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Abstract Coal seam gas production involves generation and management of large amounts of co-
produced water. One of the most suitable methods of management is injection into deep aquifers. Field
injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts
of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of
data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied
through laboratory experiments, accompanied by the development of a surface complexation model (SCM).
A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected dur-
ing the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical pro-
cedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis
and alleviates a significant proportion of the computational effort required for predictive uncertainty quanti-
fication. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation
have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive
simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxida-
tion is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive
uncertainty quantification method can be implemented for a wide range of groundwater studies that inves-
tigate the risks of metal(loid) or radionuclide contamination.

1. Introduction

Coal seam gas (CSG) has become an important source of energy around the world in just over 30 years of
its commercial production (Clarkson & Bustin, 2011). USA and Australia are currently the main producers,
with Canada, China, India and various other countries planning to increase their investments in the CSG
industry. Production of CSG is achieved by reducing the groundwater pressure within the coal seams,
which releases methane from the coal in the form of gas. While methane is extracted, it is accompanied
by large volumes of co-produced water (Schraufnagel, 1993). Current projections indicate that the Austra-
lian CSG industry alone will extract on the order of 3,200 gigaliters (GL) of water from groundwater sys-
tems over the next 45 years, with an average production of 70 GL per year (GL/yr) (DNRM, 2016).
Management of large volumes of co-produced water is a potential concern due to the elevated water
salinity and the presence of residual organic substances. This water is managed in different ways at differ-
ent locations with the primary methods being disposal to surface waters and water reuse (Hamawand
et al., 2013). Most of the CSG production sites in Australia are based in the semi-arid regions of New South
Wales and Queensland where the release of large volumes of co-produced water into surface water sys-
tems could alter both natural flow and hydrochemical patterns, resulting in potentially significant ecologi-
cal impacts. Therefore at these sites, the injection of co-produced water into deeper aquifers after a
comprehensive treatment process is seen as the most viable and socially acceptable option, besides pro-
viding treated water for irrigation purposes.

Key Points:
� The study provides a methodology to
assess the potential geochemical
impacts of large-scale water injection

� Reactive transport modeling was
used to incorporate field and
laboratory experimental data to
understand arsenic mobilization
processes

� A new Monte Carlo framework was
developed to efficiently quantify the
predictive uncertainty of the
long-term fate of arsenic
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The site-specific technical and economic feasibility of large-scale CSG water injection depends on a combi-
nation of operational, hydrogeological and geochemical factors. Understanding the geochemical response
to the injection of CSG waters and the underlying mechanisms is important for predicting the long-term
groundwater quality evolution, and to prevent any undesired deterioration of the groundwater quality.
However, due to the often significant depth of the injection targets, significant costs of setting up infrastruc-
ture for an injection scheme, and the economic pressures of CSG production, the target aquifers generally
do not undergo detailed characterization either geochemically or mineralogically.

One of the most concerning geochemical risks to receiving aquifers is the potential for arsenic mobilization
from aquifer sediments (Neil et al., 2012). The release of arsenic has been observed at numerous managed
aquifer recharge sites around the world due to several different geochemical mechanisms. For example, the
injection of aerobic water can induce pyrite oxidation and subsequently, the release of arsenic incorporated
within the mineralogical structure (Wallis et al., 2010, 2011). Furthermore, McNab et al. (2009) showed that
the elevated pH of the recharged water induced desorption of arsenic at a managed aquifer recharge site
in California’s San Joaquin Valley. Also, Appelo and Vet (2003) and later Vanderzalm et al. (2011) reported
cases where elevated phosphate levels in the injectant caused the mobilization of arsenic through competi-
tive desorption.

The most valuable information for predicting geochemical impacts, including the risk of metal(loid) mobili-
zation by large-scale injection schemes can often be obtained from monitoring of short-term injection trials
(Seibert et al., 2016). The hydrochemical data collected during such trials can be analyzed and integrated
with any additionally available information from pre-trial geochemical characterization efforts and support-
ing laboratory experiments, such as batch sorption experiments. For example, the data obtained from labo-
ratory batch sorption experiments for metals or metalloids can be analyzed through geochemical models
that incorporate a surface complexation model (SCM). Subsequently, the SCM developed for the laboratory-
scale may be incorporated into the field-scale model and used for process-based predictions of the long-
term geochemical behavior through the application of reactive transport models (RTM). For example, Kent
et al. (2000) employed a semi-empirical SCM that was developed from laboratory experimental data to sim-
ulate zinc transport at the Cape Cod field site. Similarly, Curtis et al. (2006) investigated uranium transport in
a shallow alluvial aquifer beneath a former mill located near Naturita, CO, by using their laboratory-derived
SCM to describe U(VI) adsorption in a field-scale RTM. Also, Ma et al. (2014) used the SCM developed by Sto-
liker et al. (2011) to simulate the field-scale uranium transport processes at the Hanford 300A site under
highly transient flow conditions.

However, there are a number of challenges associated with this type of integrated, multi-scale modeling
approach. Natural aquifer sediments contain an assemblage of minerals and organic materials. The general-
ized composite approach for SCM (GC-SCM) (Davis et al., 1998) has been considered the best approach for tak-
ing into account the inherent chemical and physical heterogeneity of natural sediments. The GC-SCM is
calibrated to sediment-based sorption data and its parameters are estimated by inverse modeling. Although
the resulting GC-SCMs are generally nonlinear and their parameters can be estimated more effectively using
heuristic algorithms (Rathi et al., 2017), such as particle swarm optimization (PSO) (Eberhart & Kennedy, 1995),
there is an underlying uncertainty associated with these parameters. The quantification of this uncertainty is
often computationally infeasible for field-scale RTMs. When upscaling a SCM from the laboratory-scale to a
field-scale RTM, the differences in heterogeneity, i.e., the size and mass of the two systems can play a signifi-
cant role and must be accounted for. However, the effects of parameter uncertainty in the laboratory SCM
and on field-scale simulations have not been examined. We hypothesize that parameter uncertainty can lead
to significant predictive uncertainty when using a field-scale RTM to assess long-term geochemical behavior.
There have been some studies that have addressed computational considerations for predictive uncertainty
using simple RTMs. For example, Tartakovsky et al (2009) use sophisticated probability density function (pdf)
techniques, resulting in reduced computational effort, to explore uncertainty associated with reactive solute
concentrations for a simple, single-reaction, single-species synthetic case study. However, there is currently no
study addressing the complex multi-species, multi-reaction GC-SCM and its associated impacts on predictive
uncertainty in a real-world setting. Due to the complexity and numerical requirements associated with GC-
SCMs, it is likely that Monte Carlo methods are the most viable for quantifying predictive uncertainty associ-
ated with these models. However, since the CPU run-times of GC-SCMs are very fast, Monte Carlo procedures
can be quite effective, and their associated results can be up-scaled to the field-scale RTM.
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In this study, we explore the integration of laboratory-scale data and models into the analysis of a CSG
water injection experiment at the field-scale. We propose a new practical procedure for upscaling
laboratory-derived GC-SCM parameters to be used in a field-scale RTM for the subsequent quantification of
parametric and predictive uncertainty. Our approach alleviates a significant proportion of the computa-
tional effort required for predictive uncertainty quantification when using field-scale RTMs within a Monte
Carlo framework. This is accomplished by exploiting the extremely fast execution time associated with labo-
ratory based GC-SCMs. We use this framework to identify and characterize the mobilization and attenuation
mechanisms that control the risk of generating elevated arsenic concentrations in response to large-scale,
long-term (re-)injection into deep aquifers.

2. Field Injection Study

2.1. Field Site
The site that provided the data and motivation for this study is located approximately 70 km northeast of
Roma in the southeast of Queensland, Australia. It is situated in the Surat Basin, a sub-basin of the Great
Artesian Basin. The CSG and co-produced water are produced from the Jurassic age Walloon Coal Measures
between 450 – 800 m below ground surface (BGS). The co-produced water was treated via reverse osmosis
(RO) and de-oxygenated prior to reinjection into the Precipice Sandstone formation (>1,300 mBGS). The
lowermost portion of this formation is known as the Braided Stream Facies (BSF), which is the most perme-
able zone of the overall formation, composed of relatively coarse-grained material representative of a high-
energy fluvial depositional environment (Green et al., 1997).

2.2. Geochemical and Geophysical Characterization
The Precipice formation is characterized by quartzose sandstone, which is fine-textured in the upper por-
tions of the formation and becomes more coarse-textured with depth (Exon, 1976). Aquifer material from
the Braided Stream Facies sub-unit of the Precipice Sandstone aquifer, collected at various depths from
1300.87 to 1346.50 mBGS, was used for sediment characterization via laboratory experiments. Mineralogical
analysis of this aquifer material using quantitative X-ray diffraction (XRD) identified quartz to be the domi-
nant mineral with up to 5% of clay minerals (kaolinite and illite), while crystalline iron minerals, such as goe-
thite, hematite and pyrite, and carbonate minerals were not detected. The major components identified by
elemental analysis (XRF) were SiO2 (96.45 wt%), Al2O3 (1.93 wt%) and K2O (0.17 wt%) reflecting the domi-
nance of quartz, clay and feldspar minerals, while total Iron, as Fe2O3, was present in a minor quantity of
0.15 wt%. The XRD and XRF analyses were carried out at the CSIRO Mineralogical and Geochemical Services
Centre (Urrbrae, SA).

