increased
discharge and microbial contamination of karstic spring water
(Figures 1A–C), in agreement with previous studies (Stadler
et al., 2008; Goldscheider et al., 2010; Butscher et al., 2011;
Page et al., 2017) and analogous measurement campaigns
in other springs in this region and at other times of the
year (Figure S1; other data not shown). As such, multiple
precipitation events will result in multiple contamination events,
characterized by both the frequency and magnitude of increases
in relevant microbial variables. During dry-weather periods
(Figure 1A), low concentrations of indicator organisms (0–2
cfu 100 ml−1) were detected (Figure 1B), suggesting a minor
input from precipitation-independent sources. In contrast, the
48-h sampling after a localized precipitation event revealed two
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distinct peaks in both Enterococcus and E. coli concentrations
(up to 150 and 30 cfu 100 ml−1 respectively, Figure 1B).
Time series of both indicator organisms followed a clear trend,
with rapid increases and slightly slower decreases after peaking
(Figure 1B). HPC exceeded 1,700 cfu ml−1 after precipitation
events and were lower (314.5 ± 149.7 cfu ml−1) during the
dry weather periods (Figure 1C). Compared to results for
indicator organisms (above), HPC results were more variable
between consecutive time points, making the contamination
event difficult to track. TCC was low (48,600 ± 6,400 cells ml−1)
during dry weather periods and reached more than 200,000
cells ml−1 after precipitation events (Figure 1C). Of the four
microbial measurements, TCC evolved most consistently (i.e.,
lowest variation between consecutive time points). From this we
draw a first conclusion that TCC data is particularly suitable to
describe both dry weather conditions as well as precipitation-
induced dynamics in bacterial concentrations in karstic springs.
Importantly, the temporal evolution of indicator organisms and
TCC was comparable, although no direct proportionality was
found (data not shown).

When expanding the observation period to a detailed set of
precipitation and discharge data during 12 consecutive months
(2014–2015), it is evident that a total of 31 major precipitation
events occurred, which exceeded 10mm in 24 h (Figure 1D).
All of these precipitation events caused noticeable increases in
spring discharge (Figure 1D). Hence, for this spring and this time
period, precipitation events were frequent and thus precipitation-
induced contamination events can be expected to be equally
frequent. From these combined observations, we infer that
historical precipitation data can reasonably be used to estimate
the number of contamination events in the spring water.

Based on this argument, we subsequently evaluated regional
precipitation data during 14 years (2002–2015) and found that
380 major precipitation events (>10mm within 24 h) occurred
(data not shown). In the same historical period, a total of 100
water samples was analyzed by the responsible authority in the
course of routine monitoring campaigns of this spring (quarterly
samples from 2002 to 2012 and monthly samples from 2013 to
2015) (Table 2, Figure 1E). Of these conventional grab samples,
<30% tested positive for indicator organisms, Table 2). Based on
the historical data, Spring A appears to have experienced rather
few contamination events and most of these were of moderate
magnitude (Figure 1E). Furthermore, because the number of
grab samples with elevated bacterial concentrations was low,
it is conceivable that they may be (falsely) considered to be
outliers due to contamination during sampling or analysis.
In stark contrast, the results from the auto-sampler campaign
(Figures 1A–C) strongly suggest that (1) the spring actually
experienced substantial bacterial peak loads after precipitation
events and (2) the high concentrations of Enterococcus and E.
coli occasionally detected with grab sampling (Figure 1E) were
probably real detections of precipitation-induced contamination
events.

On the above-discussed premise that the 380 major
precipitation events between 2002 and 2015 most likely
caused substantial increases in spring discharge and bacterial
concentrations, the quarterly sampling strategy (2002–2012)

only detected at most 6% (18 measured samples >0 cfu
100 ml−1 vs. 292 major precipitation events). When taking
into account the observation of occasionally low detection of
indicator organisms during dry-weather periods (Figure 1B)
and the median values for the samples above 0 cfu 100 ml−1

being similarly low (Table 2, Figure 1E), the actual detection of
precipitation-induced contamination events was probably even
lower. Analogously, the monthly sampling strategy (2013–2015)
detected at most 10% of contamination events (9 measured
samples >0 cfu 100 ml−1 while 88 major precipitation events
were recorded).

