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STRUCTURED ABSTRACT 21 

Aim Theory and experiments strongly support the importance of interactive effects of multiple 22 

factors shaping biodiversity, although their importance rarely has been investigated at 23 

biogeographically relevant scales. In particular, the importance of higher-order interactions 24 

among environmental factors at such scales is largely unknown. We investigated higher-order 25 

interactions of environmental factors to explain diversity patterns in a meta-community of 26 

aquatic invertebrates at a biogeographically relevant scale and discuss the findings in an 27 

environmental management context. 28 

Location All major drainage basins in Switzerland (Rhine, Rhone, Ticino and Inn; 41,285 km2). 29 

Methods Riverine α-diversity patterns at two taxonomic levels (family richness of all benthic 30 

macroinvertebrates and species richness of Ephemeroptera, Plecoptera and Trichoptera) were 31 

examined at 518 sites across the basins. We applied a novel machine learning technique to detect 32 

key three-way interactions of explanatory variables by comparing the relative importance of 33 

1140 three-way combinations for family richness and 680 three-way combinations for species 34 

richness. 35 

Results Relatively few but important three-way interactions were meaningful for predicting 36 

biodiversity patterns among the numerous possible combinations. Specifically, we found that 37 

interactions among elevational gradient, prevalence of forest coverage in the upstream basin and 38 

biogeoclimatic regional classification were distinctly important. 39 

Main conclusion Our results indicated that a high prevalence of terrestrial forest generally 40 

sustains riverine benthic macroinvertebrate diversity, but this relationship varies considerably 41 

with biogeoclimatic and elevational conditions likely due to community composition of forests 42 

and macroinvertebrates changing along climatic and geographical gradients. An adequate 43 

management of riverine ecosystems at relevant biogeographical scales requires the identification 44 

of such interactions and a context-dependent implementation.  45 

 46 

Keywords:  47 

Context dependency, conservation, ecological surprises, freshwater, land use, machine learning, 48 

macroinvertebrates, meta-ecosystem, metacommunity, multiple stressors.  49 
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INTRODUCTION 51 

Interactions among ecological drivers represent a major source of uncertainty in predicting 52 

species distributions (Araújo & Guisan, 2006; Guisan et al., 2006) and biodiversity patterns (Sala 53 

et al., 2000) because it is impossible to predict effects by studying each driver independently. 54 

This imprecision can lead to ‘ecological surprises’ (sensu King, 1995), which are defined as an 55 

unexpected outcome based on current ecological knowledge (King 1995). Interacting ecological 56 

drivers either can amplify or weaken individual effects through synergy or antagonism, 57 

respectively, depending on the prevailing context (Harvey et al., 2017). For instance, interactions 58 

among multiple stressors likely accelerate biodiversity loss (Sala et al. 2000) and even can be 59 

more important than additive effects in freshwater, marine and terrestrial communities, as 60 

reviewed in Darling & Côté, (2008) and Jackson et al. (2016).  61 

Current evidence relating to water use and the extent at which hydrological processes can 62 

spread stressors suggests that issues of multiple stressors are especially acute in freshwater 63 

ecosystems (Ormerod et al., 2010). River ecosystems are not only among the most diverse but 64 

also among the most threatened ecosystems globally (Dudgeon et al., 2006; Vörösmarty et al., 65 

2010). Indeed, local biodiversity in running waters is affected by various factors across multiple 66 

spatial scales, ranging from local to regional scales (Frissell et al., 1986; O’Neill et al., 1986; 67 

Poff 1997). These factors include catchment hydrological processes that reflect upstream 68 

terrestrial conditions (Richards et al., 1997), connections with adjacent riparian ecosystems 69 

(Vannote et al., 1980; Loreau, 2003; Soininen et al., 2015; Harvey et al., 2016), and linkages of 70 

local environments in dendritic river networks (Vannote et al., 1980; Ward, 1989; Altermatt, 71 

