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Abstract 
Drought as a slow-onset phenomenon inflicts important losses to agriculture where the degree of 

vulnerability depends not only on physical variables such as precipitation and temperature, but also on 

societal preparedness. While the scopes of physical and social vulnerability are very different in 

nature, studies distinguishing these two aspects have been lacking. In this study we address the 

physical and social aspects of drought vulnerability of maize (CDVIphy and CDVIsoc) in Sub-Saharan 

Africa (SSA). To quantify vulnerability, we applied a probabilistic framework combining a Drought 

Exposure Index (DEI) with a physical or social Crop Failure Index, CFIphy or CFIsoc, respectively. DEI 

was derived from the exceedance probability of precipitation. Maize yields, simulated using the 

Environmental Policy Integrated Climate (EPIC) model, were used to build CFIphy, whereas the 

residual of simulated and FAO recorded yields were used to construct CFIsoc. The results showed that 

southern and partially central Africa are more vulnerable to physical drought as compared to other 

regions. Central and western Africa, however, are socially highly vulnerable. Comparison of CDVIphy 

and CDVIsoc revealed that societal factors cause more vulnerability than physical variables in almost 

all SSA countries except Nigeria and South Africa.. We conclude that quantification of both drought 

vulnerabilities help a better characterization of droughts and identify regions where more investments 

in drought preparedness are required. 

 

Keywords:  

EPIC model, Probability framework, Crop Failure Index, Drought Exposure Index, exceedance 

probability.   
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1. Introduction 

 Crops exhibit known responses to climate variability (Challinor et al., 2009). Crop models can 

predict the vulnerability of food production to drought (Fraser et al., 2013). However, drought 

vulnerability is a complex, context-specific concept (Naumann et al., 2014) and its definition has 

evolved over time. According to the IPCC (Intergovernmental Panel on Climate Change) Forth 

Assessment Report, vulnerability is defined as the degree to which an environmental or a social 

system is exposed to adverse effects of climate change and is a function of exposure, sensitivity, and 

adaptive capacity (IPCC, 2007; Nelson et al., 2007; Parry et al., 2007). The IPCC Fifth Assessment 

Report emphasizes on the social aspect of drought vulnerability (IPCC, 2013).  

 From the agricultural point of view, although the direct impact of precipitation shortfall is crop 

yield reduction, the underlying cause of this vulnerability to meteorological drought can be beyond the 

natural scope (Naumann et al., 2014). Generally speaking, “physical vulnerability” induces yield loss 

only due to water stress during crop growth, but reduced production in a drought event has multiple 

factors. Stressors making one region vulnerable may be different for another region and are highly 

dependent on the degree of development and socioeconomic status of a particular community (Antwi-

Agyei et al., 2012). Reasons like political, economic, and social conditions significantly exacerbate 

drought impacts especially in developing countries (Bashir and Schilizzi, 2013; O'Brien et al., 2004). 

Turner and Dumas (2013) found that in many cases social factors dominate. These assessments 

indicate that climate change can affect crop production well beyond the physical drought stresses.  

 Given its complexity, many studies have conducted vulnerability quantification at different levels, 

from developing qualitative methods (Derbile, 2013; Fussel and Klein, 2006; Luers et al., 2003), to 

building and validating composite indicators (Carrão et al., 2016; Naumann et al., 2014; O'Brien et al., 

2004), and to identifying factors influencing vulnerability (Antwi-Agyei et al., 2012; Bryan et al., 

2009; Malcomb et al., 2014). The results show that some regions are at a higher risk of severe or even 

total crop production loss (Muller et al., 2011; Roudier et al., 2011) for a relatively mild drought. In 

countries of Sub-Saharan Africa (SSA), poverty limits installing adaptation measures to drought 

(Masih et al., 2014; Shi and Tao, 2014); therefore, the physical and social vulnerability to drought can 

be very different. However, few studies on drought vulnerability have measured the difference 
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between physical and social drought vulnerability or highlighted their relative importance (Terence et 

al., 2017; Zarafshani et al., 2012). Therefore, there is a need to develop methods that quantify both 

aspects of drought vulnerability simultaneously. Such a level of understanding is important to propose 

effective adaptation measures to drought and to enhance the resilience of agricultural production 

(Cooper et al., 2008).  

