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Abstract The spatial correlation of daily streamflows represents a statistical index encapsulating the
similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical
framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an exten-
sive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United
States. The analysis provides insight on how the observed heterogeneity of the physical processes that control
flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the vari-
ability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the
streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective
rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled
and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimat-
ing streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes
in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to
individuate hydrologically similar sites. Catchment outlets that are most correlated (q > 0:9) are found to be
characterized by analogous streamflow distributions across a broad range of flow regimes.

1. Introduction

The spatial and temporal variability of streamflows critically impact the life of riverine biomes and the secu-
rity of anthropogenic water uses (Postel & Richter, 2003; Sabo et al., 2010; Widder et al., 2014). Therefore,
understanding the physical processes that shape hydrological regimes across and along river basins repre-
sents a scientific problem with relevant socio-economic implications, including the development of strate-
gies aimed at restoring riverine habitats and at the design of optimal configurations of water
infrastructures.

The spatial correlation of daily streamflows represents an effective and synthetic index that quantitatively
encapsulates the similarity between the hydrographs at two arbitrary outlets (Archfield & Vogel, 2010).
Analogous discharge dynamics result from the spatial correlation of climatic and hydrological properties
in the relevant contributing areas (Skøjen et al., 2006). Characterizing hydrologic similarity between catch-
ments enables a deeper understanding on how heterogeneity of the underlying geomorphic and climatic
drivers is propagated through the hydrologic cycle and eventually affects spatial patterns of flow regimes
(e.g., Doulatyari et al., 2017; Schaefli et al., 2014; Lahaa et al., 2014). Exploring the spatial structure of
streamflows has been suggested to play an important role in a number of fields, ranging from the expan-
sion of existing hydrometric networks (Chacon-Hurtado et al., 2017; Messinger & Paybins, 2014) to the
identification of spatial patterns of ecological variables along stream networks (Isaak et al., 2014; Mc Guire
et al., 2014). Furthermore, it has been shown that streamflow correlation represents a better surrogate
than spatial proximity to individuate river sections characterized by analogous flow dynamics (Archfield &
Vogel, 2010). As a consequence, in regionalization techniques aimed at predicting streamflow regimes at
ungauged outlets (see, e.g., Bl€oschl et al., 2013), streamflow correlation could represent both a useful
index to individuate target (ungauged) and donor (gauged) sites, and a metric to classify or rank catch-
ments based on similarities of flow dynamics.
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Recently, Betterle et al. (2017) have developed a stochastic, physically based approach to characterize the
spatial correlation of daily discharges. The approach exploits a parsimonious framework with reduced com-
plexity that focuses on how the stochastic nature of rainfall propagates through the catchment-scale water
balance to flow regimes (Botter et al., 2007a, 2007b). Analytical expressions were identified that link the
streamflow correlation to the frequency and intensity of effective rainfall events in the contributing catch-
ments, and to the recession properties of the hydrograph. River network topology is properly accounted for
in that framework, since the effect on streamflow correlation resulting from the nested (or nonnested)
nature of catchments is considered in the definition of model parameters (M€uller & Thompson, 2015).
Thanks to the underlying hypothesis on streamflow formation and routing, the method causally relates flow
dynamics at two river sites with simple climatic and landscape features of the corresponding drainage
basins. Existing statistical and geostatistical methods used to estimate spatial patterns of flow statistics,
instead, typically overlook the physical description of runoff generation processes. Therefore, though versa-
tile and practice oriented, these methods prevent a direct link between rainfall and streamflow dynamics
and they are often challenged by the quantity and quality of the available data (Bl€oschl et al., 2013; M€uller
& Thompson, 2015; Skøjen & Bl€oschl, 2007). The analytical structure of the model proposed by Betterle et al.
(2017), combined with its parsimonious nature, allows a simple assessment of the sensitivity of flow dynam-
ics to different hydrological drivers, making the formulation applicable to a wide range of settings with
reduced computational efforts and low data requirements. Therefore, its use in sparsely gauged or unga-
uged regions is an appealing avenue of research, still largely unexplored.

In this paper, the framework proposed by Betterle et al. (2017) is utilized to investigate how observed inter-
catchment heterogeneity in the underlying physical processes (e.g., rainfall, runoff production, drainage
rates) impact the spatial variability of flow regimes. The method allows one to disentangle the effect of
intertwined climatic and landscape features on the spatial patterns of flow dynamics. The main research
hypothesis is that spatial gradients of climatic properties bear a fundamental and recognizable signature on
the cross-correlation of daily flows, which can be efficiently used to predict streamflow regimes in the
absence of discharge data. This research hypothesis is tested through a detailed application of the stochas-
tic approach to a set of catchments in a 75; 000 km2 region of the Eastern United States, where synchro-
nous daily rainfall and discharge data are available.

The specific goals of the study can be summarized as follows: (i) testing the performance of the analytical
approach, combined to different parameter estimation procedures, using observed streamflow and rainfall
data; (ii) quantifying the main heterogeneity of climatic and hydrologic attributes among the study catch-
ments and evaluating the impact of such heterogeneity on streamflow correlation; (iii) developing and test-
ing a method for predicting streamflow correlations in settings where discharge time series are not
available; and (iv) provide a proof of concept that the method can be used to predict streamflow regimes in
the absence of discharge measurements.

The paper is organized as follows: section 2 summarizes the analytical framework used to perform the anal-
ysis; section 3 presents the case studies and the hydrologic data. Section 4 discusses two alternative
approaches to estimate the parameters of the model. Section 5 discusses the performances of the models
and relevant results. Section 6 concludes the paper.