2013; Altermatt et al., 2013; Tonkin et al., 2018). Previous studies reported that major ecological 72 

surprises sometimes emerge, as these multiple factors often cause nonlinear interactive effects in 73 

freshwater ecosystems (e.g. Hecky et al. 2010; Ormerod et al., 2010).  74 

Whereas theory and experiments strongly support the importance of interactive effects of 75 

multiple factors in shaping biodiversity (Darling & Côté, 2008; Jackson et al., 2016), their 76 

importance rarely has been investigated at biogeographically relevant scales (Gieswein et al., 77 

2017). In particular, the importance of higher-order interactions (HOI) among environmental 78 

factors at such scales is largely unknown. We refer to HOI as the interactions among three or 79 

more variables whose effects cannot be explained by any subset of the tested variables. Not 80 

taking HOI into account can lead to a perceived context-dependency in observed biodiversity 81 
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patterns akin to an ecological surprise (Sala et al., 2000; Tonkin et al. 2016; Mayfield & 82 

Stouffer, 2017). A solution to dissipate ecological surprises caused by HOI could be to build a 83 

statistical model including all possible interaction combinations, but this is not feasible when 84 

several factors simultaneously determine such patterns (Côté et al. 2016; Mayfield & Stouffer, 85 

2017; Gieswein et al. 2017). For instance, the independent effects of 10 drivers can be 86 

reasonably tested, but their three-way interaction effects accounting for 120 combinations are 87 

difficult to statistically test (cf. as a rule of thumb, at least 5 to 10 independent data points are 88 

needed for each interaction and main factor to be considered; Burnham & Anderson, 2002). 89 

Machine learning algorithms can offer an alternative approach to study HOI (Hochachka et al., 90 

2007; Kelling et al., 2009). Machine learning algorithms have been developed to account for 91 

nonlinearity and HOI among variables without the requirement that the user specifies a priori 92 

which variables interact. 93 

Here, we investigated HOI of environmental factors across multiple spatial scales to better 94 

explain diversity patterns in a riverine meta-community. We asked the following questions: (i) 95 

are key HOI of environmental factors detectable from the numerous possible combinations using 96 

a machine learning technique? (ii) which environmental factors play a major interactive role? 97 

and (iii) how can interactive effects among environmental factors be considered for effective 98 

environmental management?  99 

Specifically, we investigated the effects of 76 environmental factors across regional 100 

(landscape) and local scales on α-diversity patterns of benthic aquatic macroinvertebrates (family 101 

and species level) among rivers (518 sites) in Switzerland. First, we performed variable 102 

selection, and estimated the effects of environmental factors individually, using a random forest 103 

(RF) algorithm (Breiman, 2001; Cutler et al., 2007). Then, we ranked the relative importance of 104 

all the three-way interactions of the selected variables (1140 and 680 combinations for family 105 

and species level, respectively) and examined interactive effects.  106 

This study focused on three-way interactions only, because HOI characteristics are largely 107 

unknown even at that minimal order (i.e. three-way). In addition, comparisons between different 108 

orders of interactions (e.g., three-way versus four-way) are very difficult because interactive 109 

effects can differ radically at each order as was shown for three-way versus two-way interactions 110 

(e.g. Billick and Case, 1994 and reference therein). 111 

 112 
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MATERIALS AND METHODS 113 

Our study used presence-absence data of aquatic macroinvertebrates in Switzerland from a 114 

governmental monitoring program (“Biodiversity Monitoring in Switzerland BDM”; BDM 115 

Coordination Office, 2014). The program is managed by the Federal Office for the Environment 116 

(BAFU/FOEN). Based on a systematic sampling grid across Switzerland, stream 117 

macroinvertebrates were collected by trained field biologists using a standardized protocol 118 

(BDM Coordination Office, 2014).  119 

Biogeography of Switzerland 120 

Switzerland is a relatively small country (41,285 km2) in the center of Europe (Fig. 1) composed 121 

of different biogeographical units. A large part of the country consists of the Alps (50% of the 122 

area) and Jura mountains (10% of the area). North of the Alps, a large, densely populated central 123 

valley extends from east to west (30% of the area), whereas several smaller valleys extend into 124 

sub-Mediterranean climates south of the Alps. Switzerland covers a large elevational gradient, 125 

ranging from 193 to 4634 m a.s.l. The country has a typical temperate climate with moderate to 126 

high precipitation. Several large European rivers originate in Switzerland, including the Rhine 127 

basin (draining 71% of the country, flowing into the North Sea), the Rhone basin (draining 20% 128 

of the country, flowing into the Mediterranean Sea), the Po basin (draining 5% of the country, 129 

flowing into the Adriatic Sea), the Danube basin (draining 3.5% of the country, flowing into the 130 