Wireline geophysical logging of the injection target was undertaken prior to running screens. The screened
interval was 1285.4–1376.5 mBGS and included the upper Precipice Sandstone, the BSF and 30 m of the
underlying Moolayember Formation, a shale. The BSF had a gross thickness of 21.2 m. A gamma response
of less than 40GAPI suggested a net sand interval of 19.7 m. Porosity values measured using the neutron
density method ranged from 2% in the Moolayember Formation to up to 30% in the BSF. Formation Micro-
imager (FMI) logs did not identify any fracturing through the BSF. However, fracturing was observed in the
underlying Moolayember Formation. Core samples show many of these fractures to be polished into a
glass.

2.3. Field Injection Trial
Due to the large depth of the target aquifer and associated costs of installing monitoring bores, the injec-
tion trial was undertaken as a push-pull test in which a single well was used for injection into, and extraction
from, the targeted aquifer. A total of 52.7 megaliters (ML) of treated co-produced water was injected for 65
days spread over an 85 days period, followed by a storage period of 64 days to allow the injected water to
react with the native groundwater and the aquifer matrix. Finally, a recovery phase was operated for a total
of 309 days and 156 ML of water was extracted, representing approximately three times the total water
injected. Samples of the injected water were collected for laboratory analysis weekly for the first month,
then fortnightly until the end of injection phase. During the recovery phase, water quality samples were col-
lected twice per day for a period of two weeks, then on a weekly basis until the majority of the injected
water was recovered, followed by intermittent sampling. A bromide tracer amendment was undertaken
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toward the end of the injection phase. No additional bores were available on-site to monitor the water qual-
ity within the radius of influence of the injection bore.

2.4. Background Water Composition
Groundwater in the Precipice Sandstone formation at the study site prior to commencement of the injec-
tion experiment was highly reducing containing 4.67 3 1024 mol/L dissolved methane and strongly domi-
nated by sodium (7.74 3 1023 mol/L), while chloride was the most dominant anion (2.80 3 1023 mol/L)
followed by bicarbonate (2.59 3 1023 mol/L). Calcium concentrations were below the detection limit (2.45
3 1025 mol/L). Field pH and temperature measurements averaged to 7.86 and 628C, respectively. Average
background alkalinity was 2.59 3 1023 mol/L while the concentrations of silica and reactive phosphorus
were 5.44 3 1024 mol/L and 3.29 3 1026 mol/L, respectively. Sulfate and arsenic concentrations were
found to be below the detection limit of 1.04 3 1025 mol/L and 1.33 3 1028 mol/L, respectively. All analy-
tes of the background water composition are listed in Table 1.

2.5. Injectant Water
CSG co-produced water was stored in an open 120 ML lined pond prior to transfer to the treatment facility.
The treatment methods for the injectant included coarse filtration of suspended solids, ultrafiltration (UF),
reverse osmosis (RO), ultra-violet (UV) irradiation and deoxygenation by membrane contactors. The water
quality was closely monitored during both the injection and recovery periods. Water quality parameters,
such as dissolved oxygen (DO), electrical conductivity (EC), pH, redox potential (ORP) and temperature of
the injectant water were recorded at a one-second interval by the process control system.

Sodium was the most dominant cation (4.05 3 1023 mol/L) in the injectant while chloride was the most
dominant anion (2.06 3 1023 mol/L), followed by bicarbonate (9.70 3 1024 mol/L). Calcium concentrations
were below the detection limit (2.45 3 1025 mol/L). The pH and temperature measurements in the field
averaged to 9.3 and 198C, respectively. The high pH of injected water could be attributed to degassing of
CO2 during storage in an open pond. Sulfate, reactive phosphorus and arsenic were not detected in the
injectant. Low concentrations of silica (2.553 1025 mol/L) were also measured (Table 1 and Figure 1).

A bromide tracer amendment was undertaken to determine the physical transport behavior at the study
site. Two separate pulses of 8.00 3 1023 mol/L of NaBr were injected to increase the identifiability of the
observed tracer concentration in response to the complex injectant signal. The tracer amendment was car-
ried out toward the end of the injection phase (Figure 1) to minimize the required recovery period and to
prevent the excessive dilution of bromide. The tracer solution was prepared by mixing 25kg of laboratory
grade NaBr powder into the 30,000 L blending tank and was injected over approximately 4 hours.

2.6. Observed Geochemical Response
The recovered water initially displayed a similar ionic composition to that of the injectant water, with gener-
ally no clear evidence of reactive processes. After the initial recovery phase, observed concentrations

Table 1
Summary of Hydrochemical Compositions

Injectant Recovered

Analyte Background Avg. Max. Avg. Max.

Na (mol/L) 7.74 x1023 4.05 x1023 7.05 x1023 6.57 x1023 7.66 x1023

Cl (mol/L) 2.80 x1023 2.06 x1023 4.34 x1023 3.53 x1023 4.20 x1023

HCO3 (mol/L) 2.59 x1023 9.70 x1024 1.06 x1023 1.43 x1023 2.89 x1023

pH 7.80 9.34 9.4 8.5 8.9
Temperature (8C) 62 18 26 41 50
Si (mol/L) 5.44 x1024 2.55 x1025 4.16 x1025 3.33 x1024 5.29 x1024

SO4 (mol/L) < 1.04 x1025 < 1.04 x1025 < 1.04 x1025 3.12 x1025 4.16 x1025

Reactive P (mol/L) 6.60 x1026 < 3.23 x1027 < 3.23 x1027 1.94 x1026 3.23 x1026

As (mol/L) 1.60 x1028 < 1.33 x1028 < 1.33 x1028 2.27 x1027 3.20 x1027

Dissolved Oxygen (mol/L) Not measured < 1.25 x1025 1.25 x1025 Not measured Not measured
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showed a general trend toward background conditions (Figure 1). The field-measured pH of the recovered
water showed a successive transition from 8.79 toward background conditions (7.86). Both silica and reac-
tive phosphorus also returned to the background groundwater concentrations.

Figure 1. Field injection trial average aqueous chemical compositions. Background composition of groundwater was dominant in sodium, chloride and bicarbon-
ate ions, had an average pH of 7.86 and had high temperatures. Arsenic concentrations were below the detection limit of 1.333 1028 mol/L. Injectant composi-
tion had similar EC values and sodium, chloride, bromide, arsenic and sulfate concentrations as that of the background groundwater. However, injectant had
much higher pH but lower temperature, and phosphate, bicarbonate, and silica concentrations than the background. Two pulses of bromide tracer (8.003 1023

mol/L) were amended near the end of injection phase. Initial stages of recovery displayed similar ionic composition to that of the injectant followed by the effects
of reactive processes such as release of arsenic (3.203 10-7 mol/L) and sulfate (4.163 1025 mol/L). Finally, the composition of the recovered water returned to
the background conditions.
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While absent in the background groundwater, sulfate was found in the recovered water at concentrations
of up to 4.16 3 1025 mol/L, indicating that mineral dissolution must have occurred, releasing sulfate during
subsurface residence of the injectant. The bromide breakthrough curve was observed during the initial
recovery phase producing a distinct peak of 3.75 3 1025 mol/L (Figure 1).

The most noteworthy geochemical response occurred for arsenic, which peaked at a maximum concentra-
tion of 3.20 3 1027 mol/L during the initial recovery phase, as arsenite (As(III) (Figure 1). This concentration
of arsenic is above the World Health Organization (WHO) and Australian drinking water guideline of 1.33 3

1027 mol/L) but far below the water quality guideline of 6.67 3 1026 mol/L for livestock use applicable to
the Precipice aquifer targeted for injection in this study (ANZECC, 2000). Among a range of possible geo-
chemical mechanisms that have the potential to cause arsenic mobilization, arsenic desorption from sedi-
ment surfaces due the injectant being more alkaline than the receiving groundwater appeared to be the
most likely. To test this hypothesis and to quantify the arsenic sorption (adsorption/desorption) capacity
and characteristics, a series of laboratory sorption experiments were performed with aquifer sediments
under controlled geochemical conditions.

