This manuscript version is made available under the CC-BY-NC-ND 4.0 Ticense
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript ! ssssss =

-t

Research papers HYDROLOGY

An ensemble-based dynamic Bayesian averaging approach for discharge sim-

ulations using multiple global precipitation products and hydrological models

Wei Qi, Junguo Liu, Hong Yang, Chris Sweetapple

PIIL: S0022-1694(18)30025-8

DOL: https://doi.org/10.1016/j.jhydrol.2018.01.026
Reference: HYDROL 22508

To appear in: Journal of Hydrology

Received Date: 27 May 2017

Revised Date: 1 December 2017

Accepted Date: 9 January 2018

Please cite this article as: Qi, W., Liu, J., Yang, H., Sweetapple, C., An ensemble-based dynamic Bayesian averaging
approach for discharge simulations using multiple global precipitation products and hydrological models, Journal
of Hydrology (2018), doi: https://doi.org/10.1016/j.jhydrol.2018.01.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.jhydrol.2018.01.026
https://doi.org/10.1016/j.jhydrol.2018.01.026

An ensemble-based dynamic Bayesian averaging approach for
discharge simulations using multiple global precipitation products

and hydrological models

Wei Qi" %, Junguo Liu"", Hong Yang™* and Chris Sweetapple’

"' School of Environmental Science and Engineering, South University of Science and
Technology of China, Xueyuan Road 1088, Nanshan Districit, Shenzhen, 518055, Shenzhen,
China

? State Key Laboratory of Water Resource & Hydropower Engineering Science, Wuhan
University, Wuhan, 430072, China

3 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
4 Department of Environmental Science, University of Basel, Basel, Switzerland

> Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences,

University of Exeter, North Park Road, Exeter, Devon EX4 4QF, United Kingdom

*Email: qiwei waterresources@hotmail.com; junguo.liu@gmail.com; liujg@sustc.edu.cn

Highlights:

An ensemble-based dynamic Bayesian averaging approach is proposed

Estimate joint probability of precipitation and hydrological models being correct
Estimate posterior distribution based on magnitude and timing of flows

Outstanding capability to estimate expected discharges



Abstract:

Global precipitation products are very important datasets in flow simulations, especially in poorly
gauged regions. Uncertainties resulting from precipitation products, hydrological models and
their combinations vary with time and data magnitude, and undermine their application to flow
simulations. However, previous studies have not quantified these uncertainties individually and
explicitly. This study developed an ensemble-based dynamic Bayesian averaging approach
(e-Bay) for deterministic discharge simulations using multiple global precipitation products and
hydrological models. In this approach, the joint probability of precipitation products and
hydrological models being correct is quantified based on uncertainties in maximum and mean
estimation, posterior probability is quantified as functions of the magnitude and timing of
discharges, and the law of total probability is implemented to calculate expected discharges. Six
global fine-resolution precipitation products and two hydrological models of different
complexities are included in an illustrative application. e-Bay can effectively quantify
uncertainties and therefore generate better deterministic discharges than traditional approaches
(weighted average methods with equal and varying weights and maximum likelihood approach).
The mean Nash-Sutcliffe Efficiency values of e-Bay are up to 0.97 and 0.85 in training and
validation periods respectively, which are at least 0.06 and 0.13 higher than traditional approaches.
In addition, with increased training data, assessment criteria values of e-Bay show smaller
fluctuations than traditional approaches and its performance becomes outstanding. The proposed
e-Bay approach bridges the gap between global precipitation products and their pragmatic
applications to discharge simulations, and is beneficial to water resources management in

ungauged or poorly gauged regions across the world.

Keywords: Ensemble simulation; Hydrological modelling; Satellite precipitation products;

Uncertainty; Water resources



1 Introduction

Knowledge of river flow plays an important role in understanding the water cycle and, therefore,
in water resources management (Sellers, 1997; Sorooshian et al., 2005; Tapiador et al., 2012;
Gao and Liu, 2013). However, flow data are not available in many regions, particularly in
mountainous districts and rural areas in developing countries. In these regions, due to
insufficient gauge observations, alternative approaches, such as hydrological model simulations,
are required for efficient water resources assessment (Voisin et al., 2008; Yong et al., 2010;

Ward et al., 2011; Beck et al., 2016; Qi et al., 2016a).

In hydrological simulations, precipitation data are very important inputs. There are a few data
sources that are available to use: for example, precipitation gauge based datasets, remote sensing
based data and reanalysis precipitation products. In these datasets, fine resolution precipitation
products have been developed on a global scale, e.g. Tropical Rainfall Measuring Mission
(TRMM) products (Huffman et-al.; 2007), Global Land Data Assimilation System (GLDAS)
precipitation products (Kato et al., 2007), Asian Precipitation - Highly-Resolved Observational
Data Integration Towards Evaluation of Water Resources (APHRODITE) (Xie et al., 2007;
Yatagai et al., 2012), Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) (Sorooshian et al., 2000; Sorooshian et al., 2002), and
Global Satellite Mapping of Precipitation product (GSMAP) (Kubota et al., 2007; Aonashi et al.,
2009). The uncertainty of precipitation products varies between different months and data
magnitudes: for example, Qi et al. (2016a) showed that, in a region in northeast China,
TRMM3B42 and GLDAS-1 underestimate high precipitation intensities in summer periods and
perform better in spring and autumn; Ochoa et al. (2014) found that the uncertainty of
TRMM3B42 varies in different months in a region in western South American. Many studies in

other regions across the world revealed similar results, for example, the study on TRMM3B42



in the whole of China by Chen et al. (2013), and the investigation on GSMAP-MVK+ in the

United States by Tian et al. (2010).

Many researchers have implemented precipitation products in hydrological simulations (Li et al.,
2013; Maggioni et al., 2013; Miiller and Thompson, 2013; Xue et al., 2013; Qi et ak, 2016a;
Wong et al., 2017). In hydrological simulations using precipitation products, uncertainties in
simulated discharges have been reported. There are three important uncertainty sources in the
simulated discharges: precipitation product uncertainty (Nikolopoulos et al., 2010; Pan et al.,
2010; Yong et al., 2010; Yong et al., 2012; Chen et al., 2013; Yong et al., 2014), hydrological
model uncertainty (Beven and Binley, 1992; Beven and Freer, 2001; Beven et al., 2007) and
uncertainty resulting from their combinations (Qi et al., 2016a). Here, the combination
uncertainty represents the nonlinear propagation processes from precipitation product and
hydrological model uncertainties to discharge simulation uncertainty. Most recently, Qi et al.
(2016a) quantified the influence of the combination uncertainty on discharge simulations and
showed that combination uncertainty can contribute a similar magnitude of uncertainty to

discharges as hydrological models.