Black Sea), and the Etsch basin (draining 0.5% of the country, flowing into the Adriatic Sea) 131 

(Fig. 1). Due to its small size, the Etsch data were pooled with the Po data in the present study. 132 

Study sites and sampling methods 133 

The BDM currently monitors 518 study sites across Switzerland (Fig. 1), representing the 134 

diversity of stream macroinvertebrates in the country (see also Altermatt et al. 2013; Kaelin & 135 

Altermatt 2016; Seymour et al., 2016a, Seymour et al., 2016b). Sampling was conducted in 136 

wadeable streams, 2nd order or larger in size, and excluded standing waterbodies, 1st order 137 

streams and large rivers inaccessible by wading (Stucki, 2010). Each site was sampled once 138 

between 2009–2014 with seasonal timing of sampling adjusted with respect to elevation. For 139 

instance, the sampling period for a site was based on local phenology so as to collect as many 140 

macroinvertebrate taxa as possible for a given elevation (Stucki, 2010). 141 

The survey was completed using a standard kick-net (25 x 25 cm, 500 µm mesh) sampling 142 

procedure defined in the Swiss “Macrozoobenthos Level I” module for stream benthic 143 
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macroinvertebrates (BDM Coordination Office, 2014; Stucki, 2010; Altermatt et al., 2013). 144 

Briefly, eight kick-net samples were taken at each site to cover all major microhabitats within an 145 

area (10x the average width) and composited. Different habitat types (including various sediment 146 

types such as rocks, pebbles, sand, mud, submerged roots, macrophytes, leaf litter and artificial 147 

river-beds) at different water velocities were sampled. Samples were preserved in 80% ethanol 148 

and returned to the laboratory for processing. In the laboratory, all benthic macroinvertebrates 149 

were sorted and identified to the family level. The Ephemeroptera, Plecoptera and Trichoptera 150 

(EPT taxa) were identified further to species level by experts using standardized keys as found in 151 

BDM Coordination Office (2014).  152 

Diversity (response variables) 153 

We used the number of families (all macroinvertebrates) and the number of EPT species as 154 

response variables. Macroinvertebrate family richness is a commonly used indicator for 155 

assessing the ecological state of running waters (Lenat, 1988), whereas EPT species richness is 156 

one of the most commonly used variables in biodiversity studies. Because species level 157 

identifications are often unattainable, higher-order taxa richness is commonly used as a 158 

substitute. We conducted separate analyses for the two levels of taxonomic richness to better 159 

infer general patterns. 160 

Environmental factors (explanatory variables) 161 

We used 76 environmental factors (see Appendix S1 in Supporting Information). Only subsets of 162 

these factors were used in previous studies to explain biodiversity patterns in Swiss rivers 163 

(Altermatt et al., 2013; Kaelin & Altermatt, 2016; Seymour et al., 2016a). For subsequent 164 

interpretation purposes only, we grouped factors into four categories targeting different spatial 165 

scales and realms. Sample collection year was the only variable not falling into any category, but 166 

was included as a covariate to correct for any confounding effects of time. The four categories 167 

included: 168 

1) Regional category — factors determined by the geographical coordinates of a biological 169 

sampling site (5 variables). This category included two altitude measures (elevation at the site 170 

and the mean elevation of the catchment upstream of the site), two catchment classifications (3 171 

classes for major catchments and 9 classes for sub-catchments), and a biogeoclimatic 172 

classification (6 classes). 173 

2) Landscape category — terrestrial conditions of the upstream catchment of a biological 174 
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sampling site (35 variables). Local instream habitat is regarded as the outlet of a catchment 175 

affected by upstream hydrological processes and terrestrial conditions in the catchment (Allan, 176 