3. Laboratory-Based Characterization of Arsenic Sorption Behavior

3.1. Arsenic Sorption Experiments
The sorption experiments were carried out with sediment samples collected at a depth of 1332.53–1333.55
mBGS. The material was sieved to a size <2.0 mm and composited anaerobically. Batch experiments were
carried out using 4.00 g of sediment material combined with an electrolyte solution of 40 mL of 6 mM NaCl.
The ionic strength of this solution was comparable to the background groundwater of the target injection
zone. This solution was prepared using deionized water, which was de-oxygenated by purging with nitro-
gen gas for 4–5 hours and stored overnight in an anaerobic chamber (Coy Laboratories, Model AALC) con-
taining a N2/H2 mixture, with 2% H2 gas. Dissolved oxygen in this solution was not detected when
measured using a WTW 3430 with a FDOVR 925 sensor.

For each batch experiment, the sediment-solution suspension was continuously mixed end-over-end on a
rotating mixer at 25 revolutions per minute (rpm) for an equilibration time of two days. Depending on the
type of experiment, the electrolyte was amended with the stock solutions of As(III) and phosphate (from
here on referred to as PO4) prepared using analytical grade 0.05 M NaAsO2 solution and KH2PO4. Light-
impermeable brown polypropylene centrifuge tubes were used to prevent photo-catalyzed oxidation of
As(III). Experiments were conducted under N2/H2 atmosphere in the anaerobic chamber. No attempts were
made to suppress microbial activity.

Naturally sorbed concentrations of arsenic and PO4 on the surface sites of the aquifer sediments were mea-
sured as per the sequential extraction scheme (Keon et al., 2001) and the modified Colwell-P method (Ray-
ment & Lyons, 2011), respectively. Naturally sorbed arsenic was extracted by mixing 4.00 g of sediment with
40 mL of 0.5 M NaH2PO4 at 258C for 16 hours. Naturally sorbed PO4 was extracted from the sediment by
mixing 0.40 g of sediment with 0.5 M NaHCO3 at pH 8.5 for 16 hours at 258C. Samples were centrifuged at
3,500 rpm for 10 min and the supernatants were collected and filtered using a 0.45 mm cellulose acetate
membrane filter (Whatman). Supernatants from the PO4 extractions were treated with 1 M H2SO4 and
diluted to 50 mL with deionized water for laboratory analysis.

Arsenic sorption experiments were carried out against varying arsenic concentrations, solution pH and PO4

concentrations. Concentration dependent arsenic adsorption on aquifer sediments, i.e., adsorption iso-
therms, was determined for 3 batches of 7 samples each (Table 2). The solution pH in each batch was set to
6.106 0.05, 7.516 0.05 and 9.256 0.05; and As(III) concentrations in samples within a batch were varied
from 5.00 3 1027 mol/L to 2.00 3 1025 mol/L. As(III) adsorbed from the solution was determined from the
difference between the initial and the final aqueous concentrations. Arsenic adsorption as a function of pH
was measured in 8 samples for an initial As(III) concentration of 2.00 3 1026 mol/L with solution pH values
ranging from 5.70 to 9.85. The pH of each sample was adjusted with �0.1 and �1.0 M HCl or NaOH prior to
adding As(III). The influence of PO4 on arsenic adsorption at pH 9.176 0.10 was determined in 3 batches of
3 samples each. The initial As(III) concentration of each sample in all batches was adjusted to 5.00 3 1027,
1.00 3 1026 and 2.00 3 1026 mol/L, while the initial PO4 concentrations of all samples in each batch were
adjusted to 1.60 3 1026, 3.20 3 1026 or 6.40 3 1026 mol/L. The final solution pH after completion of

Water Resources Research 10.1002/2017WR021240

RATHI ET AL. REINJECTION OF CSG WATER IN DEEP AQUIFER 10,784



sorption experiments was measured using TPS WP-90 with an IJ-44C pH electrode (Ionode). Samples were
centrifuged at 4,500 rpm for 10 min and the supernatants were collected and filtered using a 0.45 mm cellu-
lose acetate membrane filter (Whatman) in the dark under anaerobic conditions.

The filtered samples were analyzed for arsenic, iron, aluminum, magnesium, manganese, soluble reactive
phosphorus, potassium, silicon and sodium including arsenic speciation for two samples from every experi-
ment at the ChemCentre (Perth, WA). The samples were analyzed using inductively coupled plasma (ICP) –
mass spectrometry (MS) and atomic emission spectroscopy (AES); and arsenic speciation was carried out using
hydride generation atomic absorption spectroscopy (HGAAS). The soluble reactive phosphorus (P) in the PO4

extraction samples were measured by the flow injection analysis (method 4500P-G) (American Public Health
Association (APHA), 2012). Arsenic speciation measured on selected supernatant samples from each experi-
ment did not detect As(V), thereby confirming that no oxidation of As(III) had occurred during the experiments.

3.2. Observed Geochemical Response
The sediment used in sorption experiments were measured to have naturally sorbed concentrations of
14.24 mmol/kg of arsenic, presumably As(III), and 129 mmol/kg of phosphate, respectively. The adsorption of
As(III) onto sediments produced non-linear isotherms under varying pH and As(III) solution concentrations
as shown in Figure 2a. Sorption capacity of the sediment was observed to be higher at a pH of 7.51 com-
pared to that at 6.10 and 9.25. This trend was consistent with the results of studies on Fe(III)-oxides (Dixit &
Hering, 2003; Pierce & Moore, 1982; Raven et al., 1998), amorphous Al-oxide (Goldberg, 2002), and certain
clay minerals (Goldberg, 2002; Manning & Goldberg, 1997a).

Sorption of As(III) onto sediment material over the pH range from 5.70 to 9.85 is shown in Figure 2b. Sorp-
tion was observed to increase gradually from pH 5.70 to 7.25, followed by a gradual, then steep decline for
pH values above 8.50. As(III) concentration at a solution pH of 9.85 was observed to be higher than the
added concentrations suggesting that some of the naturally sorbed As(III) on the sediments was mobilized.
The sorption trend observed between a pH of 5.70 and 9.85 was similar to that reported in previous studies
conducted with either laboratory synthesized minerals, such as Fe(III)-oxides (Dixit & Hering, 2003; Manning
et al., 1998; Pierce & Moore, 1982; Raven et al., 1998; Stachowicz et al., 2006), and amorphous Al-oxide
(Goldberg, 2002), or with pure clay minerals (Goldberg, 2002; Manning & Goldberg, 1997a). On the other
hand, sorption behavior is known to vary for aquifer sediments sourced from different locations by exhibit-
ing either increasing, decreasing or no effect of increasing solution pH (Manning & Goldberg, 1997b).

Competition for sorption between PO4 and As(III) at varying solution PO4 concentrations was not observed
(Figure 2c) likely due to the small, yet field-relevant, PO4 concentrations used in the experiments and an
abundance of surface sorption sites on the sediment. Such competition has previously been observed on
Fe(III)-oxides (Dixit & Hering, 2003; Jain & Loeppert, 2000; Stachowicz et al., 2008), and on aquifer sediments
(Gao et al., 2013; Rathi et al., 2017; Thi Hoa Mai et al., 2014).

3.3. Surface Complexation Model (SCM)
The analytical data obtained from laboratory-based sorption experiments were used to develop a site-
specific surface complexation model (SCM) for arsenic. A non-electrostatic generalized composite surface
complexation modeling (GC-SCM) (Davis et al., 1998) approach was utilized to account for the inherent

Table 2
Summary of Laboratory Sorption Experiments

Experiment Batches
No. of samples

per batch
As added
(mmol/L) Solution pH

P as PO4

added (mmol/L)

Isotherm #1 7 0, 0.5, 1, 2, 5, 10, 20 9.25 (for all samples) N/A
#2 7 0, 0.5, 1, 2, 5, 10, 20 7.51 (for all samples) N/A
#3 7 0, 0.5, 1, 2, 5, 10, 20 6.10 (for all samples) N/A

pH #1 8 2 (for all samples) 5.70, 6.15, 6.50, 7.00,
7.25, 7.50, 8.50, 9.85

N/A

Competition with P #1 3 0.5 (for all samples) 9.20 (for all samples) 1.6, 3.2, 6.4
#2 3 1 (for all samples) 9.20 (for all samples) 1.6, 3.2, 6.4
#3 3 2 (for all samples) 9.20 (for all samples) 1.6, 3.2, 6.4
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physical and chemical heterogeneity of natural sediments without the
need for quantification of the surface charge and electric potential of
sediment surfaces. The geochemical model PHREEQC v2 (Parkhurst &
Appelo, 1999) was used to analyze the data collected from the sorp-
tion experiments. A set of surface complexation reactions for arsenic,
as As(III), and competing anion PO4 on a generic surface sorption site,
Site_OH, were defined in the WATEQ4F database (Ball & Nordstrom,
1991). The GC-SCM parameters included apparent equilibrium con-
stants (log K) and the density of surface sorption sites (ml) (Table 2).
The protonation and dissociation reactions of the surface sorption
sites were excluded in the model. All 38 samples from sorption experi-
ments were sequentially simulated in PHREEQC by invoking a batch-
type equilibrium reaction step between a given solution composition
and the surface, Site_OH, at the respective solution pH value. The ini-
tial values of the GC-SCM parameters were determined through man-
ual calibration and subsequently, further modified during automated
calibration and uncertainty analyses.