  This study bridges the existing gap in quantification of the two aspects of drought vulnerability 

for maize in SSA. A process-based EPIC crop model is used to simulate maize yields to derive 

information on crop’s physical response to climate variability (Iglesias et al., 2012; Lobell and Burke, 

2010). The reported yields by FAO reflect the impacts of both physical and social factors. We quantify 

maize drought vulnerability by incorporating drought exposure and crop failure indices in a 

probability framework. The regions that are physically and socially highly vulnerable are identified 

and implications of the two aspects of drought vulnerability are discussed. 

 SSA was chosen as the study area because it is the home to one billion people (World Bank, 2016) 

frequently struck by droughts. Rainfall has large spatial and temporal variability in the region with 

significant impact on food production and livelihoods of the people (Hellmuth et al., 2007). The 

recurrence of droughts in the past decades has triggered many famines, resulting in the death of 

millions of people and food insecurity across the sub-continent. The expected adverse impacts of 

climate change on crop production in SSA add further risk to the future food security of the region 

(Liu et al., 2008; Muller, 2011; Roudier et al., 2011; Schlenker and Lobell, 2010). 

 

Methodology 

2.1.Simulation and calibration of maize yield using EPIC+ 

 Crop yield was simulated using EPIC+ which is an extended version of EPIC coupled with the 

Sequential Uncertainty Fitting (SUFI-2) algorithm for calibration (Kamali et al., 2018).  EPIC is a bio-

physical agronomic model developed in the mid-1980s (Williams et al., 1989). The crop growth 

module of EPIC estimates crop yield by multiplying the above ground biomass at maturity with a 

water stress adjusted harvest index (Williams et al., 1989). The model operates on a daily basis and 

takes into account all relevant processes of soil–crop–atmosphere system, climate data, management 
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data such as a leaf area index, a crop parameter for converting energy to biomass, and fertilizer 

deficiencies (Williams et al., 1989). Validation studies with EPIC applications on different scales have 

demonstrated satisfactory results in previous works (Causarano et al., 2008; Gaiser et al., 2010; Liu et 

al., 2013; Wang et al., 2012). 

 EPIC is originally a field-scale model. In EPIC+ as a spatially explicit model, the EPIC application 

is extended  to larger scales using a Python framework following the work by Kamali et al. (2018). 

The framework divides the region of study into a numbers of grids based on a specified resolution 

(here 0.5°) and executes EPIC on each grid cell. The site-specific input data included longitude, 

latitude, slope, elevation (DEM), climate, soil, crop calendar, fertilizer, and soil (Table 1). All input 

data were converted into 0.5° resolution. 

 

Table 1 Summary of the input data and the sources used for simulating maize in SSA. All data were 
transformed into a 0.5°x0.5° resolution (Kamali et al., 2018). 
Input data Description Resolution Year Source 

DEM, Slope Digital elevation model 
GTOPO30 

1 km 
(5″x5″) 

Edition 
2004 

U.S. Geological Survey 
(2004)  

 

ARF 
 

 Rainfed cultivated area 
 

10 km 
(5′x5′) 

 

2000 
 

MIRCA20001version 1.1 
(Portmann et al., 2010) 

Climate Daily maximum and 
minimum temperature, 
precipitation, solar radiation, 
relative humidity, wind 
speed, CO2 concentration 

50 km 
(0.5ox0.5o) 

1970-2012  
WFDEI2 meteorological 
forcing data  
(Weedon et al., 2011) 

Soil Soil map and database  10 km 
(5′x5′) 

2006 ISRIC-WISE3 
(Batjes, 2006)  

Planting & 
harvesting 
dates 

Based on temperature linked 
to crop calendar  

50 km 
(0.5ox0.5o) 

1990s to 
early 2000s 

 SAGE4 
(Sacks et al., 2010) 

Fertilizer Fertilizer use National 2002 FertiStat (FAO, 2007) 

1 Monthly Irrigated and Rainfed Crop Areas 

2 WATCH-Forcing-Data-ERA-Interim 
3 International Soil Reference and Information Centre-World Inventory of Soil Emission Potentials 
4 Center for Sustainability and the Global Environment 

 
 In the developed framework, EPIC+ is equipped with the SUFI-2 algorithm for automatic 

calibration (Abbaspour et al., 2004). The SUFI-2 algorithm maps all uncertainties in the output on the 

parameter ranges. The uncertainty is quantified by the 95% prediction uncertainty (95PPU) calculated 
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at the 2.5% and 97.5% levels of cumulative distribution of an output variable obtained through the 

Latin Hypercube Sampling in the parameters space. Two criteria, r-factor and p-factor, judge the 

goodness-of-fit and the level of uncertainty of the model. The p-factor criterion represents the fraction 

of measured data bracketed by the 95PPU uncertainty band and varies from 0 to 1, where 1 means 

100% of the measured data are bracketed by the model simulation (expressed as the 95PPU). Values 

around 0.5 are usually acceptable for crop simulation (Abbaspour et al., 2015). The r-factor criterion 

is the average width of the 95PPU band divided by the standard deviation of the measured variable, 

which is a measure of the prediction uncertainty. The ideal value for r-factor is 0, with an acceptable 

practical value of around 2 for crop yield.  