2004). Analysis considered catchment size and the relative proportion of land cover types. We 177 

used two land cover classifications. One classification distinguished 23 classes from the entire 178 

upstream catchment area (Kaelin & Altermatt, 2016) and the other distinguished 6 classes that 179 

considered influences of the adjacent upstream catchment area to the local site at lateral buffer 180 

distances of 500 m and 5 km (Seymour et al., 2016a). 181 

3) Riverscape category — instream and geometry conditions of the river network in the 182 

upstream catchment of a biological sampling site (13 variables). This category included size and 183 

length of the river network, a network fragmentation intensity, and geomorphological (e.g., 184 

riverbed slope), hydrological (e.g., mean discharge) and chemical (e.g., inflowing wastewater 185 

volume) conditions. 186 

4) Local category — Instream habitat conditions observed in-situ at a biological sampling 187 

site (22 variables). This category considered geomorphological features of channel cross-sections 188 

(e.g., width, depth, and their variability), riverbed conditions (e.g., mud deposition and attached 189 

algae), and aquatic conditions (e.g., turbidity and dissolved iron sulfide concentration). 190 

 191 

Random Forest modeling with variable selection 192 

We did not exclude any explanatory variable before analysis because the approach employed 193 

can (i) perform variable selection, (ii) evaluate the relative importance among highly correlated 194 

variables (Nicodemus et al., 2010; Bradter et al., 2013; Ryo et al., 2017; Bergmann et al. 2017), 195 

and (iii) fairly assesses the relative importance between continuous and categorical variables 196 

without bias (Hothorn et al., 2006; Strobl et al., 2008). We used the RF machine learning 197 

algorithm for performing multiple regressions with variable selection (Hapfelmeier & Ulm, 198 

2013).  199 

In short, the RF algorithm uses a model ensemble approach that constructs a large number of 200 

decision tree models (Breiman et al., 1984) and then takes an average from their outputs as a 201 

final output of the algorithm (Breiman, 2001). A decision tree is a nonparametric approach that 202 

partitions a sample into subsamples to minimize variation within each subsample. The model 203 

searches for an explanatory variable and its threshold value to partition a sample into two 204 

subsamples. The searching and partitioning procedure is done recursively until no better split is 205 

found. Employing the RF algorithm is beneficial when there are too many explanatory variables 206 

and interactions to model statistically (Breiman, 2001).  207 

The RF algorithm with variable selection by Hapfelmeier & Ulm (2013) takes two modeling 208 

steps. First, it performs a multiple regression using all explanatory variables to estimate a 209 
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statistical significance for each variable. For each variable, the RF algorithm estimates a p-value 210 

that is defined as the probability that the observed increase in validation accuracy could be due to 211 

chance alone (Hapfelmeier & Ulm, 2013). We set the significance level to 0.01 with Bonferroni 212 

correction by 76 variables (i.e. α = 0.000132) to account for Type I error. Second, using only 213 

significant variables, the RF algorithm performs a multiple regression to build the final RF 214 

model and to estimate a relative importance score for each variable. The relative importance 215 

score of each variable is quantified by evaluating how much model accuracy would decrease if 216 

the model removes the effect of a focal variable (Breiman 1996; Breiman, 2001).  217 

After variable selection, we ranked the relative importance scores of the explanatory 218 

variables and visualized their modeled relationships to each response variable. Partial 219 

dependence plots were used for visualization (Hastie et al., 2009), which delineate modeled 220 

associations between a few variables (and their interactions if specified) while marginalizing 221 

(averaging) out the effects of all the other variables. The procedure calculates a partial 222 

dependence score that indicates the relative extent of the response variable. In our case, the 223 

higher the score, the higher taxonomic richness.  224 

Explanatory power is evaluated based on the coefficient of determination by comparing 225 

observed with fitted values as explained variance. In addition, validation accuracy is evaluated 226 

based also on the coefficient of determination using 1/3 of the samples that were omitted for 227 

parameter fitting, following standard RF procedures (Breiman, 1996). The RF algorithm avoids 228 

over-fitting by averaging a large number of decision tree models, which in turn, minimizes bias 229 

(Breiman, 2001).  230 

The entire script we used is available at github (https://github.com/masahiroryo/R_HOI). We 231 

used the R script available in Hapfelmeier and Ulm (2013), which is based on ‘ctree’ and 232 