2. Methods

The steady state spatial correlation of daily streamflows at the outlet of two arbitrary catchments is studied
using a parsimonious physically based approach. The method is applicable to catchments not affected by
relevant water storages (lakes, reservoirs, or snowpacks) and where streamflow dynamics can be causally
linked to precipitation. The model is suited to catchments where the typical response time of the stream
network is shorter than 1 day (say, catchments with sizes up to about 10; 000 km2) (Betterle et al., 2017).
The linear, zero lag cross-correlation of daily discharge is analytically derived from the moment generating
function of the joint discharge dynamics at two selected outlets. The geomorphic and climatic features of
the contributing areas are captured by a parsimonious set of catchment-scale parameters that express the
frequency and intensity of effective rainfall events (i.e., the streamflow generating rainfall events), as well as
the recession rates in the two catchments. The theoretical framework relies on a number of simplifying
assumptions, which are summarized in the following.
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Daily streamflow dynamics within each catchment are seen as sequences of abrupt increases of discharge
(streamflow jumps) followed by recessions (Botter et al., 2007a; Claps et al., 2005; Doulatyari et al., 2015).
Streamflow recessions in between jumps are assumed to be exponential with rate k (i.e., 1=k is the average
catchment response time) (Botter et al., 2007c, 2013; M€uller & Thompson, 2015; Pumo et al., 2013). Stream-
flow jumps are seen as the response to effective rainfall events taking place in the contributing catchment,
where effective rainfall is defined as the fraction of rainfall that exceeds the water holding capacity of the
soil. Soil water dynamics during wetting-drying cycles are controlled by the water storage capacity of the
soil (i.e., soil porosity, rooting depth, field capacity) as well as vegetation and climatic factors (e.g., evapo-
transpiration, precipitation). The effective rainfall is therefore dependent on precipitation features and the
antecedent moisture of the catchment, which in turn is a function of soil, vegetation, and climate (Botter
et al., 2013; Milly, 1994; Porporato et al., 2004; Thompson et al., 2011). The effective rainfall within each con-
tributing area is modeled according to a Poisson process of frequency kit, where the subscript i identifies
one of the two relevant catchments (i 2 f1; 2g) and t denotes the ‘‘total’’ sequence of effective rainfall
events (all effective rainfall events in the catchment). The corresponding effective rainfall depths are
assumed to be exponentially distributed random variables with mean ait.

The streamflow correlation between two selected outlets is then studied by decoupling the ‘‘total’’
sequence of effective rainfall events into two independent subsets (see Figure 2 in Betterle et al. (2017)): (i)
effective rainfall events that occur simultaneously in the two catchments (joint events) and (ii) effective rain-
fall events that occur in only one of the two catchments (disjoint events). Joint and disjoint events are mod-
eled as independent Poisson processes and described in terms of mean frequency and mean effective
rainfall depth. In particular, k12 and ki represent, respectively, the frequency of joint effective rainfall events
and the frequency of disjoint events in the catchment i. Likewise, the distribution of the depths of joint and
disjoint events is assumed to be different, and the average effective rainfall depths in the catchment i dur-
ing joint and disjoint events are denoted as a12

i and ai, respectively. For a detailed summary of all model
parameters, the reader is directed to Table 1.

In this paper, three alternative analytical expressions for the spatial correlation between the streamflow
time series at two catchment outlets (qmodel) are considered (Betterle et al., 2017):
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where ra represents the correlation between joint effective rainfall depths in the considered catchments.
These expressions correspond to different assumptions on the depth distribution of effective rainfall events.
Equation (1) assumes that the effective rainfall depths of joint and disjoint events are described by the
same exponential probability density function (i.e., all effective rainfall events are described by the same
depth distribution). Equation (2) assumes that joint and disjoint effective rainfall depths are characterized
by two different exponential probability density functions (PDF) with means a12

i and ai, respectively. Equa-
tion (3) assumes two independent exponential PDFs for joint and total effective rainfall depths, with means
a12
i and ait, respectively. Therefore, equations (2) and (3) allow one to account for the effect of the diverse
physical processes that are possibly involved in the generation of joint and disjoint events (e.g., large-scale
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versus local convective or orographic events). Equation (1) represents the simplest model, and it can be
interpreted as a special case of equation (2) and (3) for ai5a12

i and ait5a12
i , respectively.

Equations (1)–(3) can ideally be decomposed into a number of factors that identify the contribution to
streamflow correlation associated to different hydrological processes, namely: (i) the relative frequency of
joint effective rainfall events (Fk); (ii) the intensity of effective rainfall events (Fa), and (iii) the features of
recession rates (Fk). Note that in equation (2) the effect of the frequency and intensity of events is blended
into a single term, Fð2Þka . The superscripts of the terms Fk; Fa , Fk, and Fka refer to the specific solution consid-
ered (equations (1)–(3)).

Note that the model is able to account for the topological arrangement of the considered catchments, as
the nested or nonnested nature of the two catchments is reflected in the frequency of joint effective rainfall
events (k12). Indeed, in case of nested catchments, k125min k1t; k2tf g5k1t (the subscript 1 indicates here
the inner catchment). The runoff produced from any nested subcatchment of a river indeed propagates
along the network and affects the streamflow dynamics in downstream sites. In case of nonnested catch-
ments, on the other hand, the frequency of joint events is typically smaller than the minimum runoff fre-
quency in the two catchments: k12 � min k1t; k2tf g. More details on the derivation of the model equations
and hypothesis are given in Betterle et al. (2017).