 The Standardized Root Mean Square Error (RSR) criterion proposed by Singh et al. (2004) was 

selected as the objective function in the SUFI-2 algorithm to compare the performance of country level 

simulated yield (Ysim) with national level FAO yield (Yobs) (FAO, 2012) as: 

 

    
    

        
 

                 
   

   

                
   

   

                                                                                                (1)  

 

     was obtained from simulating irrigated (YIR) and rainfed (YRF) yields in EPIC on n grids within a 

country and is then aggregated to country level using weighted areal averages as (Folberth et al., 

2012): 

 

     
                        

 
   

      
 
         

                                                                                                            (2) 

 

where AIR and ARF are respectively irrigated and rainfed cultivated areas in each grid. 

 We simulated maize for the years 1970-2012. Considering the first 10 years as equilibrating period 

for soil moisture and nitrogen initial conditions, we calibrated the model for the period 1980-2012. 

Model calibration was implemented in three steps (Kamali et al., 2018).  In the first step, planting 

dates at grid level were adjusted in 50 simulations and their values were fixed. In the next step, 

parameters related to agricultural operations including potential heat unit, planting density and 
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different fertilization application rates (Nitrogen, Phosphorous, and Potassium) were calibrated. The 

best values were used as fixed values for the next step. Finally and in the last step, six Crop parameters 

(Biomass-energy ratio, Harvest index, Optimal temperature for plant growth, Minimum temperature 

for plant growth, Lower limit of harvest index, Fraction of water in crop yield) and two Model 

parameters (Water stress harvest index and SCS curve number index) highlighted as the most sensitive 

parameters in literature were calibrated (Wang et al., 2012; Xiong et al., 2014). More details on the 

initial ranges of parameters are found in Kamali et al. (2018). 

 

2.2.Conceptualizing crop drought vulnerability 

 Crop Drought Vulnerability Index (CDVI) was built with the Drought Exposure Index (DEI) as a 

measure of the degree of stresses on the system; and the Crop Failure Index (CFI) as the response of 

the system to the stress. 

 

2.2.1. Definition of Drought Exposure Index (DEI) 

 DEI is derived from the Standardized Precipitation Index (SPI) (McKee et al., 1993). SPI is 

calculated first by fitting a two-parameters gamma distribution function to precipitation (PCP). Once 

the probability distribution function is determined, the Cumulative Distribution Function (CDFPCP) is 

calculated and the inverse normal function is applied to obtain SPI. This means that SPI and its 

associated CDFPCP can be converted to each other. We define DEI by using CDFPCP , which was 

described by a two-parameters gamma distribution (Bordi et al., 2001a; Lloyd-Hughes and Saunders, 

2002): 

 

                                                                                                                    (3) 

 

 We tested the performance of normal, log-normal and two-parameter gamma distribution 

functions using the Kolmogorov-Smirnov (K-S) statistic test for the precipitation data. The results 

showed that all the three distributions show a good fit for all months and less than 5% of grid cells 
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failed the test (Fig. S1). The average p-values were slightly higher for the gamma distribution. A two-

parameter gamma distribution was used. Other studies confirmed the suitability of gamma distribution 

function (Bordi et al., 2001b; Lloyd-Hughes and Saunders, 2002). 

 DEI varies between 0 and 1 with DEI>0.5 indicating drought situations and DEI<0.5 being 

equivalent to non-drought. Fig. 1a presents the schematic representation of transforming PCP to 

CDFPCP (left), and CDFPCP to DEI (right). DEI-X is defined over different time scales (X = 1, 3, 6, 9, 

and 12-month(s)). DEI-X at each month is obtained from total precipitation over the last X months. For 

example, DEI-3 at the end of February compares the December–January–February precipitation totals 

in that particular year with the December–January–February precipitation totals of all other years. We 

also defined five categories within the ranges of        and DEI as: wet, near normal, mild to 

moderate drought, severe to extreme drought, and exceptional drought (Svoboda et al., 2002) (Table 

2). 