4. Field-Scale Reactive Transport Model for Arsenic

At the field-scale, reactive transport of arsenic was simulated to ana-
lyze the observations from the injection trial and to predict the long-
term behavior of arsenic. In the first step, a non-reactive, conservative
version of the model was used to estimate the physical transport pro-
cesses. Subsequently, reactive transport processes were invoked,
while incorporating and upscaling the information gained from the
laboratory experiments and associated GC-SCM results.

4.1. Flow, Conservative Solute, and Heat Transport
The numerical flow model was constructed using MODFLOW (Har-
baugh, 2005) and subsequent physical transport simulations were per-
formed with PHT3D (Prommer et al., 2003). Measured tracer (Br) and
conservative species (Cl) data were used as the main constraints for
calibrating the adjustable physical transport parameters, i.e., the longi-
tudinal (aLÞ and transverse (aT Þ dispersivities.

As substantial temperature differences occurred between the back-
ground groundwater in the Precipice Sandstone (�628C) and the
injected water (�198C), heat transport was therefore considered (i) as
an additional environmental tracer and (ii) to appropriately consider
the temperature-dependency of geochemical reactions. In the simula-
tions, temperature was considered as an additional species and heat
transport parameters were selected based on the similarities between
solute and thermal energy transport, as discussed earlier (Anderson,
2005; Engelhardt et al., 2013; Ma et al., 2012; Seibert et al., 2014). Mea-
sured temperature data were used to calibrate the thermal diffusion
(D) and thermal distribution (Kd) parameters.

4.1.1. Model Domain and Discretization
The model was set up as a radial-symmetric model under the assumptions that (i) the influence of the back-
ground groundwater flow was negligible over the duration of the injection experiment and (ii) that aquifer
heterogeneity in lateral direction was not significant. The vertical extent of the model was limited to depths
between 1,278 and 1346.5 mBGS, and discretized into 24 layers of varying thickness, porosity and hydraulic
conductivity. The vertical discretization was selected to consider the heterogeneity suggested by the wire-
line logging responses. The Moolayember at depth> 1346.5 m was considered impermeable. Each layer
was assumed to be homogenous and continuous in the lateral direction. A log transform was performed to

Figure 2. Laboratory As(III) sorption experimental observations and surface
complexation model (SCM) simulations. (a) Adsorption of As(III) on aquifer sedi-
ment produced non-linear isotherms and demonstrated highest sorption
capacity at pH of 7.51. SCM simulations matched the trends for arsenic adsorp-
tion with the best model fits observed for data at pH values of 7.51 and 9.25.
The simulated output is slightly underestimated at a pH of 7.51, while being
overestimated at a pH of 6.10 and 9.25. (b) As(III) sorption with changing solu-
tion pH increase gradually from pH 5.70–7.25, followed by a gradual, then steep
decline for pH values above 8.50. Some of the naturally sorbed As(III) was mobi-
lized at pH 9.85. SCM captured the effects of solution pH on adsorbed arsenic
very accurately. The simulated output demonstrated highest sorption capacity
of the sediments around pH 7.50, while no adsorption was observed at pH
above 9.50. (c) No competition for sorption between PO4 and As(III) at varying
solution PO4 concentrations was observed. SCM was able to simulate the lack
of competitive effect between arsenic and PO4 sorption.
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estimate the hydraulic conductivity of each layer. This was based on a porosity-permeability relationship
obtained from a database of publically available petroleum industry data and corrected to match the trans-
missivity obtained from pumping test analysis of the injection bore (Sreekanth & Moore, 2015). The lateral
discretization varied between 1 m, near the injection/extraction well, and 43 m at the column most distant
from the well (Figure 3).

Continuously measured injection and extraction rates were discretized into daily steps in the model. The
chemical analysis of groundwater samples prior to the start of the injection trial was used to define the
background groundwater composition (Table 1), while the regularly measured injectant compositions were
used to define the time-varying injectant composition in the model.
4.1.2. Model Parameters
Physical and heat transport parameters were estimated by constraining them with the measured Br and Cl
concentrations as well as measured temperatures. The estimated dispersivity values of aL 51.29 m and
aT 5 0.226 m, and thermal coefficient values of D5 2.00 m2/day and Kd5 2.00x1024 m3/kg provided a
good agreement between simulation results and observations (Figure 4). The good agreement was
achieved without invoking a dual-domain approach, which suggests that fracture flow and transport may
not occur, or at least not be a dominant feature, within the investigated zone of the Precipice aquifer. A sen-
sitivity analysis also indicated that the resulting parameter estimates were relatively unique and uncorre-
lated. Therefore, these parameters were assumed to have little impact on the estimation of the parameters
controlling geochemical reactions. The estimated dispersivity values were subsequently fixed to their cali-
brated values for the remainder of this study.

4.2. Reaction Network
The conservative solute transport model was extended to simulate multi-component reactive transport
with a primary focus on the processes affecting the fate of arsenic. The most common previously reported
mechanisms for arsenic mobilization were (i) the reductive dissolution of Fe(III) (oxy)hydroxides (McArthur
et al., 2004; Nickson et al., 2000; Rawson et al., 2017); (ii) co-release of arsenic during the oxidation of Fe-
sulfides (Wallis et al., 2010, 2011); and (iii) arsenic desorption from sediment surfaces due to either changing
solution pH or competing anions (Smedley & Kinniburgh, 2002). In the present case, reductive dissolution of
Fe(III) (oxy)hydroxides was deemed unlikely due to the prevalent reducing conditions (as indicated by the
presence of dissolved methane) in the Precipice Sandstone aquifer, which makes it unlikely for a significant
fraction of easily-reducible iron minerals to persist. And in case any Fe(III) (oxy)hydroxides still persisted in
the highly reducing aquifer, the injectant would have needed to contain a suitable reductant to cause

Figure 3. Field-scale groundwater flow model grid. The model was set up as a radial-symmetric model through Precipice
sandstone and Precipice BSF layers and model grid was discretized into 24 layers of varying thickness, porosity and
hydraulic conductivity. Each layer was assumed to be homogenous and continuous in the lateral direction. Hydraulic con-
ductivity and porosity values of each layer was taken from (Sreekanth & Moore, 2015). The color fill represents the hori-
zontal hydraulic conductivity values along the layers. The lateral discretization varied between 1 m, near the injection/
extraction well, and 43 m at the column most distant from the well. Well screen was assigned to the left-most column
between depths 1,290 and 1346.5 mBGS. A constant head boundary was assigned to the right-most column. Sediment
sample for laboratory sorption experiments was collected at a depth of 1332.53–1333.55 mBGS prior to well construction.
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further reductive dissolution, which was not the case. Furthermore, co-release of arsenic during the oxida-
tion of Fe-sulfides, e.g., pyrite, was initially considered unlikely since the injectant was deoxygenated and
other potential oxidants such as, nitrate or chlorine, were not present. However, sulfate concentrations in
the recovered water were observed (4.16 3 1025 mol/L) in excess of the background value which was at
the detection limit of 1.04 3 1025 mol/L, suggesting that pyrite oxidation may have occurred.

As briefly mentioned above, desorption of arsenic from the sorption sites on sediment surfaces due to the
changing solution composition was considered to potentially be the main cause for arsenic mobilization.
Arsenic desorption could be caused by either as a result of changes in the solution pH (Dzombak & Morel,
1990), or competing anions, most importantly by PO4 (Jain & Loeppert, 2000) and HCO3 (Appelo et al.,
2002). The pH in the injectant (avg. 9.30) was significantly above the pH in the background water (avg.
7.86). On the other hand, concentrations of PO4 in the injectant water were below detection limit (3.23 3

1027 mol/L) and HCO3 concentrations in the injectant were below those in the background water. More-
over, the laboratory-based measurement of sediment arsenic sorption characteristics suggest that the
change in solution pH could be the primary cause of arsenic mobilization. In the field-scale RTM, arsenic
desorption was considered as the primary mechanism for arsenic mobilization by incorporating the surface
complexation reactions of As(III) and PO4 from the laboratory-derived GC-SCM.