In summary, the data shows that the conventional monitoring
strategy based on infrequent grab sampling was ineffective in
detecting the frequency of precipitation-induced contamination
events in karstic springs and failed to quantify the magnitude
of these events. Importantly, these findings were not limited to
this specific spring (Spring A) and were confirmed in a similar
assessment of Spring B, with a known record of generally high
microbial loads (Figure S1).

Increased Sampling Frequency Improves
Contamination Event Detection (Spring B)
An obvious strategy to improve the probability of detecting
and correctly quantifying contamination events in any system
is to sample more frequently. In this respect, continuous online
microbial monitoring presents an interesting future solution
(Besmer et al., 2014; Besmer and Hammes, 2016; Page et al.,
2017). Online FCM data from Spring B (7,878 measurements at
15min interval in 3 months) shows the frequency andmagnitude
of TCC increases during precipitation-induced contamination
events (Figure 2A). Based on the precipitation event definition
above (>10mm in 24 h), a total of 11 precipitation events, each
followed by an increase in TCC, were identified (Figure 2A).
We subsequently performed a theoretical sub-sampling of this
online TCC data set to evaluate different monitoring strategies.
The probability to detect elevated TCC as a result of precipitation
events was assessed for (1) constant sampling intervals and
(2) random sampling during working hours, at frequencies
of quarterly (1 sample), monthly (3 samples), bi-weekly (28
samples), weekly (14 samples), and daily (99 samples) sampling.

The monitoring strategy with constant sampling intervals
performed slightly but consistently better compared to the same
number of samples taken randomly during working hours,
but the differences were small (Table 2, Figures 2B,C). For
the widespread conventional monitoring strategy of quarterly
or monthly sampling, the average probability to detect an
individual event of elevated TCC was 9.6 and 28.9% respectively
at constant sampling intervals. This probability increased to
85.5% for bi-weekly and to 98.6% for weekly sampling and
reached 100% for daily sampling (Table 3, Figure 2, Figure
S2). If samples were taken randomly but during working
hours only, the probabilities to detect the TCC events were
consistently lower for the same number of samples but reached
100% for daily sampling as well (Table 3, Figure S3). While
daily sampling is effective in detecting the events, it is not
a logistically, practically or financially realistic strategy for
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TABLE 2 | Monitoring data for indicator organisms during 14 years as part of conventional monitoring of drinking water microbial quality by responsible authorities based

on infrequent quarterly (Q) (2002–2012) and monthly (M) (2013–2015) grab sampling in Spring A, displayed in Figure 1.

Samples >0 cfu 100 ml−1

Concentration

Detected organisms Number of

samples analyzed

Number of positives Median Average Std. dev. Maximum

Q M Q M Q M Q M Q M Q M

Enterococcus 63 37 18 (29%)a 9 (24%)a 3.0 3.0 26.3 7.8 60.3 10.5 250.0 34.0

E. coli 63 37 14 (22%)a 8 (22%)a 1.5 2.0 16.3 13.3 42.0 31.4 160.0 91.0

Both 63 37 9 (14%)a 4 (11%)a – – – – – – – –

aPercentage of samples >0 cfu 100 ml−1 in all samples analyzed.

routine applications. At least bi-weekly sampling was needed
to reach detection probabilities >90% for this specific spring
(Table 2, Figures 2B,C), which is still a very resource-intensive
approach. Nevertheless, we used this sampling frequency
as the example for further comparison with optimization
strategies.

For risk evaluation, it is important to not only detect periods
of elevated bacterial concentrations, but also to quantify the
peak concentration of a given event to judge the magnitude of
pollution (Kistemann et al., 2002; Signor and Ashbolt, 2006).
Therefore, we used the accuracy of estimating TCC peaks after
precipitation as a second performance criterion for evaluating
different monitoring strategies. In the following assessment, we
evaluated the ratio R, i.e., the sampled maximum divided by
the true maximum (Figure 2, Table 3, Figures S2, S3). As can
be seen from Figure 3 and Table 3, the median peak estimation
improved with increasing numbers of samples. For a bi-weekly
sampling strategy, we found the median underestimation of
the true peak concentration (i.e., 1–R) to be 36% for constant
sampling intervals and 39% for random sampling during working
hours (Table 3, Figure 3) with some variation between individual
TCC events (Figures 2B,C, Figures S2, S3). Increasing the
sampling frequency also increased the values for the 25 and
75% quartiles but strong underestimation was still observed in
some realizations (Figure 3). This is due to the fact that the
peaks in TCC were often sharp (in the range of hours) and thus
even with a daily sampling strategy, the chances of not sampling
close to the peak remained substantial. In tendency, sampling at
constant intervals had a narrower range between the 25 and 75%
quartiles compared to random sampling during working hours
(Figure 3).