‘cforest’ functions of the ‘party’ package (Strobl et al., 2009) in R 3.3.2 (R Development Core 233 

Team, 2016). All parameters in the functions were set to default settings. We set 1,000 decision 234 

trees in the RF model, after confirming that this amount satisfactorily stabilizes a performance of 235 

RF models in comparison to 100 and 500 decision trees in preliminary analyses. For p-value 236 

estimation, each variable was permuted 5,000 times. The explanatory power was evaluated using 237 

the ‘cforeststats’ function of the ‘caret’ package (Kuhn, 2015). We used the ‘mlr’ package for 238 

partial dependence plots (Bishl et al., 2016).  239 

Assessment and visualization of HOI effects 240 

We quantified the relative importance of three-way interactions of all possible combinations 241 

among the selected variables (see results; of 76 variables, the variable selection approach chose 242 

20 variables that accounted for 1140 combinations (= 20C3) for macroinvertebrate family richness 243 

and 17 variables that accounted for 680 combinations (= 17C3) for EPT species richness). We 244 

employed the approach of Kelly & Okada (2012) that quantifies the relative importance of 245 

variable interactions based on permutation with RF. As Kelly & Okada (2012) was limited to 246 

two-way interactions, we extended their work to three-way interactions based on mutual 247 

information theory (McGill, 1954; Anastassiou, 2007; Williams & Beer, 2010). The relative 248 
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importance score, which quantifies the degree of effect of the three-way combinations of 249 

variables A, B, and C, is defined as: 250 

E(A∩B∩C) = E(A) + E(B) + E(C) –{E(A ∪B) + E(A ∪C) + E(B∪C)} + E(A∪B∪C) 251 

where, E( ) represents the importance score based on the permutation approach (Kelly & 252 

Okada, 2012). A∩B is the effects of the interaction between variables A and B, excluding their 253 

independent effects. A∪B is the total effects of variables A and B, including both independent 254 

and interactive effects.  255 

E(A∪B) was calculated by simultaneously permuting variables A and B and then 256 

calculating the mean decrease in validation accuracy (Kelly & Okada, 2012). E( ) is quantified 257 

for each tree model and then averaged across all tree models. Eventually, E(A∩B∩C) equals 258 

the difference between synergistic and redundant information (Anastassiou 2007; Williams & 259 

Beer, 2010). Redundant information means that both variables partially share the same 260 

information (cf. correlation). A value can be either negative (redundant) or positive (synergistic), 261 

and being close to 0 indicates no interaction. The R function intimp we developed is also 262 

available at github (https://github.com/masahiroryo/R_HOI). 263 

After assessing the relative importance for all possible three-way combinations, we focused 264 

on some of the highest values (i.e. the most synergetic combinations) and visualized some 265 

representatives to confirm interaction patterns, again using partial dependence plots. We focused 266 

on the top 10 combinations. We decided to set this threshold as an absolute value instead of 267 

relative value such as percentile because the total number of combinations was unknown before 268 

performing variable selection (e.g., 70,300 combinations would appear if all 76 variables remain, 269 

but only 10 combinations would appear if 5 variables remain). Note that the mutual information 270 

theory approach does not estimate confidence interval and statistical significance, meaning that 271 

we cannot rely on null hypothesis testing to assess importance. For visualization, we avoided 272 

variable combinations where value combinations are physically impossible. For instance, the 273 

elevation at a site cannot be higher than the mean elevation over the upstream catchment. 274 

 275 

RESULTS 276 

Macroinvertebrate family richness among sites ranged from 1 to 39 taxa with a median of 20, 277 

while EPT species richness ranged from 0 to 36 with a median of 16 (Fig. 1). Macroinvertebrate 278 

family and EPT species richness was highly correlated (Pearson’s r = 0.81). Of 76 explanatory 279 

variables, 20 and 17 variables were finally selected (Fig. 2) for the RF models of 280 

macroinvertebrate family and EPT species richness, respectively, and their association patterns 281 

were individually estimated (Fig. S1 in Appendix S2). Overall, the explanatory power was 58% 282 

of the variation in macroinvertebrate family and EPT species richness (validation accuracy: 40% 283 

and 35%, respectively).  284 
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According to the relative importance of individual factors, regional and landscape factors 285 

were dominant drivers (Fig. 2). Elevation, the relative proportion of forest land cover, and 286 

biogeoclimatic classifications were ranked within the top 5 for both richness measures (Fig. 2). 287 