Additionally, due to the observed sulfate concentrations in the extracted water, we also considered the pos-
sibility of pyrite oxidation:

Figure 4. Field injection trial observations and field-scale conservative solute, heat and reactive transport model simulations. CSG co-produced water was injected
for 65 days spread over 85 days period, followed by a storage period of 64 days to allow the injected water to react with the native groundwater and the aquifer
matrix. Finally, a recovery phase was operated for a total of 309 days. The figure illustrates the injected and the extracted water compositions measured over the
injection phase and the first 65 days of the recovery phase, during which most of the injected water was recovered. Continuously measured well injection and
extraction rates were discretized into daily steps in the model. The chemical analysis of groundwater samples prior to the start of the injection trial was used to
define the background groundwater composition (Table 1), while the regularly measured injectant compositions were used to define the time-varying injectant
composition in the model. Calibrated flow model was in good agreement with bromide and chloride concentrations and temperature observations. Physical trans-
port and thermal parameters were fixed to their calibrated values during the reactive transport model (RTM) calibration. In the RTM, arsenic mobilization was mod-
eled using desorption (primary process) and co-release with pyrite oxidation (secondary process). The equilibrium constants in the laboratory-derived SCM were
included and kept fixed while an upscaled field surface site density parameter (mf) was estimated. The pyrite oxidation was simulated using parameter do which
represented the dissolved oxygen concentrations in the injectant. The arsenopyrite fraction (aspy) parameter controlled the co-release of arsenic during pyrite oxi-
dation. The model which included all three parameters (Model 1, blue solid line) produced the best calibration for all the reactive species. Models with either negli-
gible dissolved oxygen in injectant (Model 2, green solid line) or with no arsenopyrite fraction (Model 3, red dashed line) failed to calibrate arsenic observations.
Model 2 simulations confirms the occurrence of pyrite oxidation during the injection trial.
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FeS2 1 3:75O2 1 3:5H2O5 Fe OHð Þ3 1 2SO22
4 1 4H1 (7)

This reaction could have occurred in case of residual dissolved oxygen being contained in the injectant
water. This could plausibly explain the occurrence of up to 4.16 3 1025 mol/L of sulfate in the recovered
water. Kinetically controlled pyrite oxidation was modeled as described earlier in (Wallis et al., 2010, 2011):
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where, rpyr is the specific oxidation rate for pyrite, CO2 , CNO2
3
and CH1 are the oxygen, nitrate and proton

groundwater concentrations, respectively, Apyr
V

� �
is the ratio of mineral surface area to solution volume set

to 115 dm21mol21, and C
C0

� �
is a factor that accounts for changes in Apyr resulting from the progressing

reaction. Parameter f2 is a constant, which was assumed to be unity (Eckert & Appelo, 2002; Prommer &
Stuyfzand, 2005). Arsenic is often incorporated into the structure of pyrite and has shown to co-dissolve
during pyrite oxidation (Jones & Pichler, 2007). This process was considered in our model and the rate of
release (raspy ) of arsenic associated with pyrite (i.e., arsenopyrite) oxidation was considered by scaling rpyr
with a proportionality term (aspy), which represents the molar ratio of arsenic within pyrite:

raspy 5 aspy3rpyr (9)

The reported values of aspy found in pyrite is known to vary considerably from about 0.013 mol% to as
high as 4.06 mol% (Welch et al., 2000). The value of aspy was not measured for the sediments used in this
study and was therefore considered as an unknown parameter in the field-scale RTM and was estimated
during the calibration procedure discussed below.

4.3. Upscaling
Upscaling of the laboratory-derived GC-SCM to the field-scale RTM required consideration of the difference
in heterogeneities between the two systems. The term heterogeneity here refers to the differences in the
total mass of the sediment involved in the two experimental methods, the differences in the solid-solution
ratios, the elapsed experimental times, the spatial extent of the two systems, the complexity arising due to
the interplay between chemical and physical processes, and the mixing due to advection (Miller et al.,
2010). Miller et al. (2010) found that the upscaling was most successful when non-electrostatic GC-SCMs
were employed with the differences in heterogeneity between the laboratory and field scale systems being
handled by the scaling of the surface area of the sediments. In the literature this has in several instances
been achieved through some form of upscaling approach that links the laboratory and field-relevant surface
areas of the sediment. For instance, Curtis et al. (2006) estimated the total surface area of aquifer sediments
for their uranium transport model by applying a factor based on the porosity and the percentage of the
aquifer sediment represented by their laboratory sample. They, along with Davis et al. (2004) and Stollen-
werk (1998), also used the reactive surface area for scaling by including additional types of sorption sites to
explicitly consider the chemical heterogeneity of mineral surfaces. However, the presence of poorly crystal-
line phases and surface coatings on the sediment grains can make it difficult to separate reactive surface
area from the total area for both idealized, e.g., lab-synthesized, and natural sediments (Arnold et al., 1998,
2001; L€utzenkirchen et al., 2002).

In GC-SCMs developed for laboratory batch experimental data, the employed surface area represents an
averaged metal(loid) sorption behavior over both the reactive and nonreactive areas on the sediment sur-
face. Upscaling a GC-SCM from laboratory to field scale by modifying the total surface area assumes that (i)
the degree of surface heterogeneity of the experimental sediment material used to formulate the SCM is
similar to that found in the field, and that (ii) the water-sediment interactions and reactivity will be similar in
field conditions compared to lab conditions (Curtis et al., 2004). Based on these assumptions, we derived
the surface sorption site density of aquifer sediments in the field-scale RTM (mf) by applying a proportional-
ity term, or scaling factor (scf), to the laboratory-scale surface sorption site density (ml) such that,

mf 5 scf3ml (10)

The value of scf was estimated in the calibration of the field-scale RTM against the data collected from the
field injection experiment.
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5. Model Calibration and Uncertainty Analysis

5.1. Model Calibration
5.1.1. Laboratory-Derived GC-SCM
The laboratory-scale GC-SCM contained seven independent parameters consisting of six surface complexa-
tion equilibrium constants (log K) and one laboratory-scale surface site density (ml). There were a total of 47
observations consisting of aqueous arsenic and phosphate concentrations. All observations from these arse-
nic sorption experiments were assigned weights that reflect their magnitudes and measurement noise. The
optimal parameter set was determined by minimizing an objective function defined as the sum of squared
weighted residuals between the observations and their corresponding model-simulated equivalents.

The laboratory GC-SCM is highly nonlinear with a CPU run-time of �1 s. Therefore, this model is well suited
for derivative-free calibration methods such as Markov-Chain Monte Carlo (MCMC) and heuristic methods.
For example, the DREAM software (Vrugt et al., 2009) utilizes a variant of the Metropolis-Hastings MCMC
method employing differential evolution as a heuristic procedure to enhance algorithmic performance.
Another option, known as the Particle Swarm Optimization (PSO) algorithm, is a heuristic method that has
shown promise in efficiently finding globally optimal solutions to highly nonlinear optimization problems
(Eberhart & Kennedy, 1995). PSO is employed in this study for calibrating the laboratory-scale GC-SCM. Our
PSO algorithm was recently parallelized using the YAMR run manager contained within the PEST11 soft-
ware suite (Welter et al., 2015) similar to the procedure employed by Rawson et al. (2016) and Rathi et al.
(2017).

Overall, the calibrated GC-SCM captures the observed data reasonably accurately over the tested concentra-
tion range (Figure 2). In the isotherm experiments, model simulations match the trends for arsenic adsorp-
tion with the best model fits observed for data at pH values of 7.51 and 9.25. The simulated output is
slightly underestimated at a pH of 7.51, while being overestimated at a pH of 6.10 and 9.25 (Figure 2a). The
model simulations also capture the effects of solution pH on adsorbed arsenic very accurately. The model
output demonstrates that the highest sorption capacity of the sediments is around a pH of 7.50, while no
adsorption was observed at pH values above 9.50 (Figure 2b). The model is able to simulate the lack of com-
petitive effect between arsenic and PO4 sorption, similar to the experimental data (Figure 2c). However, the
model calibration is at its worst for these experiments. The simulated output underestimated sorbed arsenic
while overestimating the solution PO4 concentrations. This poor level of model calibration could not be
improved, suggesting that the model-structure may contain errors. Addressing model-structure errors was
beyond the scope of this study, as it would require further geochemical characterization of the sediment
material in order to include additional processes in the conceptual model. However, since the experimental
results showed no competition between arsenic and PO4, no further analysis was deemed critical for the
purpose of utilizing the SCM in the field RTM. A calibrated parameter set for the GC-SCM is listed in Table 3.
Further examination of the particle positions upon completion of the PSO calibration process suggested
that the optimal parameter set is non-unique with several parameters exhibiting strong correlations and
mild insensitivity. This correlation and insensitivity is a source of uncertainty that is addressed quantitatively
later in this paper.
5.1.2. Field-Scale RTM
The field-scale RTM contains nine parameters consisting of the six surface complexation equilibrium con-
stants (log K) defined in the GC-SCM, the up-scaled field surface site density parameter (mf), the stoichio-
metric ratio As : FeS2 that expresses how much arsenic is structurally incorporated into pyrite (aspy), and
dissolved oxygen concentration (do). The latter parameter (do) was included to investigate the origin of the
elevated sulfate (SO4) concentrations that were observed during the recovery phase of the field trial. We
speculated that the most plausible cause was (i) that the injection of low levels of oxygen may have
occurred accidentally, despite the measured oxygen concentrations being consistently below 1.25 3 1025

mol/L, or (ii) that some other unidentified process with equivalent consequences (i.e., SO4 and arsenic
release) had occurred. A wide range of other conceptual models (e.g., oxidation events during well con-
struction, gypsum dissolution) were also considered but eventually discarded because they were unable to
reproduce observed concentration patterns, and are therefore not discussed here.