Table 2 

Five categories of cumulative distribution functions (CDFPCP,        
,             

) and their 

equivalent Drought Exposure (DEI) and Crop Failure Indices (CFI). 

Category CDFPCP,        
,             

 DEI, CFI 

Wet 0.692 to 1.00 0.00 to 0.308 

Near normal 0.308 to 0.692 0.0308 to 0.692 

Mild to moderate 0.115 to 0.308 0.692 to 0.885 

Severe to extreme 0.023 to 0.115 0.885 to 0.115 

Exceptional 0.00 or 0.0230 0.977 to 1.00 
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Fig. 1. Schematic representation of transforming a) precipitation from its cumulative distribution 

function (CDFPCP) to the Drought Exposure Index (DEI); b) simulated maize yield (Ysim) from its 

cumulative distribution function (       
) to the physical Crop Failure Index (CFIphy); and c) the 

residual of simulated and observed yields from its cumulative distribution function (            
) to the 

socioeconomic Crop Failure Index (CFIsoc). 
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2.2.2.  Definitions of the physical and social Crop Failure Indices (CFIphy and CFIsoc) 

 The physical Crop Failure Index (CFIphy) considers only climatic influences and its computation is 

based on Ysim obtained from the calibrated EPIC, which is not influenced by social factors as (Fig. 1b): 

 

                
                                                                                                                         (4) 

 

According to this definition, crop failure occurs in years when CFI is larger than 0.5.   

 CFIsoc integrates the non-physical influence of drought on crop loss. It is important to point out 

that we do not aim to consider details of socioeconomic factors influencing crop failure; but only 

imply that Yobs is based on a combination of social and physical factors, while Ysim merely considers 

the physical factors. Therefore, we use the residuals of Yobs and Ysim (Yobs-Ysim) to represent crop losses 

due to socioeconomic factors and quantify it by CFIsoc as: 

 

                     
                                                                                                                  (5) 

 

 According to the above definition, crop failure occurs when Yobs is smaller than Ysim. A normal 

distribution function with 0 mean is used for the residual of observed and simulated maize yields. 

Positive residuals mean that the region is able to produce more crop than expected, considering the 

climate influence; whereas negative residuals indicate that the region did not adapt to climate stresses 

(Fig. 1c). The five categories defined in Table 2 for DEI remain valid for CFIphy and CFIsoc.  

 

2.2.3. Drought vulnerability definition based on incorporating DEI and CFI 

 The vulnerability of a system is defined as the ability to respond to variables of exposure. As the 

degree of exposure and the capacity to withstand them are uncertain, vulnerability is quantified 

probabilistically (Foti et al., 2014). Physical (CDVIphy) and social vulnerabilities (CDVIsoc) are defined 

as the probabilities that CFIphy and CFIsoc , respectively, are larger than DEI (Foti et al., 2014); that is: 
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(6) 

                                          

 

From probabilistic points of view, vulnerability depends on the mean, variance, and covariance of 

DEI, CFIphy, or CFIsoc. Assuming                 and                  and in the case of 

non-Gaussian      and     , the above equations are written: 

        
 

 
 

 

 
     

              
 

       

 
  

(7) 

        
 

 
 

 

 
     

              
 

       

 

  

where erf() is the Gaussian error function,      is the mean of DEI. More details on the 

derivation of above equations, their components and their influence on vulnerability are provided in 

Supplementary material. 

 

3. Results 

3.1. Calibration performance of EPIC 

The results of simulated maize given in terms of RSR before and after calibration (Table 3) 

indicated significant improvement in model performance after calibration. The RSR values for all 

countries except Democratic Republic of the Congo, decreased to around 1 or less. The RSR value for 

Democratic Republic of the Congo decreased significantly from 45.9 to 6.27. The main reason for 

high RSR in this country is a reported constant yield of 0.8 t ha-1 for the whole 33-year period which 

does not seem to be realistic. Comparison of the average of simulated and observed yields during 

1980-2012 shows that the differences are smaller than 0.1 t ha-1 in most countries suggesting 

satisfactory performance of the EPIC+ in simulating crop yields. 
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Table 3. Country level results of the EPIC calibration with the SUFI-2 algorithm based on RSR before 

calibration, RSR after calibration, p-factor and r-factor criteria (      is the average observed maize 

yield and       is the average simulated yield) obtained from the work by Kamali et al. (2018). 
 Country             RSR  p-factor r-factor 