Many uncertainty analysis approaches have been introduced to quantify hydrological simulation
uncertainty (Beven and Binley, 1992; Beven and Freer, 2001; Blasone et al., 2008; Vrugt et al.,
2009; Nott et al., 2012). In these approaches, one of the commonly used methods is the
generalized likelihood uncertainty estimation (GLUE) technique, introduced by Beven and
Binley (1992). This approach outputs probability distribution of model parameters conditioned
on input data, and the uncertainties in model input are represented by uncertain parameters.
Similar to GLUE, Hong et al. (2006) proposed a Monte Carlo based method to quantify

uncertainty in hydrological simulations using satellite precipitation data, in which flow



simulation uncertainty is represented by ensemble simulation results. However, the previous
studies have not explicitly considered the respective uncertainty contributions of precipitation
products, hydrological models and their combinations at different times and for different data

magnitudes.

Ensemble discharge simulation is a very important approach to representing the overall
uncertainty and should be handled in an appropriate way to generate a deterministic output
(Wang et al., 2012). Several approaches can be applied to this process, for example, weighted
average approaches, maximum likelihood approaches and Bayesian averaging approaches. In
these methods, the Bayesian averaging approaches can combine multiple models and/or inputs
based on their probabilities and have been implemented in many studies. For example, Vrugt
and Robinson (2007) compared data assimilation and Bayesian averaging approaches, and
indicated that the data assimilation methods cannot handle the cases where multiple inputs and
models are involved. Also, Duan et al. (2007) developed a probabilistic hydrologic prediction
approach by combining a few hydrological models using the Bayesian averaging approaches. In
recent years, Madadgar and Moradkhani (2014) developed an improved Bayesian averaging
approach by incorporating joint probability functions and then used the method to combine
simulation results from several models; Madadgar et al. (2016) developed an approach based on
Bayesian averaging to predict seasonal precipitation on the basis of precipitation simulation
ensemble; and Roy et al. (2017) proposed an approach for real-time streamflow forecasting
using three hydrological models and bias corrected satellite data based on a Bayesian averaging
approach. However, to the best of the authors’ knowledge, no research has been carried out to
generate deterministic outputs from multiple precipitation products and hydrological models
explicitly considering their joint probability and dynamic posterior probability at different times

and for different data magnitudes.



The overall objective of this paper, therefore, is to develop an ensemble-based dynamic
Bayesian averaging approach (e-Bay) for deterministic discharge simulations using multiple
global precipitation products and hydrological models. The developed e-Bay approach is generic
and is independent of geographical area, precipitation products and hydrological models: hence,
it is widely applicable. In this approach, multiple precipitation products and hydrological models
are used to consider their respective uncertainties. The joint probability of precipitation products
and hydrological models being correct is quantified based on a two-objective likelihood function:
uncertainties in maximum and mean estimation; dynamic posterior probability is quantified as a
function of the magnitude and timing of estimated discharges; the law of total probability is
implemented to average the ensemble discharge simulations. Six global fine-resolution
precipitation products and two hydrological models of different complexities are used in this
research to illustrate the application of the proposed approach in a river basin in northeast China.
e-Bay is compared with three other approaches: the weighted average method with equal
weights, weighted average method with varying weights, and the maximum likelihood approach.
This study provides three advances from the present state of knowledge. First, an
ensemble-based dynamic Bayesian averaging approach is developed, and it has outstanding
capability to estimate expected discharges. Second, an approach is developed to estimate the
joint probability of precipitation products and hydrological models being correct based on
uncertainties of maximum and mean estimates. Third, an approach is proposed to estimate
posterior probability based on the magnitude and timing of simulated discharges. The developed
e-Bay approach bridges the gap between global precipitation products and their pragmatic
applications to river discharge simulations, and could be beneficial to hydrological simulations

and water resources management in ungauged or poorly gauged regions across the world.



The paper is organized as follows. Section 2 introduces the e-Bay approach. Section 3 presents the
study area, data sets, precipitation products, hydrological models and criteria used. Section 4
shows the results of applying e-Bay to the study area. Discussion and conclusions are presented.in

Section 5 and Section 6.

2 The e-Bay approach

There are four main steps in the proposed e-Bay approach. First, ensemble discharge simulations

using selected global precipitation products and hydrological models. Second, quantification of
joint probability of the precipitation products and hydrological models being correct, which
includes calculation of respective uncertainties of precipitation products, hydrological models
and their combinations. Third, quantification of dynamic posterior probability, which depends
on the timing and magnitude of simulated discharges. Fourth, calculation of expected discharges
from the discharge ensemble on the basis of the law of total probability. The implementation of
the proposed approach in this study splits datasets used into two periods: training period and
prediction period. The training period is used to quantify the probabilities, and the prediction
period used to validate the proposed approach. In this study, a series of training periods ranging
from two to eight years are used, which results in prediction periods ranging from six-year to

one-year. The flowchart of e-Bay is shown in Fig. 1.

< Figure 1 here please >



2.1 Quantification of joint probabilities of precipitation products and hydrological models

Assuming hydrological model Az, and precipitation product R ; are used, the probability of
them being correct p( M;.R j) can be assessed by the performances of 7z, , R j and their
combination in replicating observed discharge data Q . (Madadgar and Moradkhani, 2014):
P(M,‘ 'R | Qobs) - p(Mi | QMi’Qobs) ' p(Rj | RainRj’Rainobs)'c(Mi 'R | QM,- »Rj’QObS) (D
where i and j represent the ith hydrological model and the jth precipitation product respectively;

p (M ilQ Ml-’Qobs) and p( R ;| Rain Rj’Rain ost represent the probability of model az;
and precipitation R ; respectively being correct; c( Mi-R;1Q M Rj’QobSJ represents the

probability of the combination of A7; and R being correct; Q. represents observed

discharges; Rain,, represents observed precipitation depth; Q ), fepresents simulated
1

discharges of 7z, using observed data as input; Rain R . represents precipitation depth of
J

R,: Q MiR; represents simulated discharges of )/, using Rain Rj as input.

p|M;1Q M~’Qobs) can be calculated using Bayesian theory as below:
1

| ) l(QMiIMiaQobs)'”(M")

2)

where 7z( M i) represents prior probability of Af; being correct; / (Q M; | M; ’Qobs)

represents likelihood function conditioning on the observed discharge data Q_, - In this



research, /| Q M | M; ’Qobs) is calculated on the basis of two uncertainty criteria: uncertainty
1

of maximum discharge ( 7, ) and uncertainty of mean discharge ( 1, ):

Z(QMi|Mi’Qobs)=%'(f1+f2) 3)

| can be calculated as below

max (QM,') —max (Qobs)
max [maxQ, max (Qobs)]

fi=1- ©

where max represents the maximum values; max(Q) represents the maximum discharge among

m hydrological model simulations using observed precipitation as input

maxQ:max{max(QMl),max(QMz),---,max(QMm)J (5)

f, canbe calculated as below

f2=l— (6)

max [maxMean, mean (Qobs)]

where mean represents the mean values; maxMean represents the maximum mean discharge

among m hydrological model simulations using observed precipitation as input:

maxMean = maxLmean(QMl),mean(QMz),- -, mean (QMm)J (7

It should be noted that the likelihood function is formed by aggression of the two criteria, and
requires the two criteria have the same magnitude (Khu and Madsen, 2005; Ngo et al., 2007). Egs.