A total of 151 observations consisting of aqueous arsenic, PO4, SO4 concentrations, and pH were available
for field-scale RTM calibration. The scaling factor parameter (scf) was estimated during the automated cali-
bration and the corresponding field surface site density parameter (mf) was calculated using equation (10).
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The objective function was defined in the same way as discussed previously. However, due to much longer
CPU run-times of >1 hour, gradient-based local-search methods were required for the calibration of the
field-scale RTM. Therefore the Gauss-Levenberg-Marquardt algorithm contained in the PEST software suite
(Doherty, 2016a, 2016b) was employed for this task.

In order to reduce the computational expense associated with calibrating the field-scale RTM to the reactive
constituents, and alleviate some of the effects of correlation and insensitivity, the six surface complexation
equilibrium constants estimated for GC-SCM were used in the calibration of the field-scale RTM as fixed con-
stants. This reduces the parameter dimension from nine to three, resulting in a very efficient calibration pro-
cedure as well as in significant computational reductions for the subsequent predictive uncertainty
quantification. Overall, the calibrated field-scale RTM (Model 1) captures the observed data accurately (Fig-
ure 4). The calibrated values for aspy, do, and mf are 0.0265 (or 2.65 mol%), 1.7533 1024 mol/L and 1.647 3

1026 mol sites, respectively (Table 3).

Although these results reproduce the observed behavior in the field quite well, it is important to evaluate
the necessity for the inclusion of the oxidation processes considered in this study. Therefore, two additional
field-scale RTM variants were considered. The first variant (Model 2) assumed that no arsenic was present in
mineralized-form within the sediment material, thus leaving sorption as the only process to control the
release of arsenic and its attenuation. The second variant (Model 3) assumed that the injectant contained a
dissolved oxygen concentration of 1.25 3 1025 mol/L, which is equivalent to the reporting limit of the
membrane filter unit used for deoxygenation during the field injection trial. Arsenic mobilization in both
model variants is caused by desorption due to the high injectant pH and the modeled concentrations
matched the background aqueous arsenic concentrations in the aquifer (Figure 4). These results clearly illus-
trate that a much better agreement between simulated and measured data is achieved when arsenic is
mobilized through desorption from surface sites and in association with a low oxygen-limited rate of pyrite
oxidation. All subsequent analysis of field-scale RTM were conducted using Model 1.

Figure 5 shows contour snapshots of the key species of interest in the aquifer derived from the field-scale
RTM for simulation times that correspond to a day during the injection (50 days), just after the start of
recovery (151 days) and toward the end of the recovery period (215 days). Time-lapse Br profiles show the
distribution of conservative solute during the injection trial. Due to the tracer injection toward the end of
injection phase, Br concentrations remain at background levels on Day 50. Br has traveled its maximum dis-
tance by Day 151 in the most permeable layers and on Day 215 almost all of Br has been recovered. The
temperature profiles were more evenly distributed with depth due to attenuation of temperature gradients
by heat conduction and due to the early arrival of the transient temperature signal in the highly permeable
layers. This behavior was also reported by reported by Seibert et al. (2014). The pH depth profiles clearly
show that at some depth coinciding with the most permeable layers the injected water traveled more than
80 m laterally. Arsenic distribution patterns are affected by oxidation of arsenopyrite in the zones where dis-
solved oxygen is transported to by advection. However, arsenic migration in most parts of the model
domain was limited to 40 m, largely due to sorption on sites vacated by phosphate, which was displaced by
advective flow and the high pH of the injectant. The aqueous arsenic concentration at the well on day 215
(Figure 5), when flux weighted, matched the observed concentration in the pumping well (Figure 4) which
shows that the aquifer approached its original conditions near the end of the recovery phase.

5.2. Parameter Uncertainty
The quantification of predictive uncertainty is essential when using the field RTM to quantify the long-term,
large-scale fate of arsenic. Predictive uncertainty can stem from two primary sources, (i) parameter error,
and (ii) model-conceptual (or model-structural) error. In this study, we focus on parameter error; however,
we recognize that model-structure error, while beyond the scope of this study, may also play a role.

The quantification of parameter uncertainty for nonlinear modeling studies is usually accomplished via
Monte Carlo techniques (Keating et al., 2010; Siade et al., 2015; Tonkin & Doherty, 2009; Vrugt et al., 2009).
This process can be computationally challenging. The level of computational resources required depends
on many factors within three general categories, (i) parameter dimension, (ii) the CPU run-time of a single
forward model simulation, and (iii) the degree of nonlinearity exhibited between model parameters and the
model-simulated equivalents of observations. These three categories can also compound upon one
another; for example, if both the parameter dimension and the CPU run-time are large, the cost of

Water Resources Research 10.1002/2017WR021240

RATHI ET AL. REINJECTION OF CSG WATER IN DEEP AQUIFER 10,791



uncertainty quantification is increased dramatically. Based on preliminary model results, it was clear that
several parameter combinations exhibited insensitivity and moderate correlations (e.g., aspy versus mf).
These observations indicate that, even though the effects of model-structural errors are ignored in this
study, the predictive uncertainty associated with the use of the field-scale RTM, due to parameter error, is
potentially significant and should be quantified.

In this study, we propose a novel, yet relatively simple methodology to overcome some of the computa-
tional issues associated with all three of the aforementioned categories. The proposed approach is driven
by the simple fact that the CPU run-time of the laboratory-scale model is on the order of �1s (over 3,000
times faster than the field RTM). Therefore, we propose to use the laboratory model to quantify as much of
the parameter uncertainty as possible for the associated parameters, i.e., the six surface complexation equi-
librium constants. This is accomplished relatively quickly, resulting in numerous samples of these parame-
ters that calibrate the laboratory-derived GC-SCM within a specified level, which is defined by the weighted
least-squares objective function. Subsequently, we incorporate the results of this uncertainty quantification
procedure into the field-scale RTM. Since the uncertainty associated with the surface complexation equilib-
rium constants is already quantified, the number of parameters, or degree of freedom, considered in the
field-scale RTM uncertainty analysis is reduced from nine to three. This reduction in parameter dimension
dramatically reduces the computational requirement associated with predictive uncertainty quantification
performed with the field-scale RTM. The individual steps of this approach are summarized in in Figure 6.
5.2.1. Laboratory GC-SCM Parameter Uncertainty
As for calibration, the characteristics of the laboratory-derived GC-SCM (i.e., highly nonlinear, but short CPU
run-time) suggest that derivative-free global-search Monte Carlo techniques should be employed. With our
primary goal of this step being to develop a set of parameter samples, rather than a complete description
of the posterior probability distribution of parameters, we chose to implement a fast, simple Monte Carlo
variant of the PSO algorithm.

The basic PSO algorithm utilizes the socio-cognitive nature of biological swarms to find the solution to a
general optimization problem in which a fitness function is minimized (Eberhart & Kennedy, 1995). For cali-
bration, the fitness function is the weighted least-squares objective function. The particle positions in the
swarm are defined as their positions in parameter space; in our study this vector space has a dimension of
six. Particles ‘‘move’’ randomly through parameter space according to simple rules composed of a social
component (based on the best particle in the swarm, the g-best position), a cognitive component (based

Table 3
Surface Complexation Reactions of As and P and Calibrated GC-SCM and field-Scale RTM Parameters

Solution species Description Parameters Values

Parameter bounds in calibration

Lower Upper

Laboratory GC-SCM parameters
As(III) 1. Site OH1AsO32

3 13H15Site H2AsO31H2O
2. Site OH1AsO32

3 12H15Site HAsO2
3 1H2O

3. Site OH1AsO32
3 1H15Site AsO22

3 1H2O

logK1

logK2

logK3

44.84
30.48
16.34

35
20
12

46
36
26

P 4. Site OH1PO32
4 13H15Site H2PO41H2O

5. Site OH1PO32
4 12H15Site HPO2

4 1H2O
6. Site OH1PO32

4 1H15Site PO22
4 1H2O

logK4

logK5

logK6

32.44
14.26
18.16

23
12
10

35
27
20

Laboratory surface sites Site_OH [moles] ml 2.050 3 1025 5.003 1026 1.00 3 1023

Naturally sorbed arsenic (mol/kg) 1.424 3 1025 - -
Naturally sorbed phosphate (mol/kg) 1.292 3 1024 - -

Field-scale RTM parameters
Longitudinal dispersivity (m) aL 1.29 - -
Horizontal transverse dispersivity (m) aT 0.226 - -
Thermal diffusion coefficient (m2/day) D 2.0
Thermal distribution coefficient (m3/kg) Kd 2.00 3 1024

Pyrite concentration (mol/kg) (Prommer et al., 2016) pyr 9.275 3 1022 - -
Field surface sites Site_OH [moles] mf 1.647 3 1026 5.003 1028 1.00 3 1024

Arsenic fraction in pyrite (mol%) aspy 2.65 0.5 5.0
Dissolved oxygen [mol/L] do 1.753 3 1024 1.253 1025 5.00 3 1024
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on the best performance of the individual particle thus far, the p-best position), and the momentum from a
previous movement. Convergence is achieved when the particle position with the best fitness function
value stops improving.