Ea
st

er
n 

A
fr

ic
a 

Burundi 1.17 1.17 1.38 0.55 1.80 
Comoros 2.20 2.13 1.13 0.42 1.95 
Eritrea 0.63 0.39 1.45 0.58 1.98 
Ethiopia 1.78 1.80 0.91 0.52 1.81 
Kenya 1.67 1.69 0.86 0.61 1.74 
Madagascar 1.14 1.37 1.42 0.79 2.54 
Malawi 1.34 1.37 0.94 0.45 2.25 
Mozambique 0.68 0.64 1.12 0.61 1.56 
Rwanda 1.23 1.18 1.08 0.43 1.04 
Somalia 0.89 0.80 1.22 0.42 1.08 
Sudan 0.79 0.72 1.33 0.48 1.05 
Tanzania 1.48 1.10 1.20 0.58 0.94 
Uganda 1.59 1.62 0.85 0.58 2.48 
Zambia 1.85 1.86 0.89 0.45 1.31 
Zimbabwe 1.16 1.17 1.12 0.37 1.67 

C
en

tra
l A

fr
ic

a 

Angola 0.52 0.55 0.99 0.88 2.38 
Cameroon 1.81 1.79 1.00 0.48 1.38 
Central African Republic 0.94 1.05 1.16 0.49 0.74 
Chad 0.94 0.94 0.84 0.66 2.05 
Democratic Republic of the Congo 0.80 0.81 6.27 0.48 1.05 
Gabon 1.56 1.49 1.35 0.70 1.95 
Republic of Congo 0.76 0.75 2.16 0.88 2.39 

So
ut

he
rn

 A
fr

ic
a Botswana 0.29 0.30 1.39 0.52 2.33 

Lesotho 0.80 0.72 1.27 0.42 2.45 
Namibia 1.36 1.12 1.02 0.42 1.23 
South Africa 2.67 2.48 0.92 0.55 0.79 
Swaziland 1.35 1.39 1.06 0.42 1.49 

W
es

te
rn

 A
fr

ic
a 

Benin 1.03 1.08 0.99 0.70 1.83 
Burkina Faso 1.34 1.32 0.97 0.52 1.07 
Djibouti 1.80 1.84 1.20 0.70 2.73 
Gambia 1.30 1.29 0.93 0.82 2.97 
Ghana 1.37 1.46 1.07 0.52 1.14 
Guinea 1.23 1.27 1.96 0.45 2.02 
Ivory coast 1.51 1.73 1.08 0.48 1.44 
Mali 1.50 1.70 0.98 0.55 1.55 
Mauritania 0.70 0.67 1.18 0.61 2.25 
Niger 0.69 0.68 0.85 0.70 1.88 
Nigeria 1.44 1.39 0.98 0.70 1.84 
Sierra Leone 0.99 1.00 1.09 0.53 2.07 
Senegal 1.29 1.27 0.92 0.86 2.44 
Togo 1.08 1.19 1.26 0.52 1.18 
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 The p-factors with values around 0.5 or more in all countries indicate that over 50% of data were 

bracketed with the 95PPU band which are satisfactory for crop calibration during the 33 years of time 

span (Table 3). The r-factor values as the representative of the width of the 95PPU band are smaller 

than 2.5 and in most countries smaller than 2 which are acceptable for yield simulation. 

3.2.Spatiotemporal pattern of DEI and CFIphy  

 To identify the most relevant time scale of DEI for vulnerability analysis, the correlation 

coefficients between DEI-1, 3, 6, 9, and 12 during growing seasons and CFIphy were calculated. The 

results showed higher correlation in southern and eastern Africa as well as Sahelian strip countries 

(mostly larger than 0.5) as compared to central Africa and southern regions of the Sahelian strip where 

the values ranged between 0.2 and 0.5 (Fig. 2a-e). The lower correlation coefficient values in central 

Africa and countries along the west coast of western Africa are mostly related to high precipitation 

(larger than 1200 mm yr-1), which indicates that crop losses there are not correlated to water stress. 

DEI-12 was least correlated with CFIphy, especially in most countries, indicating that longer exposure 

times are not adequate for agricultural loss assessment. DEI-3 and DEI-6 with the highest correlation 

coefficients in most cases were identified as the most representative time scales (Fig. 2 c, b).  