(4) and (6) show that 7', and £, have values between zero and one, and thus the constructed



likelihood function is appropriate. The larger of the likelihood function, the higher of the

probability of being correct.

For precipitation products, the probability of being correct can be calculated as

lLRainRj IR Rainost'ﬂ(Rj)

.
2 Z(RainRj | Rj,Rainobs) : ﬂ(Rj)
=1

p (Rj | Raing Rainobs) =

where 7r< R j) represents prior probability of R ; being corrrect; I(Rain R; IR Rainost
represents likelihood function conditioning on observed precipitation depth Rainy,g- Similar to
likelihood function calculation of discharges, / LRain R; | R j»Rain ost is also calculated on

the basis of two uncertainty criteria: uncertainty of maximum precipitation depth ( /', ) and

uncertainty of mean precipitation depth (7, ):

I(RainRJ | Rj,Rainobsj =%'(f1+f2) )

f 1s calculated as

max (Rain Rj) —max (Rainobs)

(10)

f1=1-

max [maxRain, max (Rainobs)}

where maxRain represents the maximum precipitation depth among r precipitation products
maxRain = max {max (Ralan ), max (RalnRz) ,-++,max (RamRr)J (11)

f, is calculated as

mean (Rain Rjj —mean (Rain obs)

fy=1- (12)

max (maxMean, mean (RainobS))

10



where maxMean represents the maximum mean precipitation depth among » precipitation

products

maxMean = max Lmean(Raian ),mean(RainRz),- - -,mean(RainRr)J (13)

For the combinations of precipitation products and hydrological models, the probabilities of

being correct are

( | ZLQMi’RJ-'MZ"RJ"Q""SJ'”(MI"RJ)
“\ Mi-R; QM;’R"QOij: m r

i/
I Z(QMl.,leMi’Rj’Qobsj'”(MiaRj)

i=1j=1

(14)

where 7z( Mi.R j) represents prior probability of the combination of R j and 77, being

correct; [ - |[M.,R; represents likelihood function conditioning on observed
M ;R G J> ~obs

discharge data Q_, . - Similar to likelihood function calculations of hydrological models and

recipitation products, / » M. R is also calculated on the basis of two
precip P MR obs

uncertainty criteria: uncertainty of maximum value of Q MR ( /) and uncertainty of mean
IAEAY

value of QMi’Rj (1,):

1
Z(QMZ.,RJJMi’RjaQost:5'(f1+f2) (15)

f 1s calculated as

max [QMI ’RJ_) — max(QObs)

max (maxQMR, max Q)

fi=1- (16)

11



where maxQMR represents the maximum discharge among the 71X7 combinations of

hydrological models and precipitation products.

maxQMR = max Lmax (QMI’le,max (QMl ’RzJ" . "maX(QMm’Rr)J (17)

f, Is calculated as

mean (QMi ’Rjj —mean (Qobs)
max (maxmeanQMR, mean (Q obs))

fy=1- (18)

where maxmeanQMR represents the maximum of the mean discharges among the mXr

combinations of hydrological models and precipitation products

maxmeanQMR = max [mean(QMllej,mean (QMI’RJ,' ., mean(QMm’Rr)J (19)

2.2 Quantification of posterior probabilities

The probability of simulated discharge ¢ being correct at time k£ can be quantified by

performance of the combination of j7; and R; inreplicating observed data q]ébs

l(qk ,qk J_ﬂ(qk
k k k k Mi-R 7 0bs MiR;
p(q IMi’RJ’qobs):p(in,RJJqobsj: m

k k k
El ]E:ll(in’Rj, qOij ﬂ-(in’RJ')

(20)

k k . - k . ) k
4 (6] | MisR 90 S) represents the posterior probability of ¢~ being correct; 7 (q M RjJ

represents the prior probability of qk being correct; / (ql;\/[ R ,,qlgbsj represents a likelihood
Iy

function conditioning on observed discharge qlébs as below

12



1

i K PR
qu’R] qObS (

j 1)

k k
=0, then l(in’Rj | qobsj = Inf

k ok
qu’R] qObS

i ok ok
qM,'»Rj 9 obs

where 71 represents a parameter to scale up or down the uncertainty and should be calibrated

in the training period; /nf represents a punishment value and should be a large real number.
From (21), it can be seen that the closer of simulated discharge qk _p . to observed data qk ,
MI’RJ obs

the larger the likelihood function values, implying higher probability of being correct.

After quantifying the posterior probability of being correct in the training period, the probability
of predicted discharges being correct in the prediction period can be calculated using an

interpolation approach. In this interpolation approach, it is assumed that the simulated discharges
in the prediction periods have the same probability distribution as in the training periods, and the

probability of predicted discharges being correct can be linearly interpolated as below

k kA
k DL N +in’Rj MR kv o\ kA
p qM,‘,Rj p qu'aRj k,v koA p in,Rj p qM,',Rj (22)

IMiR; ™ IMiR;

kA < k < k,v
IMiR; ™ IMR; = IMiR,;

where C]]]{"/[A. R and C]]]{"/[V, R represents simulated discharges in the training period at time k by
Py Py
the combination of Af; and ith a relationship of ¢~ » <™ = . p| g" d
¢ combination of Af; and R; witharelationship o in,Rj in,Rj, p in’Rj an

koA e . .. ok
p(q M RjJ represents probabilities calculated in the training period; ¢ MR, and

13



p(ql]c\/[. R J represents predicted discharges and their probability of being correct in the
g

prediction period.

When predicted discharges are smaller than the smallest discharges in the training period, the
probability of predicted discharges can be interpolated using Eq. (23), assuming that the
probability of being correct is zero when simulated discharge values are zero

k k
Aar.p. " 9rr -
p(qk j:=P P e R Y -p(0)p  (23)

MR j

k
where ¢ MiR; and p[q’j‘w l_’RjJ represent the smallest discharges and its probability of being

correct in the training period at time k; p(0) =0 represents the probability of being correct

when simulated discharge values equal zero.

When predicted discharges are larger than the largest discharges in the training period, the
probability of the predicted discharges being correct can be derived from interpolation using Eq.