This PSO algorithm was modified to run in a Monte Carlo mode (Figure 6, Step 1). This is accomplished by
simply removing (and saving) particle positions (i.e., parameter values), at a given iteration, that produce a
weighted least-squares objective function value below a specified threshold. Once a particle has been
removed in this way, a new particle is initialized randomly in its place. The iterative PSO algorithm then pro-
ceeds as normal onto the next iteration, where the particles’ objective functions are again evaluated, and
compared to the specified threshold. This process continues until a desired number of parameter sets have

Figure 5. Time-lapse depth profiles in the field-scale RTM. The time-lapse depth profiles of solution bromide, temperature, pH, solution arsenic, adsorbed arsenic,
and solution phosphate in the calibrated field-scale RTM at time intervals 50, 151 and 215 days are illustrated here.

Water Resources Research 10.1002/2017WR021240

RATHI ET AL. REINJECTION OF CSG WATER IN DEEP AQUIFER 10,793



been saved. In practice, once the swarm of particles gets ‘‘close’’ to the calibration threshold, this procedure
can produce many calibrated parameter samples per iteration. However, it might be biased by the g-best
particle position if that position remains stagnant for a large number of iterations. This phenomenon is alle-
viated via two considerations. The momentum (or inertia) of a particle position is reduced if it is close to the
threshold; this increases the likelihood that this particle will fall below the threshold quickly. Additionally,
neighborhoods are used such that the influence of the g-best position on the swarm is reduced, or diffused;
this slows the convergence of the algorithm but promotes a more diverse search of the parameter space.

The calibration threshold used for this procedure with the laboratory-derived GC-SCM was set to a value
just slightly above the lowest weighted least-squares objective function observed in the calibration (Figure
6, Step 1). The Monte Carlo PSO algorithm was run in parallel across many CPUs using the YAMR run man-
ager in the PEST11 software suite (Welter et al., 2015). The swarm size was set to 100 with a neighborhood
size of 10. In just over an hour of execution time on an eight-core desktop computer, 900 parameter sets
were obtained, each of which calibrate the laboratory GC-SCM. Basic statistics were also conducted on these
parameter results (Table 4). Obtaining a large sample size is important, and considering the computational
resources available, 900 parameter sets was deemed sufficient for this study.

Figure 6. Methodology for model calibration and uncertainty analysis. The parameter set, p, consists of all the parameters
considered in the field-scale RTM. Some of the parameters in the laboratory-derived GC-SCM will not exist in the parame-
ter set p, and vice versa. Therefore, only the parameters from the GC-SCM that also exist in p are retained from the param-
eter uncertainty analysis for the GC-SCM, and comprise the vector plab (i.e., from Step 1). When calibrating the RTM (Steps
3 and 4), the plab component of p is fixed since this component already successfully calibrates the GC-SCM and no further
calibration is needed. In Step 4, the RTM is calibrated with the scaling factor (scf) as a parameter; therefore, the laboratory
value for surface site density (ml) is required from the GC-SCM in order to set the site density for the field model (mf) dur-
ing the model calibration process.
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The strong correlation observed between GC-SCM parameters logK1 (reaction 1) and logK6 (reaction 6) could
be attributed to competition for sorption sites between aqueous species H3AsO3 and HPO22

4 , that prevail in
the experimental pH range of 7.5 and 9.3. Despite this correlation, these parameters were well constrained
by the experimental data and hence their values were very unique (see posterior variance and ranges in
Table 4). The parameter values of logK3 (reaction 3) and logK5 (reaction 5) were relatively uncertain most
likely due to insensitivity.
5.2.2. Field-Scale RTM Parameter Uncertainty
The results of the parameter uncertainty analysis for the laboratory-derived GC-SCM model were imple-
mented within that for the field-scale RTM using a similar procedure to that used for the calibration; this
overall process is also depicted in Figure 6. The procedure begins by selecting a parameter set from the
laboratory-based results. This parameter set, which already calibrates the laboratory-derived model, is then
implemented in the field-scale RTM as fixed values, with the remaining field-scale RTM parameters assigned
random initial values (Steps 2 and 3, Figure 6). The field-scale RTM is then calibrated through a standard
PEST operation until the weighted least-squares objective function falls below a specified threshold (Step 4,
Figure 6); this threshold is also set just above the best level of calibration achieved (Figures 4). There are
only three parameters to estimate, yet this calibration step still requires up to about 30 hrs to complete (in
serial). This process is then repeated for the 900 parameter sets obtained in the laboratory-based uncer-
tainty analysis. All 900 of these Monte Carlo realizations were executed in parallel on the CSIRO high-
performance cluster, Pearcey. Overall, the process, including queueing, required about one week of com-
puting time to complete, which is a more practical time compared to what would be required to address all
nine parameters using the field-scale RTM.

Basic statistics were conducted on the results of this analysis and presented in Table 4. The field-scale RTM
parameters do and aspy were moderately negatively correlated (correlation coefficient520.76); however,
simulated sulfate concentrations were only controlled by the value of do, which despite this correlation, results
in a relatively unique estimate for this parameter (Table 4). The parameters mf and aspy were also moderately
positively correlated (correlation coefficient5 0.73); however, in contrast to do, this correlation has caused
these parameters to be relatively uncertain (Table 4). All surface complexation equilibrium constants are rela-
tively uncorrelated with the three field-scale parameters. This, combined with the fact that all of the surface
complexation equilibrium constants obtained from the laboratory-based uncertainty analysis were able to pro-
duce an acceptable level of calibration for the field-scale RTM, confirms that these parameters are relatively
insensitive to the field-scale RTM model outputs. This further emphasizes the importance of conducting site-
specific laboratory experiments followed by the development and analysis of their corresponding GC-SCM.

5.3. Predictive Uncertainty–Long-Term Fate of Arsenic
The results of the parameter uncertainty analysis were used to quantify the predictive uncertainty associ-
ated with the long-term fate of arsenic, i.e., over several years of reinjection. In practice there are numerous

Table 4
Basic Sample Statistics for the 900 Realizations of the Monte Carlo Uncertainty Analysis Presented in This Study

Short
parameter
name

Absolute range Most likely range

Posterior
standard
deviation

Posterior
relative
standard
deviation
(RSD%)

Correlation coefficients

Lower Upper Lower Upper mf aspy do logK1 logK2 logK3 logK4 logK5 logK6

mf 3.03E-08 5.02E-07 1.25E-07 2.19E-07 7.43E-08 40.39% 1.00
aspy 1.81E-02 3.74E-02 2.19E-02 2.58E-02 2.61E-03 10.90% 0.73 1.00
do 1.35E-04 2.16E-04 1.67E-04 1.83E-04 1.17E-05 6.62% 20.21 20.76 1.00
logK1 4.47E101 4.50E101 4.47E101 4.48E101 5.75E-02 0.13% 20.23 20.09 20.01 1.00
logK2 2.00E101 3.39E101 2.00E101 2.28E101 3.58E100 14.13% 20.03 0.01 20.04 0.09 1.00
logK3 1.20E101 2.49E101 1.20E101 1.46E101 3.42E100 19.29% 20.04 0.00 20.04 0.29 0.35 1.00
logK4 3.22E101 3.27E101 3.24E101 3.25E101 9.69E-02 0.30% 20.02 20.04 0.03 0.23 0.12 0.04 1.00
logK5 1.20E101 2.42E101 1.20E101 1.44E101 3.12E100 18.45% 20.04 20.01 20.02 0.15 0.24 0.38 20.02 1.00
logK6 1.80E101 1.83E101 1.80E101 1.81E101 5.31E-02 0.29% 20.19 20.10 20.01 0.85 0.12 0.27 0.31 0.08 1.00

Note. The most likely ranges for the parameters are based on the modal bin ranges of the posterior histogram; each parameter range was divided into 5 bins
for this calculation.
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predictions that could be of interest; for example, (i) the maximum (peak) concentration observed at a par-
ticular location, (ii) the arsenic behavior under varying, controllable geochemical conditions, (iii) the radius
of influence associated with arsenic concentrations that are above specific guidelines, etc.

In this study, we constructed a predictive model for the study site by modifying the model domain that was
used for simulating the injection trial. While the overall lateral and vertical extents and the vertical discreti-
zation of the model remained unchanged, the discretization in lateral direction was coarsened near the
injection well to reduce computational costs. For simplicity a constant injection rate was assigned to simu-
late the impacts of a long-term injection. The background groundwater composition remained unchanged
from the injection trial simulations. Model simulations were derived for all 900 parameter sets produced in
the previously discussed Monte Carlo realizations. Simulation results are illustrated by vertically integrating
the simulated values over the model domain at each location using transmissivity-weighted averaging.