 

 
Fig. 2. Correlation coefficients between different time scales of Drought Exposure Index (DEI) (DEI-

1, 3, 6, 9, 12) and physical Crop Failure Index (CFIphy) for maize. 
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 For each grid, we selected the time scale with the highest correlation for subsequent analysis of 

vulnerability. The grid level DEI between 1980 and 2012 indicates that SSA experienced many severe 

to extreme drought periods (Fig. 3). Between 1982 and 1984, almost all countries experienced drought 

situations. The southern and western Africa experienced severe to extreme drought in 1987. Later, and 

between 1992 and 1995, central and southern African countries experienced severe and extreme 

drought situations. Between 1999 and 2012, less drought exposure was evident. However, southern 

and central Africa experienced the least wet period and rainfall were mostly in the near normal 

situation during the last decades. Yearly CFIphy patterns (Fig. 4) were approximately similar to the DEI 

patterns in Fig. 3 for some regions whereas were different in others. The drought period 1982-1984 

significantly influenced southern and eastern Africa with severe to extreme intensity, whereas the 

central African countries were least exposed to high CFIphy and were mostly in the near normal 

situations (Fig. 4). This clearly shows that drought periods identified by DEI did not reflect with the 

same intensity in CFIphy. 
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Fig. 3. The grid level pattern of the annual Drought Exposure Index (DEI) during 1980 and 2012.  
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Fig. 4. The grid level patterns of the annual physical Crop Failure Index (CFIphy) during 1980 and 2012.  
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3.3.Physical and social crop drought vulnerability  

 The CDVIphy and CDVIsoc calculated in this study (Eq. S4) quantifies vulnerability based on the 

interactions of DEIs and CFI for the 33 years of studied period and does not differentiate periods with 

high vulnerability from low ones. The CDVIphy distribution shows values larger than 0.46 in most SSA 

countries indicating that maize yield is vulnerable to climate variability (Fig. 5a). Botswana, 

Zimbabwe, partially Mauritania, western part of South Africa, and central Tanzania with CDVIphy 

larger than 0.57 were identified as the most physically vulnerable regions. Namibia, western Angola, 

north part of Central African Republic, and partially Democratic Republic of Congo with CDVIphy 

between 0.52 and 0.57 were placed in second vulnerable regions (Fig. 5a). 

 

 
Fig. 5. Spatial distribution of a) grid level physical maize drought vulnerability (CDVIphy); b) country 

level social maize drought vulnerability (CDVIsoc); and c) the residual of CDVIphy and CDVIsoc. The 

results are based on the average vulnerability of 33-years. 
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 The average CDVIsoc calculated at the country level showed a very different picture from CDVIphy. 

Overall, western and central African countries, Ethiopia, Zimbabwe, and Namibia were socially most 

vulnerable (CDVIsoc>0.52) compared with eastern Africa, South Africa, Sudan, and Chad. Nigeria and 

Somalia were least vulnerable as the CDVIsoc was smaller than 0.46 (Fig. 5b). Although, Zimbabwe 

exhibited the highest degree of CDVIphy and CDVIsoc, the same was not true for countries like 

Madagascar, Mali, Benin, Burkina Faso, and Ivory Coast, where the degree of CDVIphy was not as high 

as CDVIsoc (Fig. 5 a,b). The CDVIphy and CDVIsoc values in Zimbabwe indicated that both climatic and 

social factors are the limiting factors for maize production in this country (Fig. 5b). However, in other 

countries there was a large difference between CDVIphy and CDVIsoc, indicating a weak adaptive 

capacity of these countries to drought.  

 Due to lack of observed yields at grid level, we could calculate CDVIsoc only at country level. To 

compare the two vulnerability types at grid level, we assigned the calculated country level values of 

CDVIsoc to all grids within the country. The grid level residuals between two types of vulnerability i.e. 

CDVIphy-CDVIsoc was calculated at grid level (Fig. 5c). In most countries, CDVIsoc was larger than 

CDVIphy meaning that social vulnerability is more critical for the region than the physical one. The 

residuals exceeded 0.1 in countries like Ivory Coast, Benin, Mali, Zimbabwe, and Madagascar. In 

contrast, South Africa, Botswana, and Nigeria with a lower degree of CDVIsoc were identified as 

drought-resilient countries. 