3. Case Studies and Hydrologic Data

The analytical model (equations (1)–(3)) is applied to 13 nested and nonnested catchments in a 75; 000 km2 region
of the eastern US (Table 2). The size of the study catchments, which are situated in North Carolina, Virginia, and Ten-
nessee, spans from about 100 to 5,000 km2 (Figure 1). All basins are weakly impacted by natural or artificial water
storages (reservoirs, lakes), and they are characterized by diversified geomorphoclimatic and landscape features. All
the study catchments belong to the MOPEX data set (http://www.nws.noaa.gov/ohd/mopex/, Schaake et al., 2006),
which provides an adequate record of hydrological variables including rainfall and streamflows. In particular,
streamflow time series at the outlet of each catchment, as well as mean areal daily rainfall records from 1948 to
2003 were used in this study. Streamflow data included in theMOPEX data set are provided by USGS (https://water-
data.usgs.gov/nwis/rt), whereas spatially averaged daily rainfall rates are computed based on the PRISM model
(http://www.prism.oregonstate.edu) (Daly et al., 2008). Minimum andmaximum average values of mean annual pre-
cipitation, mean annual streamflow, altitude, and slope across the study catchments are, respectively:
pmin2max53:025:4mm=d; qmin2max51:323:8mm=d; hmin2max548021220m; smin2max51:8–6:4%. Land cover
in the study area is rather heterogeneous and varies from evergreen needle leaf forest (0–50%) to deciduous

Table 1
Summary of the Parameters

Parameter Description

kit Average frequency of all effective rainfall events in catchment i
ki Average frequency of disjoint effective rainfall events in catchment i
k12 Average frequency of joint effective rainfall events in the two catchments
km Minimum between k1t and k2t
ait Average depth of all effective rainfall events in catchment i
ai Average depth of disjoint effective rainfall events in catchment i
a12
i Average depth of joint effective rainfall events in catchment i

~k it Average frequency of all rainfall events in catchment i
~k i Average frequency of disjoint rainfall events in catchment i
~k12 Average frequency of joint rainfall events in the two catchments
~a it Average depth of all rainfall events in catchment i
~a i Average depth of disjoint rainfall events in catchment i
~a12
i Average depth of joint rainfall events in catchment i

ra Correlation between the joint effective rainfall depths in the two catchments
r~a Correlation between the joint rainfall depths in the two catchments
ki Streamflow decay rate during recessions in catchment i

Note. Joint: refers to events occurring on the same day in both catchments; disjoint: refers to events occurring on dif-
ferent days in the two catchments; i5 1,2 identifies the two catchments.
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broadleaf forests (20–90%), grassland and cropland (0–15%) (University of Maryland land use classification; Hansen
et al., 2000). Despite the pronounced interseasonal variability of the mean discharge in the study area, mainly
induced by monthly patterns of potential ET along the year, there are no prolonged dry periods and significant car-
ryover effects between seasons in the region. Location and extent of the study area were selected based on the
appropriate density of stations with long-term synchronous streamflow and rainfall records, and because of the pro-
nounced geomorphoclimatic gradients observed in the region, which allow a broad range of seasonal flow regimes
and streamflow correlations to be explored.

From the 13 case studies, 78 combinations of catchment pairs can be identified. The analysis is car-
ried out at seasonal timescale, with seasons defined based on fixed calendar dates (spring: March,
April, May; summer: June, July, August; autumn: September, October, November; and winter: Decem-
ber, January, February). This leads to 312 couples of seasonal streamflow correlations (given N catch-
ments, the number of possible pairs of outlets is NðN21Þ

2 ). For each season, the streamflow (Pearson)
correlation coefficient between the discharge time series observed at two generic outlets 1 and 2
(qmeas) can be calculated as:

Figure 1. The study area includes 13 nested and nonnested catchments located in the eastern United States.

Table 2
Summary Information About the Study Catchments

Number USGS code Name
Area
(km2)

Min–Max
altitude (m a:s:l:)

Streamflow
gauging station State

1 03532000 Powell River 1,774 328–1,263 Arthur TN
2 03531500 Powell River 826 394–1,263 Jonesville VA
3 03528000 Clinch River 3,818 335–1,424 Tazewell TN
4 03490000 Holston River 1,738 370–1,442 Gate City VA
5 03504000 Nantahala River 134 958–1,643 Rainbow Springs NC
6 03550000 Valley River 269 482–1,532 Tomotla NC
7 03455000 French Broad River 4,812 317–1,925 Newport TN
8 03451500 French Broad River 2,448 570–1,925 Asheville NC
9 03448000 French Broad River 1,751 608–1,808 Bent Creek NC
10 03443000 French Broad River 767 634–1,808 Blantyre NC
11 03465500 Nolichucky River 2,085 469–2,002 Embreeville TN
12 03470000 Little Pigeon River 914 273–1,998 Sevierville TN
13 03512000 Oconaluftee River 477 573–1,877 Birdtown NC
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where q1ðjÞ and q2ðjÞ are the streamflow at the outlets 1 and 2 at day j, n is the number of recorded days,
and hq1i and hq2i are the sample averages of q1 and q2. Equation (4) is then used to evaluate model per-
formances as discussed in what follows.

4. Parameter Estimation

In the application of the proposed framework, a key issue is represented by the estimation of the model
parameters. Two procedures, which make use of different types of hydrologic data, are described in the fol-
lowing. Alternative procedures could be potentially identified depending on the actual data availability, a
feature which makes the proposed framework flexible, and applicable to different contexts.

4.1. Method A: Estimate of Model Parameters From Streamflow Time Series
According to the model formulation, each effective rainfall event produces a discontinuity in the hydro-
graph (i.e., an abrupt increase of discharge). The frequency of effective rainfall events (kit, ki, and k12) can
therefore be inferred from the observed number of jumps in the daily streamflow records at the relevant
outlets. The observed jumps are first classified as ‘‘joint’’ or ‘‘disjoint’’ according to their timing (joint events
correspond to synchronous daily jumps in both catchments). Then, the frequency of total, joint, and disjoint
events is calculated by dividing the number of recorded events of each type by the duration of the consid-
ered time series. Similarly, the average effective rainfall intensity, a, can be evaluated from the magnitude
of the daily streamflow jumps. Since an exponential unit hydrograph is assumed by the model, the depth of
each effective rainfall pulse h(j) can be computed from the correspondent flow increment DQðjÞ as hðjÞ5
DQðjÞ
k (see, e.g., equation (1) in Betterle et al. (2017) and equation (4) in Botter et al. (2007a)). Consequently,

a5 hDQðjÞi
k . The analysis is carried out separately for each type of streamflow-producing events (namely total,

joint, and disjoint), enabling the estimate of the corresponding mean depths (ait, a12
i , and ai, respectively). In

addition, ra is estimated as the Pearson correlation coefficient between the joint effective rainfall depths in
the two catchments. Finally, the recession rates k1 and k2 are evaluated from the observed hydrographs by
means of recession analysis. Since the model assumes exponential recessions, the drainage rate ki is esti-
mated by fitting a linear regression on different pairs (DQDt ;Q) selected from the descending limbs of
observed hydrographs in the corresponding catchment (Basso et al., 2015; Ceola et al., 2010; Dralle et al.,
2015).