Specifically, both richness measures were monotonically declining above 1000 m, were 288 

decreasing where the relative proportion of forest land cover within any buffer distance was 289 

lower than 20–30%, and were lower in the central Alps regions than in other regions (Fig. 3 and 290 

Fig. S1).  291 

More than 97% of the possible three-way combinations had importance scores near zero, i.e., 292 

between −0.1 and 0.1 (1124 out of 1140 combinations for macroinvertebrate family richness and 293 

663 out of 680 combinations for EPT species richness). Less than 20 combinations exceeded an 294 

importance score ≥0.1 for both richness measures (Fig. 4). This indicates that only a few 295 

three-way interactions explained both richness measures meaningfully. Same as the relative 296 

importance of individual factors (Fig. 2), elevation, the relative proportion of forest land cover, 297 

and biogeoclimatic regions were the most important factors interacting for explaining both 298 

richness measures (Table 1). For instance, the top combination for family richness revealed a 299 

score of 1.2%, which is 13.3 times higher than the random expectation (100% × 1/1140 = 300 

0.088%). 301 

The impact of key factors (Table 1) on diversity patterns was nonlinear and interactive, as 302 

shown in representative examples for diversity patterns explained by the interactions of 303 

biogeoclimatic regions, elevation, and the relative proportion of forest land cover (Fig. 5). Most 304 

distinctly, negative synergetic effects were found commonly where the relative proportion of 305 

forest land cover (5 km-buffer) was less than 20–30%, together with the conditions of over 2000 306 

m of elevation (at the bottom-foreground corner of each cube in Fig. 5). These interaction 307 

patterns were dependent on biogeoclimatic region. Variability in richness along these gradients 308 

was highest in the north flank of the Alps, Jura, and Central plains (Fig. 5a and Fig. S2), 309 

moderate in the south flank of the Alps (Fig. 5b), and lowest in the eastern and western Central 310 

Alps (Fig. 5c and Fig. S2). The variation caused by the interactions cannot be explained by their 311 

individual effects (Fig. 3). 312 

DISCUSSION 313 

Theory and experiments strongly suggest that interactions of multiple drivers, especially HOI, 314 

are a major source of uncertainty as ecological surprises (sensu King 1995) in predicting species 315 
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distributions and biodiversity (Sala et al., 2000; Araújo & Guisan, 2006; Guisan et al., 2006). 316 

However, HOI of environmental factors shaping biodiversity patterns at biogeographically 317 

relevant scales have been rarely systematically investigated because of too many possible factor 318 

interactions (Côté et al. 2016; Gieswein et al. 2017). Answering the first two study questions, the 319 

results showed that (i) a machine learning algorithm with mutual information theory can extract a 320 

few key HOI of environmental factors from numerous possible three-way interactions, and (ii) 321 

the three-way interactions of elevation, terrestrial land cover, and biogeoclimatic region were 322 

most important in explaining riverine macroinvertebrate diversity patterns across Switzerland.  323 

Our results suggest that a vast majority of possible three-way combinations are negligible (as 324 

shown by importance scores near zero; Fig. 4), while only a few may play a role as ecological 325 

surprises in shaping observed biodiversity patterns. Thus, a key aspect for understanding 326 

freshwater communities is to identify which of all possible factor combinations are relevant; this 327 

selection can be guided by the approach used herein. Our results are in agreement with Gieswein 328 

et al. (2017), who used a different machine learning approach to conclude that non-additive 329 

effects certainly exist but additive effects may prevail in structuring diversity patterns in streams 330 

at similar geographical scales. Neither study, however, compared models with and without 331 

interaction effects because of the nature of the applied techniques. The relative importance of 332 

interaction effects vs. individual effects still remains untested. 333 

The interaction effects of elevation-forest-biogeoclimatic combinations might be explained 334 

by the underlying ecological significance of riparian forests on streams in terms of the 335 

meta-ecosystem concept (Loreau et al., 2003; Gounand et al. 2018). Dense riparian forest 336 

coverage generally increases local macroinvertebrate diversity (e.g., Rios & Bailey, 2006). 337 