 We also compared the country level CDVIsoc with median, 25th and 75th percentiles of CDVIphy 

calculated at grid level (Fig. 6). The results showed that CDVIsoc was larger than 75th percentiles of 

CDVIphy in most countries (Fig. 6) indicating that in most parts of a country, CDVIIsoc is larger than 

CDVIphy. Mauritania and Mali from western Africa, southern African countries, Gabon and Republic 

of Congo from central Africa showed large variability in CDVIphy, meaning that the degree of 

vulnerability is spatially different and therefore various adaptation strategies might be required 

depending on the residual between physical and social vulnerability. In Tanzania, for example, 

CDVIsoc equals median of CDVIphy, however over 50% of area are socially more vulnerable.  
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Fig. 6. Country level comparison of the physical cumulative drought vulnerability indices CDVIphy 

(boxplot) and social indices CDVIsoc (red points). The boxplots show the 25th and 75th percentiles of 

the spatial variability of CDVIphy from grids within a country. 

 

4. Discussion and conclusion 

4.1. The effectiveness of proposed methodology for quantifying CDVIsoc and CDVIphy  

 This study demonstrated a method to distinguish and quantify physical and social crop drought 

vulnerability based on a quantitative assessment of DEI and CFI. Our analysis represents an important 

step forward in the current agricultural drought vulnerability assessment. Such level of understanding 

is particularly significant in SSA due to intrinsic climatic variability, reliance on rainfed agriculture as 

well as lack of coping infrastructure and resources of the society.  

 We applied a probabilistic methodology to define vulnerability and its components (DEI, CFI, 

CDVI). Integrating the probabilistic concept supports a more reliable inference of the likelihood and 

relevance of each index. Besides, it allows for explicit inclusion of thresholds, as all indices are 

transformed to the same range from 0 to 1 with five classes (Table 2). Using standardized definitions 

of DEI and CFI, one can normalize the degrees of severity for each single value, which facilitates the 

comparison on different spatial resolutions or with other available standardized indices in literature.  

 We inferred that the residual of the simulated and observed yields reflects the socio-economic 

indicator of vulnerability because the application of EPIC did not consider man-made effects such as 

developments in the agricultural machinery and technology. However, a certain degree of uncertainties 

associated with model simulation which might slightly influence our analysis. We accounted for 
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model uncertainty by linking SUFI-2 to EPIC (details previously mentioned in Kamali et al. (2018)). 

The uncertainty in the observed yield, however, was more difficult to address and requires more 

details at smaller spatial scales. To partially account for it, we only took those observed yields, which 

were outside the 95% prediction uncertainty (95PPU) band of the simulated yields. The residual 

between Yobs and Ysim was also used in previous works as a criteria to distinguish regions that are 

resilient and sensitive to drought (Bryan et al., 2015).  

 Moreover, the magnitude of socioeconomic factors is substantially larger in most of countries. 

Comparing Yobs with Ysim in countries such as Burkina Faso, Ghana, Ivory coast, and Nigeria (Fig. S2), 

one can see significant agreement between the average of simulated and observed yields (Table 3). 

However, the existing trend in observed yields cannot be related to modeling uncertainty, but stems 

from socioeconomic factors. It is clear that model uncertainty does not follow a trend (Fig. S2). 

Therefore, not surprisingly, social vulnerability maps revealed clear differences between countries 

with a relatively strong economy such as Nigeria and South Africa, and Tanzania with other countries 

like Zambia and Ivory Coast where rather poor social adaptive capacity exacerbated vulnerability. 

 

4.2. Implications of CDVIphy and CDVIsoc for SSA countries 

 We found that CDVIsoc was higher than CDVIphy for most countries revealing that there is a 

significant potential to increase maize yield by designing adaptation strategies and farmer-managed 

agricultural interventions. Using our vulnerability maps, one can identify promising hotspots for 

drought adaptation investment. Despite different initial assumptions, our results show some 

consistency with the findings of HarvestChoice (2013), where normalized potential maize yields were 

compared against actual yield. Their analysis also highlighted South Africa, Lesotho, and Tanzania as 

countries with high-level productivity despite low level of inherent potential yields. By contrast, 

Madagascar, Mali, and Senegal were marked as countries with a relatively large gap between actual 

and potential yields. The major difference between the outcomes of HarvestChoice (2013) and our 

results is that their actual yields, which encompassing the influence of both social and physical 

measures, were compared with potential yields, which was defined as the yield without any climate 
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and nutrition stress; while we measured the gap according to the degree of exposure to climate 

stresses.  