One of the main advantages of estimating the model parameters based on observed discharge data is that
the effect of soil moisture dynamics is implicitly accounted for. Indeed, streamflow dynamics portray the
signature of catchment-scale soil moisture variability, which in turn encapsulate the effect of climatic and
landscape attributes (e.g., Laio et al., 2001; Milly, 1994; Rodriguez-Iturbe et al., 1999; Settin et al., 2007). Nev-
ertheless, this method cannot be applied to catchments where streamflow data are lacking. Moreover, esti-
mating frequency and intensity of effective rainfall events from streamflow time series may be
cumbersome, and the result can be sensitive to the specific algorithm adopted to identify streamflow jumps
and recessions from discharge records (Cheng & Krajewski, 2016).

4.2. Method B: Estimate of Model Parameters in the Absence of Discharge Data
This estimation method is rooted in the idea that frequency and intensity of effective rainfall events are
strongly dependent on rainfall dynamics. As noted earlier, the frequency of effective rain is smaller than the
precipitation frequency because some rainfall inputs are buffered by soil moisture dynamics in the root
zone. However, particularly in cases where soil and vegetation features do not show pronounced heteroge-
neity, the intercatchment variability of rainfall properties is likely to be a primary control on the spatial vari-
ability of the frequency and intensity of effective rainfall events. Additionally, the main driver of the
streamflow correlation is represented by rainfall events leading to synchronous streamflow jumps at multi-
ple outlets (joint events), which may be triggered by large-scale and intense humid fronts, as observed in
the study area (Messinger & Paybins, 2014). Therefore, heterogeneity in the buffer capacity of the soil is
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likely to bear a reduced effect on the spatial variability of the frequency and magnitude of intense effective
rainfall events, limiting the impact of soil and vegetation heterogeneity on the flow correlation.

Based on these arguments, we assume that the terms Fk; Fa, and Fka in equations (1), (2), and (3) can be cal-
culated based on the rainfall data, instead of effective rainfall time series. More specifically, in equation (1)
we assume that:

k12ffiffiffiffiffiffiffiffiffiffiffiffi
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p �
~k12ffiffiffiffiffiffiffiffiffiffiffiffi
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p (5)

and in equation (2)
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where the tilde (�) denotes the average frequencies and intensities of rainfall events in the two catchments.
In particular, the parameters ~k it and ~a it are the mean frequency and the mean depth of the total spatially
averaged daily rainfall time series in the ith contributing catchment. Likewise, ~k12 and ~a12i are the mean fre-
quency and depth of joint rainfall events (i.e., rain events that bring nonzero precipitation in the two catch-
ments on the same day), while ~k i and ~a i are the analogous statistics for disjoint rainfall events. In addition,
the correlation ra between the intensity of joint effective rainfall time series in equations (1)–(3) is estimated
as the correlation between the corresponding joint rainfall events r~a . In the same vein, in equation (3), we
also assume that a121 a122

a1ta2t
� ~a12

1 ~a12
2

~a1t~a2t
, which means that the ratio between the product of the average joint effec-

tive rainfall depths and the product of the average total effective rainfall depths is assumed to be the same
as the corresponding ratio calculated based on the rainfall depths. The latter assumption is supported by
theoretical arguments, according to which the distribution of effective rainfall depths is weakly impacted by
soil moisture dynamics in case of exponentially distributed rain depths (Verma et al., 2011). The same
assumption has allowed robust estimates of flow duration curves under a wide range of climatic, landscape,
and vegetation features (Basso et al., 2015; Botter et al., 2007c, 2013; Doulatyari et al., 2015; Mejia et al.,
2014; M€uller et al., 2014; M€uller & Thompson, 2015; Pumo et al., 2013).

Finally, since the estimate of recession properties is challenging in the absence of discharge data (Biswal &
Marani, 2014; Doulatyari et al., 2015), and because of the limited impact of heterogeneity in recession prop-

erties on the spatial correlation of streamflows (Betterle et al., 2017), we assume for simplicity that 2
ffiffiffiffiffiffi
k1k2

p

k11k2
51

for all the selected pairs of outlets. More refined methods for the estimate of Fk can be developed depend-
ing on the need of each study (e.g., Dralle et al., 2015).

The parameter estimation procedure described in this section does not account for soil moisture dynamics.
However, when model parameters are directly estimated from rainfall records, the likely overestimation of
frequency and intensity of both joint and disjoint events can bring a limited influence on the ratios involved
in the definition of the terms Fk; Fa, and Fka (equations (1)–(3)), therefore reducing the sensitivity of the
modeled correlation to possible biases induced by the parameter estimation procedure. Additionally, the
evaluation of some model parameters (e.g., k12) is facilitated by the use of synchronous rainfall records,
which allows an easier assessment of the timing of rainy days and the corresponding rainfall depths.

Given the importance of an accurate estimate of the spatiotemporal gradients of rainfall, reliable informa-
tion on the spatial patterns of daily rainfall are a prerequisite for the successful application of the method.
This requires the availability of rainfall records at multiple rainfall gauges, properly interpolated by means of
geostatistical techniques (e.g., kriging) or physiographical methods (e.g., PRISM). Note that, a 1 mm thresh-
old on the spatially averaged daily rainfall over the relevant catchments has been applied in order to
account for canopy interception (Doulatyari et al., 2017; Lai & Katul, 2000; Laio et al., 2001).