From the above analysis of different monitoring strategies
applied to this particular spring, the following observations can
be summarized:

(1) Increasing the sampling frequency strongly increased
the probability of detecting precipitation-induced
TCC events, decreased the median underestimation
of peak concentrations, and narrowed the range of
this underestimation (Table 3, Figure 3, Figures S2, S3,
Table S1).

(2) A bi-weekly sampling strategy resulted in average
detection probabilities >90% for TCC events and median
underestimation of peak concentrations below 39%.

(3) With a few specific exceptions, there was no substantial
difference in performance between the strategies of constant
sampling intervals (irrespective of working hours) and
random grab samples during working hours for the same
number of samples. This concurs with similar findings on
chemical measurements in surface waters (Skeffington et al.,
2015).

Although frequent sampling can achieve high detection
probabilities and reliable peak estimations, large labor and
cost requirements for these monitoring strategies renders
them unrealistic for most practical applications. Hence, given
limited resources and thus a limited number of samples that
can be processed, sampling strategies must be optimized to
focus on “meaningful” time periods. Furthermore, the goal of
utilities and practitioners is not necessarily to detect every single
contamination event, but to have the ability to detect any given
event at any given time. In the following section, such a targeted
monitoring strategy for precipitation-induced contamination
events in karstic springs is considered.

Optimizing Contamination Event Detection
Through Targeted Sampling
The basic idea of targeted sampling is to trigger sample collection
with data from an affordable and continuously available
measurement of a relevant variable. For the specific example of
karstic springs, precipitation or spring discharge measurements
can be used as an early-warning signal (Figures 1A,D, 2A),
indicating that a critical observation period is about to begin
and thus (increased) sampling and analysis would be valuable
(Madrid and Zayas, 2007; Stadler et al., 2008; Goldscheider
et al., 2010). In the following analysis, we used precipitation
events >10mm in 24 h as the early warning criterion for
triggering sampling. Subsequently a virtual sub-sampling of the
online FCM data set (Figure 2A) was performed, with three
samples collected at 24 h, 48 h, and 72 h after the event criterion
was met.
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FIGURE 2 | Overview of the 3-month observation period for total cell concentration (TCC) and precipitation (A). A minimum of 10mm of rainfall recorded over 24 h

marks the start of a TCC event (dashed gray lines). Each TCC event is numbered and color-coded throughout the figure. Circles indicate the three samples from the

targeted sampling (i.e., 24, 48, and 72 h after the start of a TCC event). (B–D) Show the distribution of the accuracy of peak concentrations of TCC for different

monitoring strategies based on multiple realizations. Numbers in brackets and opacity of boxes indicate the probability of TCC event detection. White circles indicate

the best result of the targeted sampling for direct comparison. Boxes represent 25%, 50% (i.e., median, black lines), and 75% quartiles. Whiskers represent 1.5-fold

interquartile ranges or minima/maxima when outside this range.

With this approach, the probability to detect an individual
contamination event was particularly high. In reality,
short (<24 h) TCC events, would be missed with this
approach because they would be over before the first
sample was collected (for example events 7 and 8 in
Figure 2). It can be seen from Table 3 (with and without
inclusion of events 7 and 8) that the targeted sampling
strategy (n = 33) exceeded the probability of detecting
the TCC events achieved with the two bi-weekly sampling

strategies (n = 28) samples in the same observation
period.

The median underestimation of the true peak concentration
of a TCC event (i.e., 1–R) was 11% based on the highest
TCC sample (Table 3; range for individual TCC events: 6–54%,
Table S1). Thus, the targeted sampling performed 25%-points
better than the bi-weekly constant interval sampling (Figure 3,
Table 3). For individual TCC events, the peak estimations
of the targeted sampling were 3–34%-points closer to the
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TABLE 3 | Overview of the different monitoring strategies and the resulting (1) probability to detect precipitation-induced TCC events and (2) accuracy of peak

concentration estimations of bacteria in karstic spring water during a 3-month observation period (Figure 2, Spring B).