(24), assuming that the probability is a linear function

k k
=a- +b 24
4%@&} IMiR; 24)
where d and b are coefficients of a linear function representing a line of the best fit of the

largest and second largest discharges and their corresponding probabilities in the training period.

2.3 Expected discharges based on the law of total probability

On the basis of the law of total probability, given a set of observations Q,,, , the probability of

obs »

simulated discharge g being correct can be calculated as Eq. (25)
14



m r

p(q M R ,Qobs)=i§l]§1p(M,-,Rj|Qobs)-p(q IMi,Rj,Qobs) (25)

where p represents probability of ¢ being correct; M and R represents a set of hydrological
models and precipitation products respectively; p(q | M;,R jaQobs) represents probability
of g simulatedby }f; and R, being correct; p( Mi Rl Qobs) can be rewritten as below

wy= (M R;1Qobs )= P(M; ) p(R;)-¢(M1R ) (26)

and represents overall performance of )f; and R; inreplicating the observed discharge Q

obs

in the training period. The sum of wij is one (Madadgar and Moradkhani, 2014). wy; can be

calculated using Eq. (1) and will be called joint probability in the rest of this paper.

When considering time variant discharge simulations, Eq. (25) can be rewritten as below

(Madadgar and Moradkhani, 2014)

k zr k k
plq |M,R,Qobs)=zlzlwij'p(q | MisR ) 27)
i=lj=

where Ak represents the timing of simulated discharge ¢ ; p(qk | MR j’qﬁbs) can be

calculated using Eqs. (20)-(24). Thus, expected discharges on the basis of the law of total

probability can be calculated as below

k2L k k k (28)
q _lelqu’Rlejp q |MiaRjaq0bS
=lj=

~

2.4 Steps to implement the e-Bay method
This section is devoted to describing how the newly proposed e-Bay approach can be applied in
practice. The numerical procedures are implemented according to the following main steps:

1. Collect available observation data, including precipitation, discharge and other inputs of
15



hydrological models.

2. Quantify the joint probabilities of precipitation products and hydrological models being
correct and the dynamic posterior probability, including calibration of parameter » in Eq.
(21).

3. Validate the performance of e-Bay using observed discharges and go to step2 if the
performance is not desirable.

4. Predict future discharges using e-Bay, in which the global precipitation products should

be used as input to hydrological models.

3 Real world study area, data sets, precipitation products, models and criteria

3.1 The Biliu river basin

The Biliu basin (2814 km?) is located in the coastal region between the China Bohai Sea and the
China Huanghai Sea, and is characterized by a dry winter - hot summer climate (Koppen climate
classification). There are 11 precipitation stations and one discharge gauge which have historical
data from January 2000 to December 2007. The Biliu reservoir is a small reservoir, with a
maximum capacity of 934 million cubic meter, and is managed to supply water to nearby cities.
The flow data used in this research is the inflow to the Biliu reservoir, which is not influenced by
reservoir management. The gauge distribution in the Biliu basin is shown in Fig. 2. The
elevation of Biliu river basin ranges from 4.5 m to 984.9 m. Land-use data are obtained from the
USGS (http://edc2.usgs.gov/glcc/glce.php). The land-use types have been reclassified to Simple
Biosphere scheme — version 2 (SiB2) land-use types for this study (Sellers et al., 1996). Soil
data are obtained from the Food and Agriculture Organization (FAO) (2003) Global data

product.

< Figure 2 here please >
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3.2 Data sets

The weather stations provide sunshine duration, air temperature, humidity and wind speed data,
which can be obtained from the China Meteorological Data Sharing Service System
(downloaded from http://cdc.cma.gov.cn/home.do). Precipitation data were obtained from the 11
rain gauges. Downward solar radiation is estimated from sunshine duration, temperature and
humidity using a hybrid model (Yang et al., 2006). Long wave radiation is obtained from the
GLDAS/Noah (Rodell et al., 2004). Air pressure is estimated according to elevation (Yang et al.,
2006; McVicar and Korner, 2013). These meteorological data are then interpolated to 300 m x
300 m model cells through an inverse-distance weighting approach. Because of the elevation
differences among model cells and meteorological gauges, the interpolated surface air
temperatures are further modified with a lapse rate of 6.5K/km. Gauge precipitation data are
also interpolated to 300 m x 300 m model cells and basin-averaged gauge precipitation data are
calculated on the basis of the interpolation results. In addition to the above, the leaf area index
and fraction of photosynthetically active radiation data are obtained from level-4 MODIS global
products-MOD15A2. The Digital Elevation Model (DEM) is from the NASA SRTM (Shuttle
Radar Topographic Mission) and has a resolution of 30 m x 30 m. This was resampled to a 300
m resolution in the model calculation to reduce computational cost, while the model processed
the finer DEM (30 m grid) to generate sub-grid parameters (such as hillslope angle and length).

These data were used as inputs for the two hydrological models to calibrate model parameters.

3.3 Precipitation products
The precipitation products used in this study are shown in Table 1. These data are all freely
available. In these selected precipitation products, APHRODITE is wholly based on gauge data;

TRMM3B42 is based on both remote satellite estimation and gauge data; GLDAS-1

17



(GLDAS Noah025SUBP_3H) is generated based on Global Data Assimilation System data
(which is a reanalysis data) and NOAA Climate Prediction Center Merged Analysis of
Precipitation (which is based on gauge, reanalysis and satellite-derived precipitation estimates);
while others are based on remote satellite estimation without gauge data corrections.
Remote-based precipitation estimation has many weaknesses, €.g. microwave estimation could
miss convective precipitation and typhoon rain because of its sparse time interval resolution, and
infrared estimation has a higher temporal resolution but cannot penetrate clouds. Ground rain
gauge-based interpolation products are limited by interpolation algorithms, gauge density and
gauge data quality (Xie et al., 2007). The details of data sources used in each precipitation

product can be found in Table 1.

< Table 1 here please >

3.4 Hydrological models

Two hydrological models with different complexities — WEB-DHM and TOPMODEL — are
used in this study, since previous research showed that they can simulate the hydrological
processes very well in the case study region used in this paper (Qi et al., 2015; Qi et al., 2016a;

Qiet al., 2016b; Qi et al., 2016¢).

3.4.1 WEB-DHM

The distributed biosphere hydrological model — Water and Energy Budget-based Distributed
Hydrological Model (WEB-DHM) (Wang et al., 2009a; Wang et al., 2009b; Wang et al., 2009c)
— was developed by coupling SiB2 (Sellers et al., 1986) with a geomorphology-based

hydrological model (Yang, 1998) to describe water, energy and CQ, fluxes at a basin scale.

WEB-DHM has been used in several evaluations and applications (Wang et al., 2010a; Wang et

18



al., 2010b; Qi et al., 2015; Qi et al., 2016a). Input data of WEB-DHM include precipitation,
temperature, downward solar radiation, long wave radiation, air pressure, wind speed and

humidity.