5. Results and Discussion

5.1. Prediction of Streamflow Spatial Correlation and Its Seasonality
The observed correlation coefficient of daily streamflows at different pairs of outlets belonging to
the selected case studies (equation (4)) is compared to the estimates provided by the analytical
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model—equations (1–3)—using different parameter estimation procedures (sections 4.1 and 4.2). The dis-
tribution of the model parameters across the case studies is summarized in the boxplots in Figure 2. The
variability of the recession parameter k suggests heterogeneous drainage characteristics in the study
area, which includes catchments featured by different morphological characteristics in terms of size,
shape, relief, and land cover. The distribution of rainfall and effective rainfall frequencies is also shown in
Figure 2. As expected, the overall frequency of events (kit, ~k it) is larger than the frequency of joint and dis-
joint events. Effective rainfall frequencies are smaller than the corresponding precipitation frequencies
because of the soil water deficit created by evapotranspiration. Additionally the figure shows that effec-
tive rainfall intensities estimated from rainfall records (~a it; ~a12

i ; ~a i) are comparable to those estimated
directly from streamflow records (ait; a12

i ; ai). Figure 2 also displays the distribution of the correlation coef-
ficient between joint effective rainfall depths (ra) and joint rainfall depths (r~a ). Joint rainfall depths are
more correlated than joint effective rainfall depths (r~a > ra), and r~a exhibits a reduced intercatchment var-
iability. This is likely to be the effect of the heterogeneity of soil and vegetation features across the study
catchments.

Model performance is graphically assessed by means of scatterplots where the observed and modeled
streamflow correlations for the 312 pairs of seasonal discharge time series are compared. A quantitative
estimation of the model performance is also provided via the root mean square error (RMSE) between mod-
eled and observed correlations.

Figure 3 represents the model performance when parameters are estimated from discharge time series as
discussed in section 4.1. Equations (2) (Figure 3b) and equation (3) (Figure 3c) capture reasonably well the
observed variability of streamflow correlation across the study catchments. Conversely, equation (1) (Figure
3a) systematically underestimates the observed correlations because it disregards the difference between
the intensity of joint and disjoint effective rainfall events. The underestimation is enhanced for intermediate
values of qmeas, corresponding to catchments pairs where the frequencies of joint and disjoint events are
comparable. In this range, disregarding differences in the intensities of joint and disjoint events and assign-
ing potentially overestimated effective depths to disjoint events, can cause a visible decrease of qð1Þmodel . On
the contrary, qð1Þmodel is less biased for pairs of catchments characterized by high (or low) correlations, because
they experience mainly one of the two classes of events (i.e., joint or disjoints).

Among the three alternatives models, equation (2) is the best performer (RMSE5 0.094), followed by equa-
tion (3). Note that joint events can be difficult to individuate and quantify from streamflow time series, lead-
ing to underestimated values k12 or biased estimates of a12

i . This could explain the slight underestimation of
qð2Þmodel , that can however be addressed by including more sophisticated algorithms for streamflow time
series analysis. It is also worth noting that the performance of equation (2) further increases when the
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Figure 2. The boxplots on the left show the distribution of the streamflow recession rates (k), the frequency of total, joint,
and disjoint rainfall events (~kt; ~k12; ~k i) and the frequency of total, joint, and disjoint effective rainfall events (kt, k12, ki). In
the middle are the total, joint, and disjoint effective rainfall depths estimated from rainfall (~a it ; ~a12

i ; ~a it) and from stream-
flow records (ait ; a12i ; ai). On the right is shown the correlation of the joint effective rainfall depths (ra) and the correlation
of the joint rainfall depths (r~a ).
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intensity of effective events is directly estimated from rainfall time series (Figure 3d), with a RMSE equal to
0.056. Overall, the superior performances of equation (2) can be explained by the larger flexibility of this ver-
sion of the model, where the different intensity of joint and disjoint events is properly accounted for.

Figure 4 shows the results obtained by means of equations (1), (2), and (3) when the parameters are esti-
mated without exploiting discharge data, as discussed in section 4.2. As expected, a general decrease of
performance is observed. In particular, the higher correlation of joint rainfall events—if compared to the
corresponding correlation of effective rainfall events, see Figure 2—leads to overestimated streamflow cor-
relations in all versions of the model. In this case, the simplest version of the model, represented by equa-
tion (1) (Figure 4a), benefits more than the others from the use of rainfall-estimated model parameters and
outperforms equations (2) and (3). This can be explained by a more robust evaluation of synchronicity and
intensity of the events combined to a simpler model structure, which results in more reliable estimations
when less informative input data are available (rainfall versus streamflow). Figure 4d shows the performan-
ces of equation (1) when the assumption Fk5 1 is relaxed, and Fk is calculated from observed streamflow
records as in Figure 3. The increase of model performance is quite small (� 10%). This result hints at the lim-
ited impact of recession heterogeneity on the observed daily streamflow correlation in the study region.

The satisfactory performance provided by equation (1) with rainfall-estimated parameters seems to be an
appealing prospect for the prediction of streamflow correlation in catchments where hydrometric stations
are lacking (see section 5.3). In particular, the successful application of equation (1) highlights how the tim-
ing and intensity of joint and disjoint rainfall events is a primary factor controlling spatial patterns of stream-
flow correlation and should be considered in the selection of donors and receiving sites when estimating

Figure 3. The scatterplots compare the seasonal streamflow correlation calculated from daily discharge records (x axis)
and the streamflow correlation estimated by the analytical model (equations (1)–(3)) when the parameters are obtained
from streamflow records (y axis) for the 312 pairs of seasonal streamflow time series between the 13 study catchments.
Scatterplots (a), (b), and (c) refer to equations (1), (2), and (3) respectively. Scatterplot (d) shows the performances of equa-
tion (2) when the intensities of joint effective rainfall events are estimated directly from rainfall records.
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streamflow characteristics at ungauged sites. The improved model performances when soil moisture
dynamics are indirectly accounted for (parameters estimated based on the streamflow records as in section
4.1 and Figure 3) or when the assumption of homogeneous recession rates is relaxed (Figure 4d),
suggest the existence of cases where streamflow correlation cannot be explained solely by rainfall dynam-
ics. Nevertheless, homogeneous vegetation and morphological characteristics, possibly emerging from the
coevolution of landscapes experiencing analogous climate and rainfall regimes (Huang & Niemann, 2006;
Jefferson et al., 2010; Sivapalan et al., 2011), can justify the application of the framework in the absence of
discharge data. Especially when the identification of highly correlated sites is concerned.