Monitoring

strategy

Probability of TCC event detection Estimation of TCC peak concentration (R = sampled

maximum divided by true maximum)

n Average Range (%) Median (%)a 25% Quartile (%)a 75% Quartile (%)a Median range (%)b

Constant interval Quarterly 1 10 3–16 43 (31) 19 (17) 61 (59) 14–84

Monthly 3 29 10–48 44 (31) 19 (17) 62 (59) 14–84

Weekly 14 86 42–100 54 (47) 34 (29) 67 (68) 33–84

Bi-weekly 28 99 85–100 64 (64) 52 (49) 80 (84) 38–86

Daily 99 100 – 87 (89) 72 (82) 93 (93) 56–94

Randomly

(working hours)

Quarterly 1 9 2–15 41 (32) 20 (17) 62 (60) 16–83

Monthly 3 24 9–37 43 (36) 21 (18) 63 (64) 16–83

Weekly 14 71 35–91 51 (50) 32 (26) 68 (74) 23–85

Bi-weekly 28 91 63–100 61 (62) 41 (38) 84 (86) 38–87

Daily 70 100 – 81 (87) 55 (58) 92 (92) 46–93

Targeted 33 100 – 89 (90) 69 (72) 92 (92) 46–94

For the constant sampling interval and random sampling, multiple possible realizations were statistically summarized whereas for the targeted sampling only one realization exists in this

study. See Figure 3, Figures S2, S3 for graphical representations of the results and Table S1 for results of individual TCC events.
aFor the combination of all realizations for all 11 TCC events in Figure 3 (in brackets without events 7 and 8).
bFor the 11 individual TCC events; see Table S1 for all values.
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FIGURE 3 | Comparison of estimation of peak concentration (R = sampled maximum divided by true maximum) for different monitoring strategies and number of

samples calculated for all realizations for all 11 TCC events (see Table 3 and Table S1 for detailed values). For the targeted sampling, the values were calculated for

one realization only for all 11 TCC events and the best R values (i.e., closest to the true value) out of three samples taken per TCC event were used. White lines

represent the median, boxes represent 25/75% quartiles, whiskers represent 1.5 times interquartile ranges (or minima/maxima). Horizontal dotted lines are 25%, 50%

(median), and 75% quartiles of the targeted sampling for comparison with other strategies and numbers of samples.

true values except for the minor events 7 and 8 (where the
targeted sampling performed equally well and 9%-points worse
respectively) (Table S1). In addition, the targeted sampling
had much higher values and a narrower range for the 25
and 75% quartiles, which the other monitoring strategies
would only reach with daily sampling (Figure 3, Table 3). In
summary, the targeted sampling achieved a moderately higher
detection probability of TCC events and a considerably better

estimation of peak concentrations with a similar number of
samples.

In order to capture every single TCC event in our data
set, the targeted sampling strategy required 33 samples to be
taken and analyzed (compared to 28 samples for a bi-weekly
strategy). However, the strength of the targeted sampling lies in
that it provides the utility with the choice to sample any given
contamination event with high accuracy, rather than necessarily
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trying to detect every TCC event. Also, it is evident that if
a system experiences fewer contamination events with longer
periods in between events than seen in the above example, the
targeted sampling will become considerably more efficient than
the other two monitoring strategies.

Considerations on Generalization and
System Specific Characteristics
The presented approach is considered to be generally valid
for springs in geological settings and climatic regions that are
frequently influenced by precipitation-induced contamination
events (Stadler et al., 2008; Butscher et al., 2011; Delbart et al.,
2014; Meus et al., 2014; Sinreich et al., 2014). However, the
concepts discussed above are not limited to karstic springs,
and can be developed for different systems (e.g., riverbank
filtration, surface waters, treatment plants). In this regard,
targeted sampling strategies always need to be adapted to
the specific characteristics of the investigated system, and the
following aspects should be considered:

(1) The best variable to serve as the trigger for targeted sampling
should be identified based on an assessment of existing
data sets (e.g., precipitation data, operational data, online
measurements of abiotic variables) and ideally also initial
high-frequency microbial measurements (e.g., online flow
cytometry or auto-sampler campaigns), if available.

(2) The threshold of the trigger variable that leads to the start
of sampling is crucial for the detection probability of events.
Too low thresholds lead to unnecessary high numbers of
samplings of baseline conditions whereas too high thresholds
bare the risk of missing events. Initial high-frequency
microbial measurements will support the identification of
such thresholds.