3.4.2 TOPMODEL

TOPMODEL is a physically-based, variable contributing area model of basin hydrology which
attempts to combine the advantages of a simple lumped parameter model with distributed effects
(Beven and Kirkby, 1979). More detailed descriptions of TOPMODEL and its mathematical
formulation can be found in Beven et al. (1979). TOPMODEL has been commonly utilized in
research across the world (Blazkova and Beven, 1997; Cameron et al., 1999; Hossain and
Anagnostou, 2005; Bastola et al., 2008; Gallart et al., 2008; Bouilloud et al., 2010; Qi et al.,
2016b; Qi et al., 2016¢) because of its relatively simple model structure. The input data of
TOPMODEL include basin averaged precipitation and topographic data which can be estimated

from digital elevation models (DEM).

3.5 Criteria

In model performance assessment, NSE and relative bias (RB) are used as error metrics:

>(0,-0)
NSE=1-——— (29)
E(Qri - Qz)
Zn:Qpi - iQ{i
RB=— = x100% (30)
;Qﬁ

where O,; and Q,; are a simulated and an observed flow respectively at time 7; §

. 1s the average

of observed flows. In addition, a comprehensive criterion F is also used

F=1-NSE+|RB| 31)

19



The lower the F values, the better the results.

4 Application to the Biliu river basin

This section intends to present the detailed results of the application of e-Bay to the Biliu river

basin, in which the advantages of e-Bay are shown.

4.1 Hydrological model calibration, validation and simulated discharge ensemble

For WEB-DHM, six main parameters were selected for calibration using a trial and error
approach due to the model’s computational burden (it takes two hours to simulate one year of
discharge in a personal computer with two 3.41GHz processors). Model parameter multipliers
were calibrated, similar to the studies by Wang et al. (2011), Qiet al. (2015) and Qi et al. (2016a).
The ‘trial and error’ approach has two steps. First, all the multiplier values are set to 1, which
represents the default parameter values from Food and Agriculture Organization (FAO) (2003)
and SiB2 model. Second, multiplier values are varied until acceptable discharge simulation
accuracy is obtained. The calibrated parameter values are listed in Table 2. The simulated daily,

monthly and inter-annual results are shown in Figs. 3a, 3c and 3e.

< Table 2 here please >

< Figure 3 here please >

TOPMODEL uses basin-averaged parameter values, and these parameter values are estimated by
experience or observation. However, these methods do not give precise parameter values.
Therefore, the parameter values are considered as uncertain and provided with ranges based on
previous studies in this region (Qi et al., 2016a; Qi et al., 2016b; Qi et al., 2016¢). Six parameters

of TOPMODEL were calibrated using the dynamically dimensioned search algorithm (Tolson and
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Shoemaker, 2007), and the results are given in Table 3. The simulated daily, monthly and

inter-annual results are shown in Figs. 3b, 3d and 3f.

< Table 3 here please >

Note that the parameters of TOPMODEL and WEB-DHM were calibrated using observed
precipitation data, and the accuracy of simulated discharges was validated using gauge
observations. These parameter values were employed when using the global precipitation
products as model inputs. The discharge simulation ensemble using WEB-DHM, TOPMODEL

and the six global precipitation products is shown in Fig. 4.

< Figure 4 here please >

None of the simulated discharges accurately replicate the variations in observed discharge. For
example, the combination of WEB-DHM and PERSIANN seriously overestimates discharges
across the whole year, and all the other hydrological model and precipitation product
combinations underestimate the discharge in August. This information implies that it is difficult
to accurately simulate discharge processes using any of the combinations, and therefore it is
necessary to generate a synthetic discharge process from the ensemble considering all the

uncertainties.

4.2 Probability quantification
Fig. 5 shows the joint probability density in the training period, based on Eq. (1). These results
are calculated using data duration ranging from two years to eight years. Each hydrological

model and precipitation product combination is represented by a different color.
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< Figure 5 here please >

In the case of 2-year training data, the joint probability of PERSIANN and TOPMODEL is the
largest, with a value of 0.13; TRMM3B42 and WEB-DHM have the second largest joint
probability (0.12); GLDAS and TOPMODEL have the lowest probability, with a value of just
0.05. Results are different in the case of 3-year training data: for example, the joint probability
of TRMM3B42 and WEB-DHM is the largest, with a value of 0.13; TRMM3B42 and
TOPMODEL have the second largest value (0.12). These differences may result from the
changes in the data implemented, and implies that the training data influences the quantification
of joint probability. Similar to 3-year training data case, in the cases of 4-year and 5-year
training data the joint probability of TRMM3B42 and WEB-DHM is the largest; TRMM3B42
and TOPMODEL have the second largest value; GLDAS and TOPMODEL have the lowest
value. However, in the cases of 6-year, 7-year and 8-year training data, the results are a little
different: for example, TRMM3B42RT and TOPMODEL have the lowest joint probability;
TRMM3B42 and WEB-DHM have almost the same joint probability as PERSIANN and
TOPMODEL. These differences are also due to the increase in training data, which implies that

the calculation of the joint probability should use as much available data as possible.

Fig. 6 shows the dynamic posterior probability of simulated discharges across twelve months.
The duration of training data ranges from two to eight years. In this study, the scale factor » and
Inf inEq. (21) equal 4 and 1000 respectively; these values were obtained through a trial and
error approach and found to provide the best replication of discharges observed during the
training period. The results in the following sections show this scale factor value is appropriate,

replicating the observed data very well.
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< Figure 6 here please >

In the case of 2-year training data in January (Fig. 6(1)), the CDF values vary as discharge
varies. Compared with Fig. 6(1), Figs. 6(2)-(7) show different CDF curves. These differences
result from the increase in training data. Overall, these results reveal that the probability of
simulated discharges being correct is dynamic: the probability depends on the magnitude of
discharge. Compared with the results for January (Figs. 6(1)-6(7)), the panels for February show
different patterns in the variation of CDFs (Figs. 6(8)-6(14)). For example, Fig. 6(14) shows that
the CDF value is 0.61 when discharges are smaller than 2.70 m’/s, whereas in Fig. 6(7) the CDF
value is only 0.29. These differences between January and February indicate that the probability
of simulated discharges being correct also varies with times. Similar to the cases in January and

February, other months also show the dynamic posterior probability of simulated discharges.

4.3 Expected discharges in the training period

The expected discharges in the training period can be obtained after calculation of the joint
probabilities and the dynamic posterior probabilities. Fig. 7 shows the comparison of simulated
discharges calculated from four approaches. ‘Mean’ represents the mean values of the discharge
simulation ensemble; ‘Maximum NSE’ represents the result of a combination of precipitation
product and hydrological model with maximum NSE. ‘Weighted average’ represents the results
that are averaged on the basis of the performance of hydrological model and precipitation

product combinations, with the weight calculated from Eq. (1).