Model performances are further analyzed in Figure 5, which displays the results obtained at annual time-
scale using equations (1), (2), and (3), when model parameters are estimated using different methods
(see caption of Figure 5 for details). The plots show good performance of the model in all cases with
RMSE< 0.10. These results suggest that the steady state formulation of the model is able to properly
incorporate the effect of the seasonal variability of the spatial heterogeneity of key hydrological
processes.

The plots in Figure 6 show the patterns of streamflow correlation across the study area as a function of the
distance between the center of mass of the contributing catchments. The observed trends are properly por-
trayed by the analytical formulation (in this case equation (2) is used with parameters estimated from
streamflow data). Figure 6 shows that the distance is a strong control on streamflow correlation. However, a
significant scatter and strong seasonal variability are observed, which are related to the anisotropic hetero-
geneity of climatic and landscape properties in the study area. Scattering and seasonal variability of the

Figure 4. The scatterplots compare the streamflow correlation calculated from daily discharge records (x axis) and the
streamflow correlation estimated by the analytical model (equations (1)–(3)) when the parameters are obtained directly
from rainfall (y axis) for the 312 pairs of seasonal streamflow time series between the 13 study catchments. Scatterplots
(a), (b), and (c) refer to equations (1), (2), and (3), respectively, assuming Fk5 1. Scatterplot (d) shows the performances of
equation (1) when the streamflow recession parameters are estimated based on the discharge data.
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relationship between the spatial correlation of discharges and distance seem to be adequately captured by
the analytical model.

The seasonal streamflow correlation is above the annual average during spring and winter. On the contrary,
summer and autumn display a sharper decrease in correlation with increasing distance. Especially during
summer, intercatchment differences in terms of land cover (vegetation) and water retention capacity is pos-
sibly enhanced by higher evapotranspiration rates, increasing the intercatchment variability of the capacity
to buffer incoming rainfall through soil water deficit. Moreover, spatially heterogeneous soil moisture
dynamics and the presence of convective storms affecting only a limited number of sites in the study
region, eventually result in less correlated streamflow time series during summer (Messinger & Paybins,
2014). During spring and winter, instead, reduced spatial heterogeneity of rainfall is responsible for a milder
decrease of streamflow correlation with increasing distance. The reduced spatial heterogeneity in the
hydrological response during winter can be attributed not only to the increased homogeneity of rainfall but
also to enhanced runoff coefficients during this season (Doulatyari et al., 2015). On the other hand, high cor-
relations observed in spring can be related to the presence of large humid fronts causing frequent and
intense joint effective rainfall events over the entire study area.

The shift of seasonal streamflow correlation along the year in relation to model performances is further
investigated in Figure 7, where equation (2) is employed. A general shift toward more correlated stream-
flows is observed in winter and spring, whereas a general loss of correlation, and a visible increase in the
intercatchment variability is observed in autumn and summer. Performances are satisfactory across all the
four season (see also boxplots in Figure 7), with a slight tendency of the model to underestimate streamflow
correlation during summer. Instead, model performance tend to increase during spring (RMSE< 0.5).

Variations of streamflow spatial correlation along the year are a consequence of the intertwined seasonal
variability of climatic forcings and vegetation dynamics. Seasonal changes of average precipitation and
evapotranspiration, together with changes in their spatial autocorrelation structure, can lead to concurrent
effects on streamflow dynamics and possibly affect connectivity patterns along river networks during the
year. From a practical perspective, the quantification of the seasonal variability of the streamflow spatial cor-
relation can provide hints for an optimal use of water resources (e.g., hydropower, irrigation) through com-
prehensive management plans developed at regional scales.

5.2. Analysis of the Impact of Intercatchment Variability of Hydroclimatic Features
on the Streamflow Spatial Correlation
The analytical model allows an assessment of how different climatic and hydrologic factors influence
streamflow correlation. The histograms in Figure 8 represent the frequency distribution of the factors Fka
and Fk in equations (1) and (2) for the 312 pairs of case studies. Given the multiplicative nature of these
equations, values of F approaching 1 indicate a limited impact on the correlation of daily flows. Figure

Figure 5. The scatterplots compare the streamflow correlation calculated from daily discharge records (x axis) and the
streamflow correlation estimated by the analytical model (y axis) for the 78 pairs of annual streamflow time series selected
from the 13 study catchments. In plot (a), streamflow correlation is estimated by means of equation (1) when Fk and Fa
are obtained from rainfall data and Fk is estimated from discharge time series. In plot (b), streamflow correlation is esti-
mated by means of equation (2) when Fk and Fk are obtained from streamflow records and Fa is obtained from rainfall
records. In plot (c), streamflow correlation is estimated by means of equation (3) when model parameters are obtained
from streamflow records.

Water Resources Research 10.1002/2017WR021144

BETTERLE ET AL. STREAMFLOW CORRELATION AND FLOW REGIMES 10,364



Figure 6. The seasonal streamflow correlation decreases with increasing catchment distance (distance measured from
the centroids of the relevant basins). The figure shows the observed streamflow correlation and the analytical streamflow
correlation obtained using equation (2) with parameters estimated from discharge as a function of the intercatchment
distance.