Riparian forests provide leaf litter as a nutritious resource and large woody debris that creates 338 

local habitat heterogeneity (Hilderbrand et al., 1997; Feld & Hering, 2007). Further, roots in soil 339 

influence biogeochemical conditions together with root-associated microbes (Schade et al., 340 

2001). Plant community composition, which shows turnover along an elevational gradient, can 341 

also be important for these functions. Further, plant community composition also is dependent on 342 

the available regional species pool, which, in turn, reflects biogeoclimatic conditions. Another 343 

possible explanation for an effect of elevation is a direct thermal influence on 344 

macroinvertebrates. As aquatic organisms tend to be more sensitive to stressors near their 345 
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thermal tolerance limits (Heugens et al., 2001), it is reasonable to assume that the negative 346 

effects of low forest coverage become stronger above 2000 m elevation. 347 

Biodiversity conservation requires the selective management of pivotal factors to effectively 348 

allocate limited resources and time (Pimm et al., 2001). Answering the last study question, our 349 

results suggest that the preservation of forest coverage is a priority to conserve riverine 350 

biodiversity. This is consistent with previous field-based studies (Kautza & Sullivan, 2015; Krell 351 

et al., 2015; Kaelin & Altermatt, 2016; Seymour et al., 2016a) and theoretical and experimental 352 

studies that predict the importance of cross-ecosystem exchange processes (Loreau et al., 2003) 353 

and patterns across landscapes (Harvey et al., 2016). Considering cross-ecosystem subsidies, 354 

such as nutrients, along land-use types in rivers (Kautza & Sullivan, 2015; Krell et al., 2015), 355 

disruptions or alterations to these subsidy exchanges are key mechanisms explaining how 356 

changes in the terrestrial matrix can spatially affect aquatic assemblages (Soininen et al., 2015). 357 

Considering the interactive effects that we found, it is important to develop a better 358 

understanding of how the contributions of forest on riverine biodiversity change along 359 

elevational gradients and among biogeoclimatic regions. 360 

Another implication for management is to conssider the appropriate spatial scale. For EPT 361 

species richness, the negative effect of low forest coverage was amplified where forest coverage 362 

was low within both 500 m and 5 km-buffered distances (1st rank for EPT in Table 1 and Fig. S2 363 

in Appendix S2). Ignoring this interaction in management practice may lead to an unexpectedly 364 

stronger reduction in diversity. To avoid this interaction, forest coverage within either 500 m or 5 365 

km-buffered distance needs to be preserved at >30% (Jackson et al., 2016). For instance, even if 366 

there is no forest coverage within 5 km-buffered distance, the negative effect may be 367 

compensated with >30% forest coverage within 500 m-buffered distance. Such cross-scale 368 

interactions are an emerging topic in ecology (Peters et al., 2007; Soranno et al., 2014) but have 369 

received little attention in multi-scale land use studies (Allan, 2004).  370 

Our approach captured the multiple biological patterns within the dataset much more 371 

accurately than previous modeling attempts. The explanatory power was two to three-fold higher 372 

than that reported in previous studies that analyzed subsets of variables from the same dataset 373 

(20–30%; e.g., Altermatt et al., 2013; Seymour et al., 2016a). Therefore, the limited power of 374 

explaining biodiversity in riverine ecosystems may not be necessarily due to inherent limitations 375 

of the system (Heino et al., 2015) and missing key processes such as species interactions, 376 
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large-scale dispersal dynamics, and demography (e.g., Urban et al., 2016), but also due to 377 

inherent limitations of the analytical methods applied. For example, the use of multi-process 378 

hierarchical or network-based statistical assumptions in ecology also can offer new insights into 379 

ecological analyses (Cressie et al., 2009; Grace et al., 2012, 2016; Harvey & MacDougall, 380 

2015).  381 

A recent review by Jackson et al. (2016) concluded that multiple stressors often interact with 382 

each other in freshwater experiments. This study and Gieswein et al. (2017), conducted at a 383 

much larger scale, also found some interactive effects on macroinvertebrate richness. However, 384 