< Figure 7 here please >
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In the case of 2-year training data, with respect to e-Bay, the calculated discharge values are
very similar to the observations (Fig. 7(1)), while the results of other approaches are a little
worse. For example, Fig. 7(2) shows the calculated results have large uncertainty in the peak
discharge; Figs. 7(3) - (4) show the results have larger uncertainty in smaller discharges. These
results are quantitatively verified in Table 4 in terms of three criteria: NSE, RB and F. The best
criterion values are in bold fonts. In the case of 2-year training data, e-Bay has the best
performance in terms of all the three criteria: NSE, RB and F values are 0.96, -0.14 and 0.18

respectively.

Compared to the 2-year training case, the results are different with 3 years of training data. For
example, the ‘Maximum NSE’ approach shows better performance (Figs. 7(7)) than e-Bay (Fig.
7(5)). The differences are also shown in Table 4, from which it can be seen that, although e-Bay
has a NSE value of up to 0.96, which is the same as the ‘Maximum NSE’ approach, its RB value
shows larger error, resulting in larger F value. The differences between 2- and 3-year training
data result from the changes in the training data and the joint probability (recall the results in

section 4.2).

To consider the impacts of increasing training data, the trends of the performance criteria are
analyzed. Fig. 8 shows the trends of the three performance criteria, which are represented in
different colors. As the number of years of training data increases, the performance of e-Bay
continually improves. For example, when the training data increase from 2 to 8 years, the NSE
values increase from 0.96 to 0.99; absolute RB values decrease from 0.14 to 0.05; F values
decrease from 0.18 to 0.06. It should be noted that, although the absolute RB and F values of the
6-year training data are 0.01 larger than the ones of the 5-year training data, this difference is

very small. Compared to e-Bay, the other three approaches show large variations in NSE, RB
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and F, demonstrating that they cannot guarantee better results when new data are added to the
calculation. This implies that they would devalue the efforts to improve discharge simulation
accuracy by collecting new data. In contrast, with an increase in the training data, the criteria
values of e-Bay show smaller fluctuations and the performance of e-Bay becomes outstanding.
From Table 4, it can also be seen that the average NSE and F values of e-Bay over all the
training years are up to 0.97 and 0.12 respectively, whereas their best values among the other

three approaches are only 0.91 and 0.18. Thus, the overall performance of e-Bay is better.

< Figure 8 here please >

< Table 4 here please >

4.4 Expected discharges in the validation period
Fig. 9 shows the comparison of simulated discharge values among the four approaches in the

validation period.

< Figure 9 here please >

In the case of 6-year validation data, e-Bay seriously overestimates discharges in June and July,
but simulates the peak value (in August) very well. In contrast, the other three approaches
seriously underestimate peak discharges but their simulated values in June and July are very
close to observations. The quantitative comparison is shown in Table 5, from which it can be seen
that the other three approaches outperform e-Bay in terms of the three criteria. This result differs
from section 4.3, in which e-Bay is better than the other three approaches according to all the

three criteria when 2 years of training data is used. This difference results from the influence of
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the data in the training period: the calculated probability is biased by the small duration of

sample data in the training period.

< Table 5 here please >

According to the results in section 4.2, the performance of e-Bay becomes better as the training
data duration increases. Therefore, the performance of e-Bay in the validation period should be
better than other approaches when the duration of training data is large. This hypothesis is
verified according to the quantitative criteria in Table 5. e-Bay outperforms the other three
approaches when the duration of training data is large: in terms of NSE, e-Bay is the best when 5
or fewer years are used for validation (corresponding to training data duration of at least 3 years);
in terms of the overall performance criterion F, e-Bay has better performance when 1, 2 or 3
years are used for validation (corresponding to 5, 6 and 7-year training data). Especially when the
number of the validation years equals 1, e-Bay successfully replicates the observations, with NSE
and RB values 0of 0.95 and 0.01, but the other three approaches have very poor performance. For
example, the ‘Mean”and ‘Weighted average’ approaches have NSE values of 0.65 and 0.68,
respectively; ‘Maximum NSE’ has NSE and RB values 0of -0.02 and -0.42. In addition, from Table
5, it can be seen that the average NSE and F values of e-Bay over all the different years of
validations are up to 0.85 and 0.32, whereas their best values among the other three approaches
are only 0.72 and 0.37. Thus, e-Bay is better than the other three approaches when an extended

period of data is used for training.

It should be noted that the increase of the performance of e-Bay is not continuous, for example,
the NSE, RB and F values are 0.87, 0.08 and 0.21 in 5-year validation, but they are 0.85, -0.34

and 0.49 in 4-year validation. This could result from the influence of the changes of validation
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data. Thus, the comparisons of the four approaches are carried out in each of the validation

cases.

5 Discussion

Compared with previous Bayesian model averaging approaches (e.g., Box and Tiao (1992); Duan
et al. (2007); Roy et al. (2017)), there are two main differences in e-Bay: (i) e-Bay explicitly
quantifies the probabilities of being correct following the combinations of precipitation products
and hydrological models to replicate observed flows; (ii) e-Bay explicitly quantifies the posterior
probabilities at different times and under different flow magnitudes. A function describing the
combination behavior of uncertainty sources at different times and flow magnitudes is effective
in removing the output bias (Madadgar and Moradkhani, 2014). The traditional approaches
(‘Mean’, ‘Maximum NSE’ and ‘Weighted average’) do not explicitly consider the combination
effects. For example, the ‘Mean’ approach assumes every ensemble member has the same
probability of being correct; the “‘Maximum NSE’ approach assumes that the probability of the
ensemble member with a highest NSE value being correct is one; although ‘Weighted average’
considers the varying weights, these weights represents the overall joint performance of
hydrological models and precipitation products, and therefore the probability of the
combinations being correct at different times and discharge magnitudes is not explicitly
considered. However, in this research, the uncertainties at different times and discharge
magnitudes are explicitly quantified. This explicit quantification makes the e-Bay approach
capable of coping with detailed uncertainties, which is beyond the capability of other traditional

approaches, and therefore e-Bay generates better discharge simulation results.

In standard Bayesian averaging approaches, error distributions are assumed to be normal or

gamma distributions, which are appropriate for several variables such as temperatures and sea
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level pressure (Duan et al., 2007; Refsgaard et al., 2012; Madadgar and Moradkhani, 2014; Roy et
al., 2017). In addition, non-parametric approaches, for example, the ensemble based approaches,
can also be utilized to simulate complex error distributions (Hesterberg, 2002; Duan et al., 2007).
In this study, the latter approach is utilized since the likelihood functions used (Egs. (3), (9), (15)
and (21)) consider uncertainties in maximum and mean estimation and also change with timing

and flow magnitudes, and it is difficult to derive an analytical error distribution.