Water Resources Research 10.1002/2017WR021144

BETTERLE ET AL. STREAMFLOW CORRELATION AND FLOW REGIMES 10,365



8 shows that the frequency and intensity of effective rainfall events are the main driver of streamflow spatial
correlation, with a limited impact of heterogeneous drainage rates in most cases (hFki50:98). However, the
left tail of the frequency distributions of Fk indicate that, in a limited number of cases, remarkable drops of

Figure 7. The scatterplots show the seasonal shift of streamflow correlation throughout the year. Summer and autumn
display generally lower and more heterogeneous streamflow correlation, whereas streamflow dynamics are generally
more correlated during spring and winter. Here equation (2) with streamflow-estimated parameters is employed. The
grey circles refer to model performances during the other seasons. The lower boxplots highlight how observed and mod-
eled streamflow correlation changes between seasons. The model properly reproduces the observed variability in stream-
flow correlation with some underestimations in summer and winter.
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streamflow correlation can be induced by enhanced differences between the recession rates in the two
catchments.

Figure 9 investigates how the heterogeneity of catchment-scale hydrological drivers (left plots), propagates
to the streamflow correlation through the corresponding factors Fk; Fa , and Fk (right plots). The analysis is
carried out using equation (1) whose parameters are evaluated as detailed in section 4.2. To quantify the
diversity of the relevant hydrological drivers between the two sites, a synthetic dimensionless index of het-

erogeneity is defined as Vð�Þ5 j�12�2 j
�11�2 (where * can refer to kt, a12 or k) (Betterle et al., 2017). Since Vð�Þ 2 ½0;

1�; Vð�Þ50 represents the case of perfect homogeneity, whereas Vð�Þ51 represents maximum heterogene-
ity between catchment pairs with respect to the parameter �. The frequency distributions of VðktÞ; Vða12Þ,
and V(k) are shown in the left plots of Figure 9. Additionally, the frequency distributions of ra and k12

km

(km5min½k1t; k12t�) are shown. In the left plots of Figure 9, the position of the histograms indicates the
degree of spatial heterogeneity of the model parameters. The more each frequency distribution lies on the
right, the higher the difference of the corresponding attribute between catchment pairs. Figure 9e shows
that recession rates span a wide range of intercatchment heterogeneity. However, because of the reduced
sensitivity of qmodel on V(k), the impact of intercatchment variability of recession rates on the correlation of
daily flows is quite limited (Figure 9f). On the contrary, the frequencies of effective rainfall events are rela-

tively uniform in different sites, and the relative fraction of joint events (k12km
) exceeds 0.75 in most cases (Fig-

ure 9a). However, the impact of the heterogeneity of rainfall frequencies on the streamflow correlation is

significant (Figure 9b) because of the high sensitivity of qmodel to VðktÞ and k12
km
. The heterogeneity in the

intensity of effective rainfall events, both in terms of spatial variability of the mean depths and in terms of
lack of correlation between the joint depths, is quite pronounced (Figure 9c), leading to a notable loss of

streamflow correlation, with Fð1Þa < 0:75 in a significant number of cases. The marked sensitivity of stream-
flow correlation to the frequency and depth of joint flow-producing events demonstrates the key role of
effective rainfall events in controlling spatial patterns of streamflow dynamics.

5.3. Estimation of Streamflow Regimes in Ungauged Catchments
Flow regimes represent the temporal variability of discharge during a specific period. The variability of flow
conditions at a station is effectively embedded in the probability distribution of streamflows (PDF) or in the
corresponding flow duration curve (FDC). Therefore, seasonal and annual streamflow PDFs and FDCs pro-
vide important indications for optimal management of water resources, risk assessment, ecological studies,
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Figure 8. Frequency distributions of Fð1Þka and Fð1Þk (equation (1)) and Fð2Þka and Fð2Þk (equation (2)) for the 312 estimates of
seasonal streamflow correlations. Values of F� close to 1 mean that the hydrological process represented by � has a lim-
ited impact on the streamflow correlation. Vice versa lower values of F� identify the processes that have a stronger influ-
ence in reducing the correlation of daily flows between pairs of outlets. The corresponding histograms for equation (3)
are similar to those of equation (2) and hence they are not shown here.
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and river restoration practices. From an engineering perspective, for example, flow duration curves can pro-
vide valuable information for sizing artificial impoundments or in the design of run-of-the-river hydropower
plants (Basso & Botter, 2012; Gorla & Perona, 2013; Lazzaro et al., 2013; Perona et al., 2013).

Streamflow PDF can be directly estimated from empirical frequency distributions (Castellarin et al., 2004,
2007; Vogel & Fennessey, 1995). Unfortunately, streamflow gauging stations are often lacking, they are
unevenly distributed along river networks and/or available records might be too short for statistical infer-
ences. Therefore, the estimation of flow PDFs at sites where no stream gauges are available (ungauged
catchments (Bl€oschl et al., 2013)) is a key issue, with important scientific and practical consequences.

Here a new method to identify pairs of river sections characterized by similar flow regimes is presented. The
method is suited to predict streamflow probability distributions in the absence of discharge data by taking
advantage of the streamflow spatial correlations estimated by the analytical model employed in this paper.
Our hypothesis is that flow regimes reflect the similarities of streamflow dynamics, as quantified by the spa-
tial correlation of streamflows (Archfield & Vogel, 2010). Therefore, streamflow correlation could be effi-
ciently used to identify river sites having analogous flow regimes.