 In this study, we do not discuss on the socio-economic factors which might influence 

vulnerability, as it is beyond the scope of this study and will be investigated in the follow-up study. 

However, the influence of these factors is reflected in the CVDIsoc. In Tanzania, for example, lower 

CVDIsoc may be related to research and extension efforts applied in the fields as well as the use of 

improved maize seeds (Stephen et al., 2014). While in Nigeria strategies such as using hybrid varieties 

of seeds, availability of subsidized fertilizer, as well as improved infrastructure and extension services 

may have helped to adapt to climate variability. The maize revolution in Nigeria advanced the country 

to the tenth largest producer of maize in the world, and the largest maize producer in Africa. 

Democratic Republic of Congo suffered from years of war and political upheaval, and continues to 

face significant humanitarian challenges. No significant improvement in maize yield is reported over 

the last three decades. In Kenya, maize yield increased after liberation, however, it showed a slight 

decline between 1980 and 2013 presumably due to a lack of access to credit and finance to enable 

adoption of improved seeds (Abate et al., 2015). 

 Finally, the degree of vulnerability might vary over time, but we here quantified it for the whole 

studied period. Therefore, the social vulnerability of Nigeria with high maize yield in the last decade is 

of the same magnitude in Somalia where highest maize yield was seen in the first decade. In Nigeria, 

the most significant changes occurred after 2000. On the other hand, Somalia had its peak in maize 

production in the 1980’s and the country experience an average of about 57% decrease over the last 

two decades in maize production in 1990’s and 2000’s due to famine, damages from pest, ethnic wars, 

and regime change All these changes resulted in poor nutritional status of farmers, and fields being 

abandoned due to insecurity (Rashid and Zejjari, 1997). Similar situation occurred in Madagascar 

where yield increased after 2000 and therefore the country were placed as socially vulnerable regions. 

4.3.Conclusion and limitation 

 Our proposed methodology quantified the physical and social crop drought vulnerabilities and 

highlights countries where adaptation capacities are weak. The results show that southern and eastern 
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African countries are physically more vulnerable to drought as compared to other regions. Central and 

western Africa, however, are socially highly vulnerable. 

 The standardized procedure used in calculating DEI and CFI provides a consistent comparison of 

crop drought vulnerability across regions and countries. It is also helpful for comparing DEI with CFI 

severities (Figs. 3&4), as a certain value of DEI or CFI indicates the same degree of severity. These 

two features together are effective for forward projection of vulnerability under future scenarios of 

climate change and help policy makers to estimate future risks of crop drought vulnerability. Besides, 

the physical and socioeconomic drought vulnerability maps obtained from the probability based 

linkage of DEI to CFI provide the needed geographical bases to identify vulnerable hotspots in both 

perspectives giving deeper insights to early warning of drought. The information enables regional and 

national policy makers to better characterize drought vulnerability across regions and prioritize 

proactive and reactive agricultural adaptation strategies in response to drought.  

 Moreover, there are generic strategies that can be implemented to combat drought vulnerability. 

These strategies are different in different regions, being physically less reliable in regions that are 

socioeconomically more vulnerable. The comparison of physical and socioeconomic vulnerabilities 

represents how countries cope with drought. Based on such comparisons, managers and policy makers 

will adopt different strategies based on the nature of vulnerability (physical or socioeconomic). The 

quantification approach proposed in this paper can be expanded in future studies to measure the degree 

of reduction in two crop drought vulnerability types in response to implementing different 

management scenarios. 

 Our analysis of social vulnerability was limited to the country scale due to the lack of spatially 

well-resolved crop yields which was the main limitation of this study. However, it is evident that the 

proposed methodology is valid and can be adapted to any spatial scale depending on the available data 

for the region. Smaller resolution of data will help to increase the reliability of the calibrated models 

and to better understand the effectiveness of adaptation strategies can be applied to each regions. Here, 

we assumed that social vulnerability is the same in all grids within the country and equals the average 

of the country. 
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 This study does not provide a detailed investigation of factors that influence the difference 

between physical and social vulnerability. However, our preliminary discussion of the social drought 

vulnerabilities in SSA countries shows  that such a systematic analysis would provide a more reliable 

basis for analysis of crop production risks and failure in various regions.  
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Highlights 

 Maize was simulated using EPIC crop model at 0.5° level 

 Vulnerability was defined based on the interaction of drought exposure and crop failure 

indices 

 Physical and social maize drought vulnerabilities were mapped over SSA. 

 Social vulnerability were higher in most regions. 
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