The scale factor in Eq. (21) has influence on the performance of e-Bay and should be calculated
to maximize the probability of simulated discharges being correct. Based on the results in

section 4, it can be seen that the scale factor used in this study is appropriate. Although a trial
and error approach was used in this research to obtain the scale factor value, other approaches
such as optimization algorithms and maximum likelihood estimate approaches may also be
applied. In addition, the linear assumptions used to predict the probability of simulated
discharges being correct in the future (Egs. (23) and (24)) may have impacts on the performance
of e-Bay. However, the performances of e-Bay in both calibration and validation periods in this
study are very good, and are better than the other approaches if given enough training data. Thus,

the linear assumptions are acceptable.

The overall objective of this study is to introduce the developed e-Bay approach, including its
theoretical foundations and formulations, which are independent of the study area, precipitation
products and hydrological models. Therefore, e-Bay is not restricted to the six products and two
models used in this study and more precipitation products and hydrological models could be
used, including, for example, a recent new precipitation product - MSWEP (Beck et al., 2017a).
e-Bay provides an approach for deterministic discharge simulations using multiple global

precipitation products since all the precipitation products (including MSWEP) have uncertainties
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to some degree, as highlighted recently by Beck et al. (2017b). The application of e-Bay provides
very good discharge estimation, indicating that the use of six products and two models in this
research is acceptable. When using other precipitation products and hydrological models in
other regions, the uncertainties of global precipitation products and hydrological models may
vary, and the probabilities and parameters quantified in this study will change. However, this

does not affect the applicability of e-Bay to other river basins.

In addition to precipitation, hydrological models may also need other input data, for example,
wind speed, temperature and net radiation, and the used temperature lapse rates may vary in
different months (McVicar et al., 2007). In this study, uncertainties in these data are not included
since the overall objective of this study is to quantify probability of precipitation product
uncertainties. The hydrological model parameters are calibrated using in situ gauge observation
data in this study. While in situ data do not always yield the 'best' parameters, in our case,
validation using observed flows shows that the performance of hydrological models is acceptable,
with NSE and absolute values of RB being above 0.90 and below 1% respectively (recall results in
Section 4.1). Therefore, the hydrological model parameter uncertainty was not considered in this
study. The duration of precipitation and discharge data used can influence the performance of
e-Bay: the longer the training data series, the better the performance of e-Bay. In this study, the
WEB-DHM model needs to use a few satellite-based data sets as inputs, for example, the LAI
and FPAR data from MODIS global products-MODI15A2, which can provide data only after 18
February 2000. In addition, the in situ gauge observations and APHRODITE precipitation
product are only available until 31 December 2007. Thus, an eight-year data period is used in
this study. The results obtained (recall section 4) show that this is sufficient to demonstrate the
advantages of e-Bay and, therefore, the use of an eight-year data period is considered

acceptable.
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The e-Bay approach is developed on an inter-annual scale in this study, which represents a
state-of-the-art process in ensemble-based Bayesian averaging estimation for discharges using
multiple global precipitation products and hydrological models. Developing such approaches for
daily and monthly scales are more challenging works, and future research is encouraged.
Although the e-Bay approach is developed and evaluated on an inter-annual scale in this study, it

shows better results than the other three approaches.

The spatial variations in precipitation are not considered in this study. Sapriza-Azuri et al. (2015)
concluded that the spatial variability of precipitation has little influence on rapidly responding
river discharges. This is the case in this study area because the flow transport time from the
uppermost part of the Biliu basin to the downstream discharge gauge is approximately 6 hours,
which is shorter than the monthly time steps of discharges investigated. Therefore, e-Bay is
suitable for rapidly responding river basins (i.e. those in which the runoff concentration time is
less than the discharge time step investigated, as in this case study). To extend e-Bay to a global
scale when using global land surface/hydrological models, two approaches could be utilized: (1)
divide river basins into sub-basins, apply e-Bay in each sub-basin and then route simulated flow to

basin outlets; (ii) apply e-Bay in each model grid and then route simulated flow to basin outlets.

The e-Bay approach provides a useful tool to average ensemble discharge simulations using
global precipitation products and hydrological models. Future research is encouraged to apply the
approach in river basins world-wide using more land surface/hydrological models and
precipitation products, and to compare e-Bay with traditional approaches comprehensively. e-Bay
quantifies the probability of being correct based on combinations of precipitation products and

hydrological models at different times and flow magnitudes, which is more sophisticated than the
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traditional approaches. Therefore, the quantified probability of being correct using e-Bay may not
be zero even when the probability values are zero based on traditional Bayesian approaches,
which may extend knowledge beyond what is known from traditional Bayesian approaches. In
addition, e-Bay could be applied to generate deterministic results from ensembles of temperatures,
humidity, radiation, etc. Because e-Bay can cope with complex uncertainty, and the generated
deterministic results could be compared with results using traditional Bayesian averaging

approaches.

6 Conclusion

In discharge simulations, it is a challenge to consider the uncertainties of global precipitation
products, hydrological models and their combinations individually, especially at different times
and for different discharge magnitudes. This study presents a state-of-the-art methodology to
address this issue. Six global fine-resolution precipitation products and two hydrological models
of different complexities are used to illustrate the methodology in a river basin in northeast

China. The major contributions are as follows.

First, an ensemble-based dynamic Bayesian averaging approach (e-Bay) is developed. e-Bay
utilizes the law of total probability to calculate expected discharges using multiple global
precipitation products and hydrological models, based on the total probabilities: precipitation
product probability, hydrological model probability, their combination probability and the

dynamic posterior probability.

Second, an approach is developed to estimate the joint probability of precipitation products and

hydrological models based on uncertainties in maximum and mean estimation, and a method is
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proposed to estimate dynamic posterior probability based on the magnitude and timing of

simulated discharges.