Equation (1) with rainfall-estimated parameters (see section 4.2) is used to individuate, among the study
catchments, those pairs that have high seasonal streamflow correlation and, therefore, are expected to
share the same type of flow regime. Figure 10 shows the comparison between the normalized seasonal

Figure 9. Frequency distributions of the variability index Vð�Þ5 j�12�2 j
�11�2 (�5kt ; a12; k) and of the factors Fð1Þk ; Fð1Þa and Fð1Þk

for the 312 estimated seasonal streamflow correlations. Equation (1) with parameters estimated based on rainfall records
is considered here. The histograms show how the factors F�—and therefore streamflow correlation—have a different sen-
sitivity to intercatchment heterogeneity in the corresponding hydrological descriptor �.
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Figure 10. Comparison between the normalized seasonal streamflow PDF and FDC observed at all catchment outlets expected to have high streamflow correla-
tion (qð1Þmodel > 0:9). The couple of catchments considered in each plot is displayed (the numbers refer to catchments as in Table 2 and Figure 1) as well as the corre-
sponding season (in brackets). Highly correlated catchments have very similar flow statistics.
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streamflow PDFs and FDCs observed at the outlets of all pairs for which qð1Þmodel > 0:9. The plots clearly show
how the model successfully identifies river sites characterized by very similar streamflow distributions. Note
the different scales on the horizontal axis of the PDFs and FDCs plots, which highlights how similarities of
flow statistics are not limited to the bulk of the distribution, but also include extreme events (q � hqi).

The framework is appealing to regionalize streamflow PDFs since it can be used to group catchments with
similar streamflow frequency distribution in the absence of discharge time series. Moreover, for any gauged
location the method can easily be applied (without any calibration) to identify all ungauged sites with simi-
lar flow regimes, requiring only daily meteorological data readily available in most settings. The limited dis-
crepancies between each couple of PDFs (FDCs) in Figure 10 witness the small errors that would be
gathered by exporting the streamflow statistics from a donor gauged catchment to a receiver ungauged
site within the study region using the proposed method.

In sparsely gauged areas, the framework can also be employed to classify streamflow regimes into erratic
versus persistent based on their flow variability (see Botter et al., 2013). Erratic flow regimes characterize
river sections that run dry quite often and whose flow dynamics display high variability (streamflow coeffi-
cient of variation CV> 1). On the other hand, persistent flow regimes are typical of river sites where flow is
usually close to the mean and are characterized by lower coefficients of variation (CV< 1). Erratic flow
regimes are normally associated to fast-responding catchments forced by sporadic effective rainfall. Instead,
catchments that slowly release consistent amounts of water stored during frequent effective rainfall events
are typically persistent (Botter et al., 2007c). Figure 11 shows the comparison between the CVs of catchment
pairs for which qð1Þmodel > 0:9. The plots suggest that this fundamental hydrological and ecological feature
(namely the coefficient of variation of daily flows and the associated degree of erraticity/persistency of the
regime) can be properly predicted by the proposed method, also in the absence of discharge data.

6. Conclusions

In this paper, a physically based analytical framework has been employed to investigate and quantify the
drivers of the steady state correlation between daily synchronous streamflow time series at the outlet of
two arbitrary catchments, at seasonal and annual timescale. To that aim, the model has been applied to a
set of case studies located in a 75; 000 km2 region in the eastern United States and used to evaluate the
influence played by spatial heterogeneity of observed hydrological drivers on the resulting streamflow cor-
relation. Additionally, a method to estimate model parameters in the absence of discharge data has been

Figure 11. Comparison between the seasonal streamflow coefficient of variation (CV) between the pairs of outlets with
qð1Þmodel > 0:9. The framework is able to properly distinguish between erratic (CV> 1) and persistent (CV< 1) flow regimes
(see text).
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proposed, which allows reasonable predictions of streamflow correlation in ungauged sites. The method is
suitable to individuate catchment outlets characterized by similar flow regime and can be used to estimate
streamflow frequency distributions in areas where discharge data are not available.

The following conclusions are worth emphasizing:

1. Model performances are satisfactory in most cases, with RMSE between observed and modeled correla-
tions typically below 10%. This suggests that, in spite of the simplifications adopted, the main physical
drivers of streamflow dynamics at pairs of outlets, and their influence on the spatial correlation of daily
flows, are properly accounted for. Nonetheless, larger-scale studies and/or more extensive benchmarking
will be necessary to better assess the merit and the potential of the formulation.

2. Equation (2) with parameters estimated from streamflow time series is the most accurate model in cap-
turing the observed variability of streamflow correlation across the study catchments. Equation (3) with
parameters estimated from discharge records provided performances similar to those of equation (2).

3. Equation (1) with parameters estimated directly from rainfall time series provided satisfactory results in
reproducing the observed spatial variability of streamflow correlation. This method does not require any
calibration on observed streamflow data; therefore, it is the best candidate to predict streamflow spatial
correlations in settings where precipitation records are available, but hydrometric stations are lacking.

4. Correlation exhibits significant seasonal variability. On average, higher correlations are observed in win-
ter and spring, whereas lower correlations and higher intercatchment variability are observed in autumn
and summer. The relationship between correlation and distance also varies throughout the year, mainly
in response to changes in the spatial structure of rainfall, showing longer correlation ranges in spring
and winter.

5. Frequency and intensity of effective rainfall events are the main driver of daily streamflow correlation.
This is a by-product of the pronounced sensitivity of the spatial correlation of discharge to heterogeneity
in key properties of flow-producing rainfall events (especially the frequency and intensity of joint
events).

6. In spite of the considerable variability of recession properties across the study catchments, heterogeneity
in the drainage rates of the catchments bears in most cases a limited influence on the observed stream-
flow correlation.

7. The streamflow spatial correlation, predicted in the absence of discharge data, can be used to identify
river sites characterized by similar flow regimes. Therefore, the proposed method can be employed to
regionalize streamflow statistics by exporting streamflow PDFs and FDCs from gauged to ungauged
sites.

In the proposed framework, key model parameters can be estimated from spatially averaged rainfall fields.
Therefore, the model can be applied to any arbitrary site along a river network without requiring spatially
distributed streamflow data or ad-hoc calibrations. As the approach accounts for the topological arrange-
ment of catchments, it could help the design of spatially optimized discharge gauging networks and the
redaction of streamflow correlation maps. Given its ability to quantify the influence of the heterogeneity of
hydrological variables on flow characteristics and their spatial patterns, the methodology can assist studies
concerning chemical, biological, and physical processes that are significantly impacted by the spatiotempo-
ral variability or river flows and their underlying hydroclimatic drivers.
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