Gieswein et al. (2017) found no interactive effects of environmental factors on diversity patterns 385 

of fishes and macrophytes. Such inconsistency highlights the urgent need to accumulate much 386 

more empirical evidence on interactive effects of multiple drivers at biogeographically relevant 387 

scales, especially HOI, toward concluding the importance of interactive effects across scales, 388 

organisms, and ecological levels.  389 
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Table 1 The 10 most important three-way interactions for local taxonomic richness of aquatic 610 

invertebrates in Switzerland. Combinations in bold are visualized in Figure 5. 611 

Rank Explanatory variables Score 

(a) Macroinvertebrate family richness: 1140 combinations among the 20 variables   

1 Elevation Elevation (mean) Biogeoclimatic class 1.17 

2 Elevation Biogeoclimatic class % forest cover (5 km) 0.84 

3 Elevation Biogeoclimatic class Carbonate rock/silicate rock 0.82 

4 Elevation Biogeoclimatic class % forest cover 0.81 

5 Elevation (mean) Biogeoclimatic class % forest cover (5 km) 0.74 

6 Elevation Biogeoclimatic class % aquatic cover (500 m) 0.70 

7 Elevation Elevation (mean) % forest cover (5 km) 0.68 

8 Elevation (mean) % agriculture cover (5 km) % forest cover (5 km) 0.65 

9 Elevation % agriculture cover (5 km) % forest cover (5 km) 0.65 

10 Elevation Biogeoclimatic class % agriculture cover (5 km) 0.60 

          

(b) EPT species richness: 680 combinations among the 17 variables   

1 % forest cover (500 m) % forest cover (5 km) Biogeoclimatic class 1.67 

2 % forest cover (500 m) % forest cover (5 km) Elevation 1.27 

3 % forest cover (500 m) % forest cover (5 km) % settlement cover (5 km) 1.15 

4 % forest cover (500 m) Elevation Biogeoclimatic class 0.94 

5 % forest cover (5 km) % forest cover Biogeoclimatic class 0.94 

6 % forest cover (500 m) % forest cover Biogeoclimatic class 0.94 

7 % forest cover (5 km) Elevation Biogeoclimatic class 0.93 

8 % forest cover (500 m) % forest cover (5 km) deciduous/coniferous forest 0.89 

9 % forest cover (500 m) Elevation (mean) Biogeoclimatic class 0.84 

10 % forest cover (500 m) % settlement cover (5 km) Biogeoclimatic class 0.80 

Footnote: 500 m and 5 km as buffer distance from the sampling site to the upstream catchment  612 
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FIGURE LEGENDS 613 

Figure 1. Local taxonomic richness (α-diversity) of riverine macroinvertebrates in Switzerland 614 

among 518 biodiversity monitoring sites: (a) family richness and (b) EPT species richness. Large 615 

lakes and main rivers are in dark blue. The different major drainage basins are color-coded on 616 

the map (see also inset): the river Rhine (light blue) drains into the North Sea, the river Rhone 617 

(pink) drains into the Mediterranean Sea, the river Danube drains into the Black Sea (salmon), 618 

and the remaining rivers (green) drain into the Adriatic Sea. 619 

Figure 2. Relative importance scores of selected explanatory variables (out of 76 variables) for 620 

local taxonomic richness (α-diversity) of riverine macroinvertebrates in Switzerland: (a) family 621 

richness and (b) EPT species richness. See Appendix S1 for variable description. 622 

Figure 3. Representative modeled relationships of explanatory variables for macroinvertebrate 623 

family richness: C, Central plain; J, Jura; N, North flank of Alps; S, South flank of Alps; E, 624 

eastern Central Alps; and W, western Central Alps. See Appendix S2 for all the variables. 625 

Figure 4. Frequency distributions of the relative importance measures of all possible three-way 626 

interactions. 627 

Figure 5. Representative interactive effects of biogeoclimatic region, elevation, and the relative 628 

proportion of forest cover within 5 km-buffer distance on macroinvertebrate family richness. The 629 

higher partial dependence score reflects a higher richness. See Appendix S2 for other examples.  630 
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