Third, e-Bay has outstanding capability to estimate expected discharges. The Nash-Sutcliffe
Efficiency values of e-Bay simulations are up to 0.97 and 0.85 in training and validation periods
respectively. With an increase in the training data, the advantages of e-Bay are unveiled, and its

performance becomes outstanding.
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Table 1 Precipitation products

Spatial Temporal Areal Temporal
Product Data sources
resolution resolution coverage coverage
1 Jan PR+IR+MW
TRMM3B42 V7 0.25° 3h Global 50°N-S
1998-present  +gauge
1 Mar
TRMM3B42RT V7 0.25° 3h Global 50°N-S IR+tMW
2000-present
Global 24 Feb
GLDAS-1 0.25° 3h IR+MW+gauge+R
90°N-60°S 2000-present
1 Mar
GSMAP-MVK+ V6 0.1° 1h Global 60°N-S IR-MW+CMV
2000-present
1 Mar
PERSIANN 0.25° 3h Global 60°N-S PR+IR+ANN
2000-present
APHRODITE 60°E-150°E, 1 Jan 1961 to
0.25° lday gauge
V1101R1 15°S-55°N 2007

PR: precipitation radar; IR: infrared estimation; MW: microwave estimation; CMV: cloud

motion vectors; ANN: artificial neural network; R: reanalysis.
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Table 2 WEB-DHM parameters

Symbol (unit) Brief description

Basin-averaged value

KS (mm/h)
Anik

Sstmax (mm)
Kg (mm/h)
alpha

n

Saturated hydraulic conductivity for soil surface
Hydraulic conductivity anisotropy ratio
Maximum surface water storage

Hydraulic conductivity for groundwater

van Genuchten parameter

van Genuchten parameter

26.43

11.49

42.75

0.36

0.01

1.88
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Table 3 TOPMODEL parameters

Lower Upper
Name (unit) Description Calibration
bound bound
form of the exponential decline in
SZM (m) 0.01 0.04 0.019
conductivity
log value of effective lateral
LNTO (m” h™") -25 1 -11.911
saturated transmissivity
RV (mh™) hill slope routing velocity 2000 5000 2608.4
SRy (M) maximum root zone storage 0.001 0.01 0.006
SRy (m) initial root zone deficit 0 0.01 0.005
unsaturated zone time delay per
7D (mh™) 2 2.885

unit deficit
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Table 4 Comparison of NSE, RB and F for four approaches with training periods of 2 to 8 years

Training Years NSE RB F
e-Bay 0.96 -0.14 0.18
: Mean 0.69 -0.22 0.53
Maximum NSE 0.9 -0.19 0.29
Weighted average 0.74 -0.18 0.44
e-Bay 0.96 -0.12 0.16
3 Mean 0.78 -0.07 0.29
Maximum NSE 0.96 0.04 0.08
Weighted average 0.81 -0.05 0.24
e-Bay 0.96 -0.1 0.14
4 Mean 0.81 0.2 0.39
Maximum NSE 0.8 -0.09 0.29
Weighted average 0.83 0.16 0.33
e-Bay 0.98 -0.08 0.1
Mean 0.9 0.09 0.19
. Maximum NSE 0.92 0.08 0.16
Weighted average 0.9 0.06 0.16
e-Bay 0.98 -0.09 0.11
Mean 0.81 -0.06 0.25
0 Maximum NSE 0.93 -0.02 0.09
Weighted average 0.83 -0.05 0.22
e-Bay 0.99 -0.06 0.07
Mean 0.8 -0.08 0.28
! Maximum NSE 0.95 0.1 0.15
Weighted average 0.82 -0.07 0.25
e-Bay 0.99 -0.05 0.06
Mean 0.78 -0.05 0.27
8 Maximum NSE 0.88 -0.07 0.19
Weighted average 0.79 -0.04 0.25
e-Bay 0.97 -0.09 0.12
Mean 0.80 -0.03 0.31
Average .
Maximum NSE 0.91 -0.02 0.18
Weighted average 0.82 -0.02 0.27

Note: The best criterion values are shown in bold fonts.
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Table 5 Comparison of NSE, RB and F for four approaches with validation periods of 1 to 6 years

Validation years NSE RB F
e-Bay 0.7 0.19 0.49
Mean 0.79 0 0.21
6 Maximum NSE 0.85 -0.03 0.18
Weighted average 0.8 -0.03 0.23
e-Bay 0.87 0.08 0.21
Mean 0.77 -0.04 0.27
. Maximum NSE 0.81 -0.1 0.29
Weighted average 0.78 -0.04 0.26
e-Bay 0.85 -0.34 0.49
4 Mean 0.74 -0.16 0.42
Maximum NSE 0.57 -0.49 0.92
Weighted average 0.72 -0.2 0.48
e-Bay 0.79 -0.21 0.42
Mean 0.66 -0.17 0.51
3 Maximum NSE 0.73 -0.19 0.46
Weighted average 0.65 -0.19 0.54
e-Bay 0.91 0.17 0.26
Mean 0.69 -0.03 0.34
2 Maximum NSE 0.63 -0.16 0.53
Weighted average 0.71 -0.03 0.32
e-Bay 0.95 0.01 0.06
Mean 0.65 0.1 0.45
! Maximum NSE -0.02 -0.42 1.44
Weighted average 0.68 0.11 0.43
e-Bay 0.85 -0.02 0.32
Average Mear‘l 0.72 -0.07 0.37
Maximum NSE 0.60 -0.23 0.64
Weighted average 0.72 -0.06 0.38

Note: The best results are shown in bold fonts.
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Fig. 1 Flowchart of the developed e-Bay approach.
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Fig. 3 Observed and simulated flows using WEB-DHM and TOPMODEL from 2000 to 2007: (a),
(c) and (e) are daily, monthly and inter-annual simulations using WEB-DHM respectively; (b), (d)

and (f) are daily, monthly and inter-annual simulations using TOPMODEL respectively.
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Fig. 4 The discharge simulation ensemble using two hydrological models (WEB-DHM and

TOPMODEL) and six global precipitation products (TRMM3B42, TRMM3B42RT, GLDAS-1,

APHRODITE, PERSIANN and GSMAP-MVK+).
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Fig. 5 Joint Probability density Distribution Functions (PDF) of precipitation products and
hydrological models being correct in the training period. The duration of training data ranges
from two to eight years. Each hydrological model and precipitation product combination is

represented by a different color.
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Fig. 6 Dynamic posterior probability (Cumulative probability Distribution Functions - CDF) of

simulated discharges over twelve months. The duration of training data ranges from two to eight

years. Each row shows the results of one month; each column represents the results of twelve

months using the same years of training data. In each panel, x-axis represents the simulated

discharges.
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Fig. 7 Comparison of discharge values simulated using each approach in the training period.

Each row shows the results of the four approaches using the same years of training data. Each

column represents the results of the same approach using different years of training data.
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Fig. 8 Trends of the three performance criteria under the four approaches, each of which is
represented by a different color. The x-axis shows the duration of training data in years. The

y-axis shows the values of the performance criteria.
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Fig. 9 Comparison of discharge values simulated using each approach in the validation period.
Each row shows the results of the four approaches using the same years of data. Each column

represents the results of the same approach using different years of data.
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Highlights:

An ensemble-based dynamic Bayesian averaging approach is proposed

Estimate joint probability of precipitation and hydrological models being correct
Estimate posterior distribution based on magnitude and timing of flows

Outstanding capability to estimate expected discharges
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