(3) The lag time between exceeding the trigger variable threshold
and first targeted sampling should be selected such that
the latter ideally always occurs well before the peak of
the contamination event. Again, the system-inherent lag
times should ideally be extracted from initial high-frequency
microbial measurements (see also Delbart et al., 2014).

(4) The sampling interval and the number of samples per event
should be chosen such that the typical time scale of events in
the investigated system are adequately covered. This means
that the contamination peak always falls into the sampled
period and thus depends on lag time, sampling interval and
number of samples.

Implications and Practical
Recommendations
The suitability of TCC as a microbial process variable for
improved understanding of water resources shown previously
(Vital et al., 2012; Gillespie et al., 2014; Helmi et al., 2014) was
extended to the investigation of short-term dynamics in the
present study (Figure 1C). This highlights the value of measuring
TCC (or similar cultivation-independent variables) automatically
at high temporal resolution for microbial monitoring (Brognaux
et al., 2013; Besmer et al., 2014; Besmer and Hammes, 2016).
While TCC is not a direct hygienic indicator, it is one of the

most direct microbial variables that can be measured online
and is seen as a useful process variable to detect microbial
dynamics. Using online microbial measurements to drive a
targeted sampling approach allows the use of more advanced
methods, e.g., for specific fecal indicator organisms or direct
pathogen and/or community detection, at meaningful points
in time and comparison to long-term records (Figures 1B,E;
Stadler et al., 2008; Goldscheider et al., 2010; Butscher et al.,
2011).

While permanent online monitoring offers considerable

advantages (Janke et al., 2006) it will probably not be
practically and financially feasible for microbial water quality

monitoring in the near future – especially for smaller utilities.
However, the two examples in our study clearly show that
after initial high-frequency measurements during a limited

period, future targeted monitoring can be based on a moderate
number of samples, which can be handled with an auto-
sampler or even manual grab sampling and conventional

detection methods (e.g., indicator organisms). Our findings
clearly support the growing awareness that conventional water
quality monitoring approaches need to be improved to better

support risk assessment and system optimization (Petterson

and Ashbolt, 2016) and further confirm the high value of
automated, targeted sampling to this end (Stadler et al.,
2008).

Consequently, we propose the following practical

recommendations for improved monitoring of microbial
short-term dynamics in raw and treated drinking water

systems:

(1) Compile all available data and knowledge on possible

dynamics in water quality (e.g., precipitation data; online
measurements of discharge, conductivity; conventional
monitoring records).

(2) Prioritize systems or locations within a system (e.g., raw

water sources, treatment plants) with assumed or known
high variability in water quality based on the above data.

(3) Perform monitoring at the highest possible temporal

resolution for at least 10 events with available online
tools for direct (e.g., TCC) or surrogate (e.g., turbidity,
particle counter) detection of bacterial concentrations.

In natural systems, such as karstic springs, the possible
influence of seasonal differences should be taken into
account when performing high-frequency monitoring
campaigns.

(4) From the high-frequency data set, establish the causes and
the typical time scales of microbial dynamics.

(5) Specifically, identify the most suitable early-warning variable
(e.g., precipitation event, increase in spring discharge,
increase in turbidity) as a trigger for targeted sampling.

(6) Based on this compiled knowledge on the dynamics, test
different alternative monitoring strategies on the high-
frequency data set as was demonstrated in this study.

(7) Implement the best alternative strategy that delivers
sufficient information for the questions to be answered and
is feasible with the resources available (see also: Ward et al.,
1986; Harmel et al., 2006).
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CONCLUSIONS

• Bacterial concentrations in karstic spring water are usually
low during dry weather periods but increase substantially after
localized precipitation events.

• Conventional monitoring strategies, which are based on
infrequent grab sampling, substantially underestimate both
the number of contamination events and peak concentrations
of bacteria during such contamination events.

• TCC is a useful measurement to track precipitation-induced
contamination events in spring water.

• Emerging automated TCC measurement devices allow for the
collection of high-frequency data sets over extended periods
that can be used for a systematic evaluation of short-term
dynamics and monitoring strategies.

• Optimization of monitoring strategies should be site specific
and based on (1) systematic analysis of existing data sets and
(2) pilot studies with the highest possible temporal and spatial
resolution and information depth to enable an informed
optimization of a targeted monitoring strategy.

• While higher sampling frequencies generally improve both
the probability of event detection and the estimation of
microbial peak concentrations, targeted sampling is most
efficient and effective and can be applied flexibly for individual
contamination events.
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