Two different injectant compositions were employed to examine the fate and transport of arsenic (Table 5).
The first injectant composition was similar to that used in the injection trial except that the dissolved oxy-
gen concentration was allowed to change as per the value of parameter do obtained during Monte Carlo
simulations. For the second tested injectant water composition it was assumed that the dissolved oxygen
levels will consistently remain at 1.25 3 1025 mol/L, corresponding to the specified maximum residual oxy-
gen concentration after de-oxygenation via membrane filters.
5.3.1. Implications for Long-Term Arsenic Behavior: Temporal and Spatial Changes
The results of the predictive model simulations are presented for the simulation completed at the end of 10
years as an example. The results of all 900 predictive model simulations are illustrated in Figure 7, showing
the distribution of arsenic moving through the aquifer at this time. There is considerable variability for all
900 simulations; however, these simulations show that the magnitude of arsenic concentrations may
exceed the Australian drinking water guideline (1.33 3 1027 mol/L) at some locations within the aquifer
while remaining below the ANZECC (2000) water quality guideline for livestock (6.67 3 1026 mol/L). Figure
7 also illustrates some aspects of the probability distribution of arsenic at a given distance from the injection
well. The mean arsenic concentration, and it’s associated 1/- one standard deviation, appear closer to the
minimum values for the first 350m of the profile and then beyond this point, they appear midway between
the lowest and the highest values. The other constituents also show that most of the Monte Carlo simula-
tions reside near the minimum simulated values except for pH which resides more symmetrically between
the minimum and maximum simulated values. The variability seen in the groundwater pH and sorbed con-
centrations of arsenic and PO4 is overall relatively high by comparison. The increased uncertainty in ground-
water pH over the long-term injection was mostly a result of parametric uncertainty in the parameter do
which controls pyrite oxidation in the model and thus affects solution pH (equation (7)).

Additionally, simulation results are also depicted in Figure 7 that illustrate the effects of the correlation
between mf and aspy on predictive uncertainty. The latter parameter controls the amount of arsenic release
due to oxidation while the former is responsible for retardation through sorption. The model simulation for
higher values of both parameters corresponds to increased arsenic mobilization near the well, which dissi-
pates sharply beyond 350 m due to increased sorption. Intuitively, smaller values of these parameters
results in lesser mobilization of arsenic near the well, however, decreased sorption also results in lower

Table 5
Injectant Compositions for Predictive Model

Analyte Background Injectant 1 Injectant 2

Na (mol/L) 7.74 x1023 4.05 x1023 4.05 x1023

Cl (mol/L) 2.80 x1023 2.06 x1023 2.06 x1023

HCO3 (mol/L) 2.59 x1023 9.70 x1024 9.70 x1024

pH 7.80 9.34 9.34
Temperature (8C) 62 18 18
Si (mol/L) 5.44 31024 2.55 31025 2.55 31025

SO4 (mol/L) 5.21 31026 5.21 31026 5.21 x31026

Reactive P (mol/L) 6.60 31026 1.61 31027 1.61 31027

As (mol/L) 1.60 31028 6.67 31029 6.67 31029

Dissolved Oxygen (mol/L) Not measured 1.328 31024 1.25 31025
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retardation over the length of model domain. The simulation results produced by one of the modal parame-
ter sets, i.e., a parameter set with high likelihood based on the posterior histogram (Table 4), represent a
highly likely prediction of the model. As shown in Figure 7, this result suggests relatively low arsenic mobili-
zation and stronger retardation.
5.3.2. Implications for Long-Term Arsenic Behavior: Effects of De-Oxygenation
The simulation results of the predictive model discussed above were also produced to test for the effects of
a nearly complete de-oxygenation of the injectant on the fate and transport of arsenic (Figure 8). The mean
concentrations and the associated 1/2 one standard deviation of all constituents appear closer to the min-
imum values. These results also indicate that the magnitude of arsenic mobilized will be reduced dramati-
cally if the dissolved oxygen concentrations in the injectant remain limited throughout the operation of the
injection scheme and will remain below the ANZECC (2000) water quality guideline for livestock (6.67 3

1026 mol/L). Although the overall uncertainty of the model simulations remains similar, the shape of dis-
solved arsenic migration profile is narrower with smaller peaks. This shape is controlled mainly by sorption
processes, and any arsenic mobilization due to oxidation is limited due to the lack of dissolved oxygen in

Figure 7. Predictive uncertainty for aquifer injection at the end of 10 years––Part 1. The results of 900 predictive model
simulations were produced using injectant composition similar to that used in the injection trial with increased dissolved
oxygen concentration of 1.7533 1024 mol/L (derived from the calibrated field-scale RTM). The plots on the left illustrate
some aspects of the probability distribution of different species at a given distance from the injection well. All 900 simula-
tions are illustrated by the grey shaded area in the plots on the right. Three simulations were selected to demonstrate the
effects of correlation between field-scale RTM parameters. The simulation plotted as red line controls arsenic mobility
through sorption while the simulation in yellow was dominated by dissolved oxygen parameter (do). The simulation in
green has similar do value as in the yellow simulation and thus clearly shows correlation between field surface site density
(mf) and arsenopyrite fraction (aspy) parameters.
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the injectant. These results emphasize the need for maintaining low levels of dissolved oxygen in the
injectant.

The predictive analyses discussed above are based only on the key geochemical processes identified in the
calibration procedure. It is important to note that the slow geochemical processes not included in the cali-
bration could become increasingly important over the timescale considered in predictive scenarios and
these must be understood before carrying out a broader scale predictive analysis for the impact of a larger
scale injection scheme.

6. Conclusions

CSG production in coming decades will likely involve the management of large amounts of co-produced
water through disposal into deep aquifers after off-site treatment. Prior to the implementation of long-term
injection schemes it is important to perform field injection trials that generate sufficiently meaningful data
sets to allow for the assessment of both the hydrological and geochemical impacts. The substantial depth
of some of the aquifers targeted for reinjection schemes limits the opportunities for an extensive monitor-
ing network and often a push-pull test, as discussed in this study, is the only feasible option to acquire such
data sets. The present work illustrates how reactive transport models (RTM) can be used to maximize the

Figure 8. Predictive uncertainty for aquifer injection at the end of 10 years––Part 2. The results of 900 predictive model
simulations were produced using injectant composition similar to that used in the injection trial but with nearly complete
de-oxygenation of the injectant. The overall results were similar to that illustrated in Figure 7 except that the magnitude
of arsenic mobilized was reduced dramatically emphasizing the need for maintaining low levels of dissolved oxygen in
the injectant. Note that the results are plotted at different scales to that in Figure 7 to clearly demonstrate the predictive
uncertainty where required.
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value of the acquired injection trial data in conjunction with multiscale data from supporting laboratory
experiments and the pre-trial hydrogeological and geochemical investigations.

During the injection trial analyzed in this study, excess arsenic concentrations (up to 3.20 3 1027 mol/L)
were observed in the recovery phase, suggesting that arsenic was mobilized by the injectant water. The
data set collected during this trial allowed for a detailed analysis of the coupled transport and reaction pro-
cesses. Complementing the data collected in the field, a series of experiments was performed in the labora-
tory with sediments from the study site to better understand and quantify arsenic sorption behavior. The
laboratory data were described by a generalized composite surface complexation model (GC-SCM), which
was subsequently incorporated into the field-scale simulations of the injection trial. Upscaling of the GC-
SCM from the laboratory to the field scale was achieved by adjusting the surface site density term through
a scaling factor. Initially, it was assumed that the mobilization of arsenic was caused primarily by desorption
from high injectant pH (9.30). However, due to the observed increase of sulfate concentrations during
recovery, it was speculated that pyrite oxidation may have occurred, resulting in the co-release of arsenic
incorporated into the pyrite structure. Based on the insights gained from the model calibration we conclude
that both desorption and pyrite oxidation may have contributed to arsenic mobilization during the injection
trial.

Although it was considered likely that both processes played a role, the magnitude of each process’s contri-
bution was highly uncertain due to the high degree of correlation between their respective governing
parameters. To account for this uncertainty in the predictions of the long-term arsenic behavior a novel yet
simple methodology was developed and presented. The proposed methodology integrates information
from both the laboratory GC-SCM and the field-scale RTM into the model predictions. The computational
requirements to quantify predictive uncertainty are reduced by exploiting the extremely fast model execu-
tion times associated with the GC-SCM. The results indicate that there is a significant uncertainty associated
with the long-term fate of arsenic at the study site. However, the results also clearly illustrate that arsenic
levels will remain below the Australian drinking water guideline (1.33 3 1027 mol/L) if the potential for
pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed efficient
modeling and predictive uncertainty quantification method can be easily implemented for a wide range of
other groundwater studies that investigate the risks of metal(loid) or radionuclide contamination, and can
be easily extended to incorporate additional expert knowledge such as, expected trends in parameters,
expected ratios amongst parameters, etc.
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